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1. Introduction

Many philosophers have found conditional statements—par-
ticularly counterfactual conditional statements—both important
and problematic.? Such statements have been considered impor-
tant because questions concerning conditionals are closely linked
to the explanation of law-like connections, the problems of induc-
tion and causation, the analysis of dispositional concepts, and
other problems central to the philosophy of science. They have
been thought problematic since they have defied plausible analysis
within the framework of truth-functional logic.

Qur intention in the present paper is to clarify the logical
status of conditionals, not by analysis within classical logic, but
by the construction of a formal system having a primitive condi-
tional connective; besides providing an axiomatic formulation of
the system, we will also present an intuitively plausible semantic
theory for the conditional connective. The sentential part of this
formal system was proved complete in [16], and the semantic

1 This research was supported under National Science Foundation grant
GS—1567.

2 For early statements of some of the problems concerning subjunctive and
counterfactual conditionals, see Lewis [7] (especially pp. 211—230), Goodman
[5] and Chisholm [2]. For discussions of laws of nature and their relation to
counterfactuals, see Nagel [8], pp. 47—78, and Pap [9], pp. 78997, for the
problem of dispositionals, see Carnap [1]. Goodman [4] maps the relationships
among mary of these problems and suggests a direction for their solution. Ryle
[13] and von Wright [22], pp. 127—165, analyze conditionals as “inference
tickets” and “modes of asserting”, respectively. Rescher in [10] and [12] discus-
ses the more gencral problem of reasoning from belief-contravening hypotheses.
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theory was given an informal explanation and defensé in [14].
In the present paper, we extend this system and completeness
theorem to include quantification over individuals; in so doing, we
will incorporate much of the material in [16].

Specifically, we will characterize below a basic system of first-
order conditional logic with identity and prove this theory sound
and complete with respect to the semantic interpretation. In
subsequent sections, we will suggest various ways in which the
basic system can be modified and extended, and will consider
briefly some philosophical applications of the theory.

- 2. Morphology

A morphology M for first-order and conditional logic with identity
consists of the following sets of symbols.

(1} Logical symbols: {>, ~, =, >}.

(2) Parentheses: {), ( }.

(3) Individual variables: a denumerable set V.

{4) Individual constants: a denumerable or finite set Cum.

(5) Predicate letters: for each nonnegative integer n
a denumerable set P},

For the present, the set Ta of terms of M consists only of the
individual variables and individual constants of M, and the set Wiy
of wffs of M is defined inductively in the usual way. The only un-
familiar clause in the definition concerns the logical symbol >,
the corner: if A and B are wifs, then (A> B) is a wif. Later, we will
extend Ty to include definite descriptions, and Wi to include
wils invelving abstracts.

We shall use ‘A', ‘B, 'C, &', v, ‘2", ¢, ¢, ‘P, ‘Q’, and ‘R’ as
syntactic metavariables: the first three for wifs, the next three for
individual variables, the next two for terms, and the last three for
predicate letters. A5/t is the result of replacing all free occurrences
of t in A by s {relettering bound variables, if necessary, to ensure
that all new occurrences of s are free), and AS/[t the result of
replacing zero or more free occurrences of ¢ in A by s (relettering,
as before, if necessary). '

A SEMANTIC ANALYSIS OF CONDITIONAL LOGIC 25

2

We shall use the customary contextual definitions of V', "A’,
‘='and ‘¥, and standard conventions for eliminating parentheses.?
The modal expressions ‘[1A" and “{ A’ are contextually defined
as {~A>A) and ‘~(A> ~AY, respectively.* The expressions
‘Et’ and ‘E[1¢’ should be understood as abbreviations for ‘(3x)x =t’
and (Ix) Ox =t', where x is the alphabetically first variable
differing from t.

3. Semantics

D3.1. A CQ model structure (CQms) is a structure M =(X, R,
A, D, D where AeX, X' =X —{4} is a2 non-empty set, R is a
binary reflexive relation on X', D is a function taking membftrsz
« of D' into possibly empty sets D,, and D' is a set disjoint
from U D..

aEx ’ . )
The notion of a model structure is taken from Kripke's seman-

tics for modal logic. The set X' (=X —{4}) should be understood
as the set of possible worlds, or (following D. Scott), as a set of

‘points of reference. R is the relation of relative possibility, or

accessibility, among possible worlds, ‘@Rp’ reads ‘B is p_ossil?le
with respect to «'. The function D determines the domain of _11_'1|—
dividuals existing in any given possible situation; where ae X',
D, is to be the range in situation « of bound individual variables.
D' is the outer domain: a set of “individuals” which exist in no
possible world; this is a device to allow for the arbitrary assign-
ment of truth-values to formulas containing non-referring terms.
The set D is defined as the union of all domains, including the

outer domain: D=D'U éJ D..
at X
In modal logic, formulas are constructed using a modal operator,

say [; a formula [JA is said to be true in a situation « in case A

8 We follow Church’s conventions for abbreviating names of wifs b3f e}im—
inating parentheses and using dots; see [3], pp. 74—80. The conditional
connective > is placed with the horseshoe in the highest category. ‘ !

4 These definitions are justifiable semantically; given our interpretatmr.; of
the conditional connective, ~A>A and ~{A> ~ A) behave semantically just
as [JA and O A do in Kripke's semantics for modal logie.
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is true in all B such that «RB. Under this understanding of things
a model structure <K', R, D, D>, where X', R, D, and D' are as,,
in D3.1, will be a model structure for the system Q3M of modal
logic discussed in [18] and [19].5 Fere, ‘Q3’ stands for the inter-
pretation of the quantifiers; in particular, the domain of quanti-
fication is allowed to vary from situation to situation. And ‘M’
stands for von Wright’s minimal system of modal logic. As Krip-
ke has shown, other familiar systems of modal logic can be charac-
terized by imposing certain conditions on the relation R.

The chief semantic difference between the system CQ of
conditional logic and Q3M lies in the interpretation of the con-
ditional connective; the semantic rule for > is that a formula
A>B is true in a situation « in case B is true in some selected
situation possible with respect to « in which A is true. The com-
ponent 1 of a QMms is the absurd world—a situation in which all
formulas are “true”. This addition to the model structure is a
device enabling us to assign a truth-value to A>B where A is
necessarily false.® Tn the following definitions, the notion of a
“selected situation in which A is true” is made precise.

D32 A sequence o on a morphology M and QMms (X, R, 4,
D, D'> is a function taking members of Vy (individual variables)
% into members o(x) of D.

By ‘at/x’, we shall understand the sequence which differs from
o only in assigning d to x.

D3.3. A valuation of a morphology M on a QMms (X, R, », D, D">
is a function v assigning, for each member « of X', (i) a value
v(P) in {T, T} to each O-ary predicate letter P of M (ii) a subset
vi(Q} of the cartesian product D= to each n-ary predicate letter

? This holds with one exception; the domains Dq are required to be nonempty
in [19]; here, they are not. The axiomatic changes made necessary by this differ-
ence are minor.

& We do not regard the absurd world as a world, any more than imitation
leather is leather; it is merely 2 device for handling the truth-values of condi-
tionals with impossible antecedents. There dre many equivalent ways of doing
'ghis: for instance, we could make fa partial function into J{ and say that1{A) =T
if To{A) =T for all  such that 8 =f{e}.
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Q of M; (#i) to each individual constant a of M a member v.(a)
of D.

D3.4. An s-function ona QMmsH =(X, R, D, D"y and morpho-
logy M is a function f which assigns to each wif A, eacha € X',
and each sequence o on M and T a member{(4, «, o) of X' meet-
ing the following condition: for all 4, «, and o, if £(4, &, 6)=2,
then «Rf(4, «, o).

The intuitive idea behind our account of conditionals is that a
conditional statement asserts that its consequent is true in a
particular situation determined by its antecedent. According to
this idea, a determinate interpretation of a language involving
conditional statements will require a selection rule picking a
possible world for each antecedent expressible in the language.
It is natural to make this rule depend also on the situation in which
the choice is made, and in order to interpret formulas such as
(x)(P(x) > Q(x)) it is necessary to make it also depend on sequen-
ces. Such a rule of selection is represented in our semantic account
by an s-function, Qur theory requires that in every interpretation
of the formal system a particular s-function must be specified;
in natural languages, however, it is likely that the selection rule
is only partially specified by the conventions of the language,
since it is easy to construct conditional statements which are
context-dependent, ambiguous, or completely indeterminate.”

7 We are thinking, of course, of examples of the sort raised by Goodman [4],
Rescher [12], and others. Qur strategem here of making semantically determi-
nate an assumption which often is not specified exactly in ordinary situations is
a commonplace logical technique. For example, in the usual semantics of the
functional calculus of first order, the truth-value of a quantified formula is
undetermined unless a domain is given for the quantified variable, although
such domains are not often completely specified in ordinary discourse.

In a model in which any semantic component, such as domain or an s-func-
tion, is not fully specified, some formulas will be interpreted as neither true nor
false. Since there certainly exist grammatical sentences of natural languages
which fail to make statements, a more realistic logical theory would allow for
such truth-value gaps. Particulasly relevant to conditional logic are gaps arising
from conditions such as the antecedent of ‘If Bizet and Verdi were compatriots
then Bizet would be Ttaliat’, which do not suffice to pick out a single situation.
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In the study of conditionals we are interested only in selection
rules which meet certain formal requirements (e.g. the antecedent
must be true in the situation selected, and the actual situation
must be selected if the antecedent is in fact true in the actual
situation). We shall take these constraints into account in our
definition of an interpretation, but in order to formulate them we
shall first define satisfaction for the more general notion of a
quasi-interpretation.

D3.5. A quasi-interpretation 1 of a morphology M on a QMms

is an ordered pair {v, f>, where v is a valuation of M on M and f

is an s-function on 1 and M.

D3.6. Let I ={v, > be a quasi-interpretation of M on a CQms
M=(K, R, D, D). Thenfor all ae X"

1) L(P, o) =T iff v,(P} =T

2) T{a, 0) =vi(a)

3) I,.[:x, 6) =o(x)

4) L(P(ty, ..., t,), o) =T iff {L{t, o), ..., L{t. 5)»

i € Vn(P)

5) Ls =t, o) =T iff L.(s, 5) =L{t, o)

6) L~ A4, o) =T iff 1[4, ) =F

7) I{A>B, 6} =T iff I.{4, 6} =F or I.(B, 6) =T
8) I{A>B,6)=T iff Ia o, (B, o) =T

9) L{{x)A, o) =T iff for all d € D,, L(4, o%/x) =T
10} I.(A, 5) =T fot all A and o.

For all formulas A, if [,(A, 6)=T, then I(A, ¢) =F.

_ The value L{A, o) defined here is the truth-value given by I to
A in a situation «, relative to an assignment ¢ of values to individ-
val variables.

However, we feel that the best way to deal with such problems is first to con-
struct a two-valued theory, which can be regarded as an idealization in which
semantic information is completely specified. This theory can then be modified
to allow for incomplete s-functions. Here we have dealt only with the first part
of this program. Sée van Fraassen [21] for a very elegant and easily generalized
approach to the second.
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D3.7. An interpretation of M on a QMms M =<K, R, 5, D, D)
is a quasi-interpretation I ={v, £ of M on M which for all wffs

. A and B of M, all sequences ¢ and T on M and M, and all « X'

meets the following four conditions:

1) Tia, o, 0(4, 0) =T;

2) If L(A, 6} =T, then {(4, «, ¢) =,

3) £(A, o, 6) =2 only if there is no peX' such that
aRp and 1[4, o) =T;

A M lgs, 0, 0)(B, 7) =1, o o(4, 6) =T, then
f(A, o, o) =1(B, «, 7).

Definition 3.7 states the constraints relevant to selection rules
for conditionals. Condition (1) requires that the antecedent be
true in the world selected; to say something of the form ‘If P,
then ..." is to imagine a situation in which P is true. Condition (2)
requires that the actual situation be selected if it is eligible (that
is, if it meets condition (1)): if one asserts a conditional, one is
committed to its consequent, should the antecedent be true.
Condition (3) ensures that the absurd world can be chosen only
when the antecedent is impossible: to suppose something which
in fact is possible is to imagine a possible situation. Condition (4)
ensures that possible situations are selected in a uniform fashion,
in the following sense: if a situation « is chosen over § in one con-
text in which both are eligible (i.e. with respect to an antecedent
true in both), then « must be chosen over f in all contexts in
which both are eligible.

Intuitively, an s-function represents a rule involving inductive
and theoretical priorities among situations. An s-function that is
a component of an interpretation meeting the above four condi-
tions is a function that determines a simple ordering of certain
of the situations possible with respect to each situation «; this
ordering should be thought of as an order of resemblance to o.
The function then selects from among the situations in which the
antecedent of a conditional is true the one that is most like the
actual situation. How this order is determined in practice is an
empirical and methodological question rather than a formal one.
Our constraints require only that the ordering be simple, that the
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actual situation be prior to all others, and that all p0531ble situa-

tions be prior to the absurd world.

D3.8. A set I' of wifs of M is simultaneously satisfiable if there
exists an interpretation I of M on a CQms (X, R, 2, D, D'}, a

sequence o on (K, B, %, D, D> and a member o of X' such that

for all A el, I(A, ) =T.

D3.9. A wif A is valid if {~ A} is not simultaneously satisfiable.

4. Deducibility

In this section we shall define a formal system CQ by setting
down axiom schemata and rules of inference sufficient to charac-
terize syntactic notions of consistency and theoremhood corre-
sponding to the concepts of simultaneous satisfiability and validity
defined above. We shall list without proof some object-language
theorem schemata and some syntactic metatheorems to be used in
the next section.

D4.1. A wif of a morphology M is an axiom of CQ if itis tautolo~
gous or has one of the following forms:

Al., O(A>B}o. OAD B
A2, [J(A>B)>. A>B
A3. O AD. A>Bo>~(A> ~B)
A4, A>(BvC)o. (A>B)v(4A>Q)
A5. A>Bo. A>B
A6, (A>B)A(B>A)D. (A>C)o(B>C)
A7. (x)A>. B Atjx
A8. (x)(EOx>A)o(x)A
A9 s=s5
AlQ. s=tD. ADAsf/t,  wheré no occurrence of ¢ in
A that is replaced by s falls
within the scope of a modal
operator
All. Ox=yolx=y
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D4.2. A wif of a morphology M is a theorem of CQ if it is an
axiom, or if it follows from theorems by any of the following
five rules.

R1. If Ao B and A are theorems, then B is a theorem.

R2. If A is a theorem, then B> A is a theorem.

R3. If A B is atheorem and x has no free occurrences
in A, then A>(x)B is a theorem.

R4. If A, >.A; >....>. A,> B is a theorem and x has
no free occurrences in A;, As, ..., or A, then
Az As > >0 Au>(x)B is a theorem.

R5. If A, >.4,>. ...>. A,> ~t=x is a theorem
and x has no free occurrences in A;, As, ..., or A,,
then A;>. Ay>. ...>.~ A, is a theorem.

In the usual way, these axioms and rules determine syntactic
notions of CQ-derivability and CQ-consistency; ‘| A’ and
‘T'|- A’ shall be understood to mean that A is a theorem of CQ
and that A is derivable from T in CQ, respectively.®

We list here without proof some theorem schemata and derived

rules of CQ.

Theorem schemata:

t43. |- ADA

44, |-A>A

145 FA>~A>. A>B

t46. - ~A>AD. B>A

t4.7. - (A>B)v{A> ~B)

148 | (A>. Ay>. >0 A>B)Y
(Ai>. Ay>. ...>. Au> ~B)

t49. | A>.B=(A>B)

t4.10. - x =y>. A= Avfx

t4.11. |- (x)B>. EyoBy/x

8 Specifically, an occurrence B; of a formula in a sequence By, ..., B, of
formulas is categorical if some subsequence of By, ..., B, is a proof in CQ of
B,. A sequence By,..., B, is a deduction in CQ of B, from a set I' of formulas
if for all i such that 1 €i<n, either 1) B; is categorical in By,..., B, or 2} B; € T,
or 3) for some j,k<i, B, is By B,.
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Derived rules:

T4.12. If TU{A} |- B, then I'|- ADB.

T413. T Ai>. As>. ...>. A,>B; for all i
I1<i<m, and {By, ..., B} = C, then T~ A;>.
> Ay>e >0 A C

T414. If TF~(A>. Ae>. ...>. A,> ~A4,), then
M-Ai» Ao > A>x=yiff T - x =y.

5. Saturated sets

In the proof we will give in section 6 of completeness, the notion
of an M-saturated set plays a crucial role. Intuitively, an M-satu-
rated set is a set of formulas of M having syntactic properties
ensuring that it is a set of truths in some situation, relative to an
assignment of values to variables which gives every individual a
name. In this section we will define this notion and state some of
its more important properties.

D5.1. A set I" of wifs of a morphology M is M-saturated if it meets
the following four conditions:

1) I' is CQ-consistent;

2) For all Ac Wy, either AcT or ~AeT,

3} Foralln=0, all A4y, ..., A,, BEWy, and all x €V,
there is a y € Vu such that
A>e > A (Befxo(x)B)eTy

4) For alln>1,all A, ..., A, €W and t € Ty, there is
a y€Vm such that A,>. ... >. A, >t=yeTl

D5.2. An w-extension of a morphology M is a morphology M’
like M except that V' =VmU {xy, %, ...}, where xi, x,, ... are
symbols foreign to M.

L5.3. Let M be a morphology, and M' be any w-extension of M.
Then every consistent set of wifs of M has an M'-saturated
extension.

This lemma is proved in the same way as its modal analogue,
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using R4 and R5°. And the following lemma is an immediate conse-
quence of D5.1.

154. If T'is M-saturated, then (i) for all wifs A and individual
variables x of M, (x)A€T if Av/xeT for all y such that y€Vm
and EyeT; and (ii) for all t€Tw there is a y€Vm such that
t=yel. ‘

L5.5 For every Ay, As, ..., A.€ Wy and subset 1' of W, if T'is
M-saturated and A ={B : (4,>. As>....>. A,>B)eTl}, then
either A =Wy or A is M-saturated.

prROGY. A is either inconsistent or consistent. We shall show that
A =Wy if inconsistent, and A is M-saturated if consistent. Suppose
it is inconsistent; then there is a finite set {By, ..., B,JSA such
that By, ..., Bu} |- C for all CeWm. Then by T4.13, (A:>. Ax>.
> ...> A >C)eT for all CeWy, so A=Wp. On the other
hand, suppose A is consistent; then it meets condition 1 of D5.1.
Since T is M-saturated, and in view of t4.8, ecither BEAor ~B
€A, so condition 2 is satisfied. As for condition 3, let By, By, ...,
B, and B be any m+ 1 wifs of M. Since I' is Me-saturated, for all
x € Vi there is a y € Vi such that (A;>. Ay>. ...>0 A.>. B>
>. ...>. Bu>(By/xD(x)B))eT. Therefore, (Bi>. By>. ...>
>. B> (Bv/x>(x)B)) €A, by definition. A similar argument shows
that A meets condition 4 of D.5.1.

6. Semantic completeness

It is readily verified that all of the axioms listed in D4.1 are valid,
and that the rules listed in D4.2 preserve validity. Consequently,
we have at once the following results.

T6.1. Every theorem of CQ is valid.

T6.2. For any set I' of wifs, if I' is simultaneously satisfiable then
1" is CQ-consistent.

9 See [19], lemma 11.
3 - Theoria, 1:1970
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We will use the familiar method due to Henkin to prove the
converses of these theorems. Given an arbitrary consistent set
I' of wifs of M, we will construct a CQms using certain M'-satu-
rated sets as the members of X'; then we will define an interpre-
tation on the model structure which simultancously satisfies I’
in some member of X'.

To characterize this model structure, we need the following
preliminary definitions. Let M' be an w-extension of the mor-
phology M, and T' be an M'-saturated set. For all %, y € Vi, let
x~y iff x=yeT; this is an equivalence relation, and so splits
Vu into equivalence classes. Let g be a function selecting one
member of each equivalence class, so that x~y iff g(x)=g(y).

D6.3. Let M=(X, R, Wy, D, D', where X (=X(T") is defined
as follows: Ac X iff there is a finite set {4, A,, ..., A} SWw'
such that {B: (A,>. As>; ...>. A,>B)eT} =A. X' =X — {Wp'};
R is defined on X' so that ARA, iff for some Ac Wy, A=
={B: A>BeA)}; D,={gx):FxeA}; and D' ={g(x):for all
@ e X', Eg(x) ¢ ©}. Comparing D3.1 with D6.3, it can be seen that
M is a CQms (it follows at once from #4.3 that R is reflexive).

Before defining an appropriate valuation function v on M,
we prove the following presupposition of this definition.

I64. For all ceCy' and @ €X', there exists a unique xeD
such that x =c€ @.

PROOF. Since @ is M'-saturated, by L5.4 there is an x€ Vwm'
such that ¢ =x&®. By T4.14 and the construction of X', for all
x, YEVM, x=yc@ iff x=yel; in other words, x=ye @ iff
x~y. By this and the properties of identity, it follows that
{y:y=c€0} is one of the equivalence classes under ~. But only
one member of each equivalence class is a member of D.

D6.5. Let v be defined as follows: for all ® ¢ X', (i) for each
O-ary predicate letter P of M/, ve(P) =T if P€®, and ve(P} =F
otherwise; (ii) for each n-ary predicate letter Q, vo(Q) ={<g(x),
v (X 1 Qloy, ..., %) €O} (i) for each ce Cy, vs(c) is the
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unique x€D such that x =c€©. Comparing D3.5 and D6.5, it
can be seen that v is a valuation of M' on T,

Before defining an appropriate s-function on M, we will point
out two relevant facts about sequences. First, since the domain
of M is itself a set of individual variables of M’ a sequence on M
and M may be used as a substitution function for wifs. We shall
use ‘A to signify the wiF resulting from replacing, in alphabetical
order, the variables x having free occurrences in A by ofx),
relettering bound variables if necessary. Second, note that the
function g used in defining M is itself a sequence on M and m.
We will define our s-function f first for this basic sequence, and
then for sequences in general.

D6.6. Let £ be a function defined as follows: for all A€Wy and
OcX', f(4, 0, g)={B: A>B€®], and for all sequences ¢ on
M and M, £(4, ©, s) =f(4°, ©, g).

This definition presupposes that f{As, @, g) =f(4, ©, g), for
all Ac Wy and @ e X', But this is easily established, using 14.10.

Comparing D3.4 and D6.6 in the light of D6.3 and L5.5, it is
easily seen that fis an s-function on M and M. Therefore, I =(v,{)
is a quasi-interpretation of M on M. i

To prove our final two lemmas, we will need the following
relation between semantic and syntactic substitution, which is
easily established by induction on the complexity of A.

L6.7. For all Ac Wy, ©® € X'(I") and sequences s on M and M,
IB(A: G) :IG(AUJ g]

L6.8. For all Ac Wy, 1e(4, g) =T iff Ac®.

proor. First, by clause (10) of D3.6, Iwyy, (4, g) =Tforall Ae Wy
Therefore Iwy, (4, g) =T iff A€Wy For any © e X', the lemma
is proved by induction on the complexity of A; we will present
here only the cases involving the corner and the quantifier. First,
suppose A has the form B> C. Then Io(4, g)=T iff Iss, 0.5
(C, g) =T. By the hypothesis of ihduction, this iff Cef(B, 9, g),
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and by D6.6, this iff Ac®. Second, suppose A has the form
(x)B. Then Io(A, g) =T iff Is(B, g&e#)/x) =T for all ¥ such that
Eye®. By L67, this iff le(Bsw)/x, g) =T for all y such that
Eyec®, and by the hypothesis of induction, this iff Bsw/xc®
for all y such that Fye®. Now in view of 1410, for all
yeVu, Bsw/xe® iff Byjxc®. So Bsw/xe® for all y such that
Eye® iff Byfxe® for all ¥ such that Eye®. And by 154, if
Bujx e ® for all y eV such that Eye 0, then (x)B& 0. Conver-
sely, if (x)B€0, then EyoBy/xe® for all yeVy, by t4.11.
Hence Byfx € ® for any y such that Ey € ©. Therefore Io{A, g) =T
iff A€ ®, when A has the form (x)B.

L6.9. I ={v, {) is an interpretation of M on .

rroor. Following D3.7, we must show that for all A, B& Wy,
all @ e X'(T") and all sequences sand v on M, (1) Iga, 6, 0(4, o) =
=T, (2) i Is(4, c) =T, then f(4, 8, 6) =0; (3) {(4, O, 6) =W
only if there is no ZeX'(I") such that I,(A4, ¢)=T and ORE,
(4] if If[A' 8, ,,)[B, T) =If(3, @,T}[A,- G} =T, then f(A, o, G] =
f(B, ®, ©). For notational convenience in proving these four,
let A' be A® and B' be B~ (1) By L6.7 and D6.6, Ija, 0,0(4, o} =
=lIga,0,9(A4", g). By t44, A'>A'CA, so that A'ef(A', 0, g),
and by L6.8, Iga,e, s3{A", g} =T. Thus, Igs e o(4, 6)=T. (2)
Assume Ie(A, o)=lo{A', g)=T. Then A'c®, so by 49,
B=(A'>B}e® for all BEe Ww, so {B: A'>B€ 0} =0, and there-
fore f(A, 0, 6)=£(4', ©, g)=0. (3) Suppose that f(4, ©, ¢) =
=f(A', ©, g)=Ww' and suppose alsoc that O@RE. For reductio,
assume that A'€E. By the definition of R in D6.3, since ORE,
~(A'> ~AYe®. But since f{A', ©, g)=Wyn', A'> ~A'€®. So
since @ is consistent, the assumption is false. Thus, for all &
such that ORE, A'¢E; by L6.8, for all B such that ®RE, 1(4,
s)=F. (4} Let f{A, O, 6)=E,, and let f(B, @, 7)=E,; suppose
Is,(B, 7} =Is, (4, 6} =T. Then E,=f(A", 0, g) and 5, =f(B', @, g);
and Is,(B', g)=Is(A', g)=T. Therefore A'>B'€® and B'>A'
€0, by D66. Since ® is M'saturated, it follows from A6
that for all wifs C of M/, A'>Ce® iff B'>Ce®, so CcE, iff
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CeE,, for all CeWyy. Therefore E; =E,. Hence, by (1}—{4),
I is an interpretation.

We have now shown that the model structure T of D6.3 is a
CQms and that the quasi-interpretation I of D6.5 and D6.6 is an
interpretation. By L6.8, I{A, g) =T if A€ T, the set I is therefore
simultaneously satisfiable. But all that was assumed concerning
I' was that it is M'-saturated. We have therefore established the
following lemma.

| L6.10. Any M'-saturated set is simuitaneously satisfiable.

By L5.3, any consistent set I' of wifs of M has an M'-saturated
extension A, where M' is any w-extension of M. Combining this
with L6.10, we obtain the desired completeness theorem.

T6.11. Any consistent set of wifs of M is simultaneously satis-
fiable.

Combining this with 76.2, we obtain the equivalence of CQ-
consistency and satisfiability; finally, weak completeness follows
as a corollary.

T6.12. Any set of wifs is CQ-consistent iff it is simultaneously
satisfiable.

T6.13. Any wif is a theorem of CQ iff it is valid.

7. Extensions and modifications

The familiar connectives of modal logic are definable within the
system CQ of conditional logic, and CQ can be adjusted and
embellished in much the same ways as systems of modal logic.
In particular, conditional logic can be made to conform to various
theories of individuals. Definite descriptions can be added to the
language of CQ, as can epistemic, deontic, and other modal opera-
tors.

We have chosen von Wright's M as the underlying modal
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logic of CQ because it is a minimal theory of necessity.” To obtain
a system based on stronger theories such as 84 or S5, one need
only place additional constraints on the relation R (for $4, R
must be transitive; for S5, transitive and symmetric), and add
the characteristic axioms [1AD 04 for $4 and $ A>T A
for 85. In CQ, the quantifier ranges over actual individuals—
those individuals existing in the possible world under considera-
tion. This means that the domains must be allowed to vary from
situation to situation. In modal logic, the variability of domains

renders the system and the completeness proof considerably more

complicated, and partly for this reason many writers have used a
single domain (understood intuitively as the set of all possible
individuals) and a quantifier (called the outer quantifier) ranging
over this domain. The inner quantifier, ranging over only actual
individuals, may then be defined in terms of the outer quantifier
and a primitive predicate of existence.

But in conditional logic many of the technical problems with
variable domains disappear, and the proof of completeness that we
have given is as simple as the comparable proof for the system
with outer quantifiers and a single domain. Those who neverthe-
less prefer quantification over possible individuals may satisfy
themselves by adding to our semantics a requirement that D, =1,
tor all &, B€ X', and perhaps a requirement that the domain be
nonempty. A simpler axiomatization is then possible.

Formulas containing definite descriptions may be added to a
morphology by allowing complex terms of the sort 1,4, where x
is any individual variable and A any formula of the morphology.
The term I,A denotes in a member « of X' the unique individual
existing in « which satisfies A in «, if there is such an individual;
and otherwise it denotes some arbitrary nonexisting individual
(i.e., a member of D—D,).

Formulas containing abstracts are added to M by allowing
formulas %A(t), where x €Vy, A€Wy, and 1€ Ty. The semantic
rule for such formulas is that L(%A(t), 6) =T iff L{t, s) e {d: deD

A? More precisely, M is the system characterized by those model structures
in which the only constraint on the relation R is that it be reflexive.
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and 1{A, o4/x) =T}. In classical logic, such formulas are super-
fluous in virtae of the abstraction principle: xA(t)= A?/x. But in
modal and conditional logic, the principle fails; for instance,
%(A> B)(¢) neither implies nor is implied by (A> B)¢/x.

Epistemic, deontic and other modal operators can of course be
added to conditional logic, and we believe their interaction with
conditionals is of philosophical interest. For example, most of the
problems in the literature concerning conditional obligation can
be handled simply by combining a standard system of deontic
logic with conditional logic: the deontic conditional then has the
form A>OB. Also, we suspect that an analysis of prima facie
obligation can be carried out within this framework.

8. Philosophical applications

The most important test of the theory we have presented will
come in its application to philosophical problems. To be a good
account of conditionality, it should help to clarify some of the
many puzzles that have arisen in this area. The beginnings of this
philosophical work have appeared in Stalnaker [14] and [I5];
further applications and refinements will, we hope, appear later.
In the present paper, we will limit ourselves to a few brief remarks
indicating the direction we expect this work to take.

The theory suggests an account of the notion of a law of nature,
and of the idea of nomological connection which underlies
this notion. A law of nature has usually been thought of as a
universal conditional statement. For certain purposes, however,
it is necessary to distinguish genuine law-like statements from
so-called “accidental” generalizations—universal conditionals that
just happen to be true. This distinction has proved difficult to
draw.

According to the analysis suggested by our theory of condi-
tionals, a simple law-like statement has the form (x)(P(x)> Q(x)).
It may be contrasted with the weaker statement, (x)(P(x)> Q(x)),
which gives the form of an accidental generalization. According to
this proposal, a law-like statement actually makes a stronger

1 For more information on this topic, see [17] and [20].
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claim, and has different truth conditions than the accidental
universal conditional. However, the difference in the two gener-
alizations can only be brought out within an intensional language,
since they make exactly the same claim about the actual world
Both statements assert that all actual P’s are Q's, but the law-like
statement adds the counterfactual claim that all non-P's would
be Q’s if they were P’s.

Although this explication is given within a modal language,
it is quite different from an anlysis in terms of physical or empiri-
cal necessity. On our view, nomological connection is not a kind
of necessity; the logic of laws is very different from the logic of
strict implication. Because of this difference in structure, our
analysis (1) provides for a novel approach to the paradoxes of
confirmation, and (2) allows for an interesting connection with
inductive probability.

{1) If law-like connection is represented by the conditional
corner, then the paradoxes concerning contraposition do not
arise at all, since (x)(P(x)>Q(x)) neither implies nor is implied
by (x)(~ Q{x)> ~ P(x)). Furthermore, the semantic theory enables
one to see why a conditional might differ in confirmation and in
truth value from its contrapositive.

Suppose that all ravens are black. For the moment, represent
this statement by the universal material conditional, (x)(R(x)
DB(x)). Assume also that the class of ravens mentioned in the
antecedent is a natural kind, or that the property of being a raven
is a substance property, or a sortal universal. This entails that the
ravenhood of a raven is a criterion of its identity—that to remain
the same thing, a raven must remain a raven. Formally, this means
that (x){{ R(x})> [IR(x)) is true.

Now from these two assumptions as premisses, the. law-like
statement, “All ravens are black,” follows in CQ; that is,
1 (Rx)>BH), (ORI OR()) = () (R(x)> B(x)). Thus, a
universal conditional statement whose antecedent predicate ex-
presses a natural kind will always determine a law-like statement.
Consider, however, the contrapositive, (x}(~ B(x)> ~ R(x)). Here,
the antecedent predicate picks out quite an unnatural class, the
class of non-black things. Hence the law-like analogue is not
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plausible, even when the universal material conditional is true.

(2) It has been suggested that one might characterize condi-
tionals and laws of nature by defining their probability values in
terms of the probabilities of their constituents rather than de-
fining their truth-values in terms of their constituent truth-values.
If this were done, the following definition seems natural: Pr(4 > B)
=Pr(B/A); the probability of a conditional is the same as the
conditional probability of the consequent on the condition of the
antecedent. If this definition is extended in a natural way, the
resulting conditional concept has exactly the structure of the
conditional defined by the system CQ. This relationship between
the probability calculus and conditional logic provides some
support for our analysis as well as an opportunity to draw a con-
nection between inductive logic and conditional logic. This con-
nection is explored, using propositional logic only, in [15]. Now
that the system has been extended to include quantifiers, more
detailed investigation of the relationships among counterfactuals,
laws, and probabilities will be possible.

We have talked about laws of nature, but we might instead have
talked directly about the relationships expressed by laws. One
of the advantages of the semantic approach is that it allows us to
focus directly on the world rather than on linguistic expressions
purporting to describe it. One might, for example, give an analysis
of explanation in terms of possible worlds and s-functions rather
than indirectly in terms of laws. This way, one could avoid the
embarrassment of unstated or unknown laws, and one might find
an analysis which handles more plausibly the everyday cases of
explanation.

Theése are of course suggestions, not final solutions. Before a
logical theory is applied to philosophical material, it should be
shown to be technically respectable; it should be articulated in a
way satisfying the standards currently set by logicians. Our aim
has been to accomplish this and to provide only some rough ideas
about how the theory may be used to clarify philosophical prob-
lems. '
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