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RICHMOND JL. THOMASON

SOME COMPLETENESS RESULTS FOR
MODAL PREDICATE CALCULI*

I, INTRODUCTION

Two systems of first-order predicate calculus with identity, one of them
with definite descriptions, will be formulated in this paper along with
semantic interpretations, and then shown strongly complete by methods
similar to those of Henkin [3]. These systems, Q1 and Q3,1 are generaliza-
tions of the systems presented in Kripke [6] and [8], respectively.? An
informal and philosophical account of Q1 and Q3 can be found in [11],
together with a historical note concerning the development of the systems
and their interpretation,

1t is known that a semantically complete interpretation of a system
with S4-type modality also produces a complele interpretation of the
corresponding intuitionistic system. This result for intuitionistic logic
has already appeared (again following the lead of Kripke, in [9]} in
Thomason [12]. Inpresenting the syntax and semantic interpretation of Q1
and Q3 below, I have used the same format as in the last-named article.

The methods of proof which we will use below apply generally to many
different sorts of modality: in particular, to alethic and deontic versions
of S4 and S5, von Wright’s M, and the ‘Brouwersche’ B. But to simplify
our presentation, we confine ourselves below to systems which involve
the modality of alethic 84, leaving it to the reader to generalize the
arguments to other modalities. See reference 7 in this connection.

II. MORPHOLOGY

A morphology M for the first-order modal predicate calculus with identity
is a structure made up of the following (disjoint) components:
(1) Aninfinite well-ordered set Vy; of objects called individual variables;
(2) A well-ordered set Cy, of objects called individual constants;
(3) For each nonnegative integer 7, a well-ordered set Pi; of objects
called i-ary predicate letters.

K, Lambert (ed.), Philosophical Problems in Logic, All rights reserved.
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Let =, ~, [, ), , and = be objects not in any of the P, or in Vi
ot Cyy- These seven objects (or logical symbols), together with the members
of Vi, Gy and the Py, comprise the symbols of M. The set Ty of
terms of Mis Cpp UV the set Wy, of formulas of M consists of certain
finite strings of symbols of M, and is defined in the usual way. Using the
orderings posited in (1)-(3) above, Wy, can easily be well-ordered.
(Remark: we will frequently suppress mention of the morphology in
cases where no confusion can result from doing so. We will assume in
this paper that for alff morphologies M, the sets Vyy, Cyy, Py — and hence
the set W,, — are at most denumerable, and are ordered alphabetically
by the positive integers, The main results of this paper depend on this
assumption; see references 4 and 10 in this connection.)

If M is a morphology with identity and descriptions, another
symbol, 1, is added and T,y and W,; are defined by simultancous
induction. (The inductive clause for terms is that 1, 4Ty if AeWy; and
xeVy)

Where 4 is a formula and s and ¢ terms, let 45/t be the result of
replacing all free ocourrences of # in A4 by occurrences of s - relettering
bound variables, if necessary, to avoid rendering the new occurrences
of s bound in AS/z. And let 45//t be any result of replacing various {(not
necessarily all, or even any) free occurrences of # in A by occurrences of
§ — again, relettering if necessary.

We will use ‘AvE, ‘AAER, ‘A=R, ‘04, ‘(3x) 4’ and ‘4 <B* as
abbreviations (in our metalanguage) of “((d>B)>B), ‘~(4d>~BY,
‘~((A2B)> ~(B2A)), ‘~O~d, ‘~(x}~4", and ‘[I(42BY, re-
spectively. ‘B’ and ‘E{J# refer respectively to (3x)x=r and to
(Ix)Ox=t, where x is the alphabetically first individual variable
differing from ¢, and *(3!x)4’ to (Iy) (x) (d=x=y), where y is the
alphabetically first individual variable not to occur in 4.

L DEDUCIBILITY IN THE §YSTEM Q1

Tn Q1 a deductive structure is imposed on morphologies M for the first-
order ‘modal predicate calculus with identity (but without descriptions)
by closing a set of axioms under certain rules. The axioms are determined
by stipulating that any tautology is an axiom, as well as any instance of
the following eight schemes.?
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Al, [(4=B)=.[14=[1B

A2, Od>4

A3, O4A=>004

A4, (x)A > Afjx, where ¢ is any term
A3, 5=8

A6, s=to.AD A5t
A7, ()T A=>11(x)4
AB. Se=fo[]s=t

The rules of proof in Q1 arc as follows.

4 A>B
R1. A
B
R2 4
. v
R3. !kmnnlvlm| where x is not free in A.
A>(x}B

Deducibility in Q1 may be defined in much the same way asin Montague
and Henkin [10]. Call a member 4, of a sequence A4,,..., 4, of formulas
Ql-categorical in that sequence if some subsequence of A4;,..., 4;1s a
proof in Q1 of 4,, and let a sequence By,..., B, be a Ql-derivation of B,
from a set I' of formulas if for all §, 1<i<k, B, is ant axiom of Q1 or a
member of I', or follows from previous memibers of the sequence by
R1, or is categorical in the sequence by R2 or R3. And ‘I't; 4’ means
that there is a QI-derivation of A from I'. Finally, I" is Q1-consistent if
there is a formula A such that it is not the case that I't; A,

For reference in proving metatheorems to come, we record the
following facts about Qi-deducibility.

T1. If T'y A then {[B/Bel'} ;I A.
T2. Twhumumhuﬂ.

1v. Q1-SATURATION

D1. A subset I" of Wy, is Q1-M-saturated (abbreviated ‘M-saturated’ in
this section and in Sections V and VI, below) if it meets the following
three conditions:
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(1) I' is Ql-consistent;

(2) For all 4eWy,, Ael’ or ~4el’;

(3) For all 4eWy; and xeVy, (x) el if dljxel for all teTy,
We will use bold face Greek capitals to range over saturated sets.

By a Qi-w-extension of a morpholegy M (abbreviated ‘w-extension’
in this section and in Section VI} we understand a morphology M’ like
M except that Gy =Cyu{ey, ¢3,...}, where ¢y, ¢s,... are symbols
foreign to M.

L1. Bvery Ql-consistent subset I of W, has an M’-saturated extension
I, where M’ is any w-extension of M. _

The demonstration of this lemma does not differ from that of its
classical analogue; all that is needed for its proof are elementary syntactic
features. of Q1 and willingness to use the axiom of choice or a like
principle. Since every I' is Ql-consistent, we can strengthen L1 a bit,

L2. For any I'cW), and w-extension M’ of M, I' is Ql-consistent
iff I has an M'-saturated extension I, ,

In preparation for our needs in Section VI, below, we establish the
following syntactic lemma, which is the crucial step in our proof of the
semantic completeness of Q1.

1.3. Let I be any M-saturated set, let 4,%4, iff {4/ Aded,}cA,
and let " be the closure of {I'} under #. Then " satisfies the following
condition: for all Ae” and all Ae Wy, if (Aed then there is a A’
such that Acd” and AZ%4’,

Proor. Let @ ={B/(] Bed}. Now, the set & satisfies condition (3) of
D1, sinceif Bl/xe @ for all teTy,, then [ BY/x=d for all teTy, and hence
(x) [0 Bed. But then, by A7, [O{x) Be4, so that (x) Be®. Knowing
that @ satisfies condition (3) of D1, it is easy to see that Z does, where Z
is the closure of Zu {4} under k.

Also E is QI-consistent, since if it were the case that @F, ~ A4, then
by T1 we would have {[]B/[]Be4} ;[]~4 and since by assumption
OAded, A would be Ql-inconsistent,

The proof which Henkin gives in [3], pp. 3-4, of Theorem 3 of that
paper establishes for the classical predicate calculus (without identity)
that every consistent subset of Wy satisfying condition (3) of D1 has an
M-saturated extension, and no changes whatsoever are needed to make
this argument work also for Q1.4 Applying this result to F we obtain
the desired M-saturated extension I' of @ U {4}.
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v. SEMANTICS OF 1P

A Q1-Sd-model structure (in the present paper, abbreviated ‘Qims’) {5 a
triple {2, %, & ,where £ is a nonempty set, # a binary reflexive and
transitive relation on &, and & a non-empty ¢ domain.

A Ql-interpretation 1 of a morphology M on a Qims (A, B, D) isa
function which assigns:

® To each x &V, 2 member I(x) of &;

@ To cach ce Cy, a member 1(c) of &;

(3) To each P°cPY a value I(P%) in {T,F}, and to cach
PlePi (i>0) a subset 1, (P), for each ae X, of the
cartesian product .

Where de@, I%/x is to be the interpretation differing (if at all) from I
only in assigning d to x. -

The truth-value I,(4) of 4 in « under a Ql-interpretation I on a
Qlms (A, &, &) (where aedl ), is defined inductively as follows.

Qu HRQUHH v u=v =T i AHQwvu ey Mhmzuv mHRQuVu
I, (Pt;... 1,) = F otherwise;

@ 1(s=1)=Til L(s) =1(1),
I,(s =) =F otherwise;

&)  L(4>B)=TifL(4)=ForL(B)=T,
I,(4 > B) =T otherwise;

@  L(~A)=THLEA=F,
I.(~ 4) = F otherwise;

(5) T(O04) =T if for all feaf such that a#p, ,(4) =T,
I,([0 4) =F otherwise;

©) 1,((x)4) =T if for all de@, ¥'/x,(4) =T,
L ((x)4) = F otherwise.

The following lemma concerning the relationship of syntactic and
semantic subsiitution is readily proved by induction on the complexity
of 4.

L4, L,(442)=1"/x, (4). .

An interpretation I on a Qlms (A, B, Dy simultaneously satisfies
I in o if I,(4)=T for all del’. Where FSWy, I is simultaneously
Ql-satisfiable if there is some Qfms (X', Z, 2>, interpretation I of M
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on (A, &, %> and wed such that I simultaneously satisfies I' in e
A formula A is Qi-valid if {~ A} is not simultaneously .Q1-satisflable.

L5. Let T be an-interpretation of M on a QIms (", #, &) such
that for all de 2 there is a €Ty, such that I{¢)=d, and let ae2", Then
the set I'={A4/1,(4)=T and Ae Wy} of formulas of M simultaneously
Ql1-satisfied by I in « is M-saturated.

Proor. Conditions (2) and (3) of D1 are met trivially. To establish
condition (1), one need only verify that A1-A8 are QI-valid and that
R1-R3 preserve (¥E-validity,

VI SEMANTIC COMPLETENESS OF Q1

L6. Let I' be M-saturated. Then there is an interpretation I of M on a
Qlims (H, &, D> and an e such that I is the set of formulas of M
simultaneously Ql-satisfied by X in o

ProoF. Let & be as in L3 and let 2 be the closure of {I'} under %:
i.e. A is the smallest set $ such that I'eS and for all 4 and &, if 48
and AZ@ then @c8, The relation ~ on Ty such that s~ iff s=rel
is an equivalence relation and hence divides Ty, into disjoint partitions;
let 2 be a set of representatives, one from each of these partitions, and
let £{¢) be the representative of the partition to which 7 belongs. _

The triple <", &, 2 is a (lms; to verify this, we need only check
that & is reflexive and transitive, and this follows at once from A2 and
A3T .

We now define an interpretation I of M on (X", &%, %), as follows:
IO =f(t); Li(P)=T if P'ed and L,(P°)=F if P%°¢4; and where
i>0, Li(PY={@),..., f(t)/Pt... ted}.

By induction on the complexity of 4, we show that for all 4=M and
deX’, 1,(4)=T iff Ae4. The more intercsting cases are the following.

Case 1. A is P%,...¢, Because of T2 and A8, we have s~¢ iff s=re4
for all Aes#". Hence the formulas ¢, =f(z,),..., t;=[(;) are all in each
Aedt’. Therefore by A6, for all 4es” we have Aed iff PE(,)...£(1)e4.
And by definition of I, this iff I,(4)=T.

Cast 2. 4 is s=1. Now, 1,(4) =T iff I{(s) =I(z). But by definition of I,
I,(s)=1,(t)iff s=tel, and, as we know, this iff s=ze4.
Case 5. Ais 0B. Now if (1 4ed, then by definition of #, Bed' for
all A" such that A% A’; hence by the hypothesis of induction, 1. {B)=T
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h}

for all such 4°, and so I,(4)=T. Conversely, if A¢4, then { ~Bed
and by L3 there is a A'e2" such that AZA’ and ~Bed’; hence Bé4',
By the hypothesis of induction, I, (B)=F, and so I,(4)=F.

Case 6. A is (x)B. By condition (3) of DI, Aed iff for all te Ty
I,(Bt/x)=T. Applying L4, we see this is equivalent to the condition that
for all €Ty, T@x, (B)=T (i.e. F¥fxs(B)=T). And, since g={f(t)

identity and descriptions’. Any tautology is an axiom of Q3, as well as
any instance of the following twelve schemes.

Al C{4doB)o.004>0B
A2, Cdo 4
Al O4Ao01014

1Ty}, this holds iff T,(4)=T. | th (=) hmu . m.mﬁ_ t> Aljx, where ¢ is any term
We have now shown that for all 46 Wy and 42, 1,(4)=T iff de4; >m_. A% mmx > 4)= (x)4
hence, in particular, I'={4/I;(4)=T and AWy}, which was to be >ﬂ. ,M M@a *
proved. A = _
AR, s=1>.4> 45, where no occurrence of ¢ in

17. A set I' is M-saturated ifT there exists a Qlms v, R, D, an
interpretation 1 of M on (X, %, ¥ and an «e# such that for all
deD there is a 1T, such that 1{t)=d, and I' ={4/1,(4)=T}.

A that is replaced by s falls
within the scope of a modal

PROOF. Since the interpretation I defined in the proof of L6 is such that AY’ Er Ao (A operator
for all de D there is a t€Ty, such that I(¢)=d, L5 and the proof of L6 kﬁo.\ ( vaR ) MM& . ‘
together yield tho desired result. A (4=x=3)>p=1.d) o
18. Let M’ be an w-extension of M, and I" a subset of M. Then I' is - x=yollx=y, ﬁ&ﬁa x and y are individual
simultaneously Ql-satisfiable iff I" has an M'-saturated extension I'. ALY 3 variables o
Proo¥. Suppose first that I' has an M'-saturated extension I'; by L7, . Ox=yoax=y, ﬁ&mﬂm x and y are individual
I is simultaneously Q1-satisfiable, and hence, so is I'. Conversely, if I The rul m variables.
is simultaneously Ql-satisfiable then by L5, I' is a subset of a QI- erues o proof of Q3 are as follows.?
consistent set and hence itself is Ql-consistent. Then by L1, I' has an A A= B
M-saturated extension I'. RL B
T1. (Strong semantic completeness of QI). A subset T of Wy, is A
Q1-consistent iff I' is QX-satisfiable. . R2. 04
Proor. Let M’ be an w-extension of M. By L2, a subset I' of Wy is A>B
Q1-consistent iff I has an M'-saturated extension I'. But in view of L&, R3, e where x is not free in A
" has an M'-saturated extension I" iff I is simultaneously (1-satisfiable. 4>(x)B
As usual, T1 yields as corollary the weak semantic completeness of QL. R4 A>0B ] .
T2. For all formulas 4 of M, A4 is Ql-valid iff k4. " A>O(x)B’ where x is not frec in 4
This concludes our treatment of the system Q1; we proceed now to RS AD.By <. <.B, <] c .
an account of Q3. ) A DBy <e<a B, <O (x)C’ where x is not free in 4,
By,...,or B,
VIL. DEDUCIBILITY IN THE SYSTEM Q3 R6. \_ln% where x is not free in 4
~ orint

In the system Q3, definite descriptions are primitive; therefore, whenever

R7. A>.By <. =<.B,<~if=x where x is not free in 4,
‘we use the term ‘morphology’ below, we understand ‘morphology with

A>.By<..+<.J~B, ' By, ...B,ort.
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The definitions of Q3-derivability and Q3-consistency are carried- oE“_ ’
as are the analogous definitions in the case of Q1. We record here the

following facts about (3-derivability.

T3. If I'w{47/x}+; B, and y is an individual variable not occurring in
B or in any member of I', then I'u {(3x) 4} F4 B.

T4, F3(3x) (3x) 4> 4) AEx).

T5. If I' is Q3-consistent and Ay A~ Ad,)el, then {4,,..., 4,}
is Q3-consistent.

T6. F3Ex=E[Jx, where x is an individual variable.

Tl Fax=yo.4d> A%}y, where x and y are individual variables.

VIIl. Q3-SATURATION

The notion of Q3-saturation is more complicated than that of Q1-
saturation. The reason for this is that, in the absence of A7, we must
resort to a much more detailed argument to ensure that an analogue of
L3 can be proved. First, we define by induction sequences fy, f;,... and
hg, hy,... of functions. The functions f, and h, will be used to guarantee,
roughly speaking, that if {-+- deI" (here the ¢ is repeated n times),
then there are saturated sets 4,.,..., 4, such that I'#ZA,, A,%4,,..., and
A, ZA,.
D2. £, ((3%) 4, )= O (3x) 4> & (By A 4V[) -
£y (B, (Ax}4, ) =GB O (BA (O Ex) A2 O By A 4V/%)))
fro1 (Bioess By, (3x) 4, u\v
=0B=2¢ QwH ALi(Bas s Byay, (%) 4, .“_8
D3, h (B, x,1}=0Bo O (Bax=t)
By Om.:...u Biiy, %, t)=0B12 O (B ALy(By,..., Byyy, %, &u
D4, A subset I of Wy is Q3-M-saturated (abbreviated ‘M-saturated’
below) if it meets the foliowing seven conditions: ¢
(1) I is Q3-consistent;
(2) For all Ae Wy, AeI' or ~Ael’;
(3) For all AeWy; and xeVy, (x)4el if A¥/xel for all yevus
(4) For all teT,, there is an xe'Vy, such that x=ter; _
(5) Forall Ae Wy, and xeVy, there is a yeVy such that £, ((3x) 4, y)
el;
(6) Foralln>0,forall 7€ Ty, and {By,..., B,} S Wy, there is an xeV,,
such that h, (B, -, B,, x, t)eT;

BB e sny 2
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(7) For all n>0, for all {By,..., By, (Ax) A} =Wy, there is a yeVy
such that £, (B, ..., By, (3x}4, y)el ,
Armed with this definition, we proceed in much the same Sm.% as
pefore in proving the semantic completeness of Eo m.uaﬁaE. wﬁoo,
powever, many adjustments must be made at <maomm. HuoE.ﬂm in the classical
argument of Henkin [3], we will furnish more details this time.
19, For all n>0, if I'ky~f,(By..s B (3x}4,y) and ¥ aoﬂ not
occur {ree in By,..., B, (3x)4, or any member of I', then I' is Q3-

inconsistent, .
ProoF. Induce on n, showing that for all &, if ['k3 Ci< =Gy

< ~f(Bys..., By (3x)4, ) and y does not occur free in By,..., B,
(Ax)4, Cy;..., G, or any member of I, then FkyCy<. <. Cpy
.AD\(Q?. H.m..m.._Tm QM.A-....A-QWA\CW_. A.wu ﬁ&k.vku u\vu ﬁmu,ﬂs

@ ﬁ_uuQH.A.:..A.O».AOhv
and

(ii) by G <. Ce< . B=<(OAx)A A T(Ey> ~ A¥[x)).
From (i), we see that

ﬁ:..m.v HJTm QH.A-...IA'Q?:A.WAAVAMHV\Av
and .
(iv) Thy C <o <. C <. B< O (By= ~ A¥/x).

Applying RS to (iv), we have
Thy Gy <o <0 G B (%) (Bx 2 ~ A);
hence, by AS’,
(v) Thy Cy <o <G B (x) ~ 4.

But (iii) and (v) yield I't 5 C; <.+ <. C,< ]~ B, which together with
() vields what was to be shown, that

.NJ _z.w QM.A.....A.Q#EH-AD\(Q?

(or, in case k=0, that I' is Q3-inconsistent). .
Suppose now that the property to be established holds for n=j.
HW HJ TwQHlA -...Acz .~.+H Ammv-..u .mau hmxvmu u\v .Eu.@ﬂ.
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(vi) Th, G <. <. GO By
and ,
Aﬂﬁu HJ _lm Q#A......Ao QFJA..WHA \(m.u.ﬁ.w_,v...u mhu Am.ﬁvkvu‘tv.

Applying the hypothesis of induction to (vii), we have
[y C << Ce< O~ By

which together with (vi) vields
Thy C <o <. Gy <O ~ G

The lemma, being a special case of the result we have just proved
inductively, is now established.

L10. For all #>0, if I'F3~h,(By,..., By, x, t) and x does not occur
free in By, ..., B,, t, or any membet of I', then I is Q3-inconsistent.

Proor: like the proof of L9, but making use of R7 instead of R5.

By a Q3-w-extension (abbreviated ‘w-extension’ below) of M, we
understand a morphology M’ like M except that Vi =V 0 {zs, 255 ..}
where z,, z,,... are symbols foreign to M.

L1l. Every Q3-consistent subset I' of Wy has an M'-saturated
extension I', where M’ is any w-extension of M.

PRrOOF. Let Z={z, 2;,...} be the set of individual variables added to
M in passing to M'. In saturating I', we will use a limiting construction
in which denumerably many things are done denumerably many times;
to index these operations we take a partitioning of the nomnegative
integers into denumerably many denumerable sets. Sg, 81, S,.... Let I'y
be I', and define I'; . ; inductively according to the following cases.

(1) ieSp. Let (3x)4 be the alphabetically first formula of M’ of the
kind (3y) B such that for all zeZ, ((Ax)d> 4%[x) ABz}¢ I, and let z be
the first member of Z not to occur in any member of I'; or in (3x)4.
Then let I'y; =10 {((@x) 4> 4%[x) AEz)}.

(2) ieS;. Let (3x)4 be the alphabetically first formula of M of the
kind (3y) B such that for all zeZ, f, ((3x)4, z)¢T';, and let z be the first
member of Z not to occur in any member of I'; or in (Ix)4. Then let
D= {f, (3% 4, 2)}.

(3) i€8S,. Let ¢ be the alphabetically first term of M’ such that for all
zeZ, z=t¢TI';, and let z be the alphabetically first member of Z not to
occur in any member of I'; or in ¢ Then let Iy, =I';u{z=t}.
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(4) i€8y,41, Where n>>0. Let By v -+ v B, v (3x) 4 be the alphabetically
first formula of M’ of the kind C,v--v C,v (3y)D such that for all
zeZ, £,(By. ..., By, (3x) 4, z)¢T;, and let z be the first member of Z not to
occur in any member of I'; or in By v -+ v B, v (Ix)4. Then let 'y, =
= U{E,(By,... By (3%)4, 2)}.

(5) i€S,,42, Where n>0. Let By v« v B, vi=t be the alphabetically
first formula of M’ of the kind € v -+- v C, v s=s such that for all zeZ,
h,(B1s..., By, 2, 1)L}, and let z be the first member of Z not to occur
in any member of I'; or in By v vB,vi=t Then let I'j, =T
u{h,(By...., B, z, 1)}

‘We now show by induction that for all i, I'; is Q3-consistent. In Case 1,

if I'; were Q3-inconsistent we would have

ru{{(x)A=>A4%x)A Bz} b3 P A ~ P,
and hence by T3

ru{E) (@A HABx)} 3 PA~P,
But then, by T4, we would have.

FiFyPA~P

and I'; would be Q3-inconsistent.
In Case 2, if I'; ., were (3-inconsistent we would have

®  TiRO@EN4
and
(i) by OBz ~ 4%/x).
But then, applying R4 to (ii), we would have
Ty ks O(x) (BEx > ~ A),
and hence by A%,
H.m Tw DHAHVH_ ~A.

Putting this together with (i), we see that I'; would be Q3-inconsistent.
In Case 3, if I';,, were Q3-inconsistent, we would have I';Fj~z==t
and so, because of R6, I'; would be Q3-inconsistent.
In Case 4, if I';,, were Q3-inconsistent, where i€S,,,, and #n>0, we



68 RICHMOND H, THOMASON

would have
.N.._n. _xm )\W&A‘mpu...u .mau Am.vhv»ku NV.

Applying L9, we see that under these circumstances I'; would be Q3-
inconsistent.
In Case 5, if I';;, were Q3-inconsistent where {€S,,., and n>0, we
would have
Iiby~h,(By,.... B,z t).

Applying L10, we see that under these circumstances I'; would be
Q3-inconsistent.

We have now shown that for all i, I'; is Q3-consistent; therefore
A=1J,;..T;is Q3-consistent. Extending 4 in the usual way to a negation-
complete set, we obtain the desired saturated extension of I,

Again, we can strengthen L11.

L12. For any I ©W,; and w-extension M’ of M, I' is Om-oommaﬂms_,,
iff I' has an M'-saturated extension I,

Having established analogues for Q3 of L1 and L2, we turn to the
problem of doing the same for 1.3. With the completion of L13, below,
the most difficult part of the completeness proof will be finished.

113, Let I' be any M-saturated set, let 4,24, iff {4/[1Aed,}c4,,
and let & be the closure of {I"} under %. Then " satisfies the following
condition: for all Ae#” and all 4eWy, if O Aded then thereisa 4'e %"
such that Aed” and AZ A"

Proor,10 Suppose that 4e#" and that {Aed. Define by induction a
sequence By, By,... of formulas of M, as follows. Let 4 be By, and as in
the proof of L11, above, let S, Sy,... be a partitioning of the nonnegative
integers into denumerably many denumerable sets. Define B, by cases
in the following way. .

(1) If ieS, let C be the alphabetically first formula of M such that
neither Ce{B,,..., B;} nor ~Ce{By,..., B;}. Then let B;,; be C if
& (Bga- AB;AC)ed, and ~ C otherwise,

(2) If ieS, then in case there is no formula of the kind (3y)De{B,...,
B}, let By, be B, And in case there is such a formula, let (3x)C be the
alphabetically first formula, and let z be the first member of Vy such that

Oﬁwo.} A \/‘WDUOA‘WQ\/... >.wm> mN\/QN\unvmh.
Then let B,,, be Eza C%/x.
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(3) If ieS,, then let 7 be the alphabetically first term of M such that
O(BoA-ABY= O By AByaz=t)ed. Thenlet By, be z=2.

(4) If ieS,, then in case there is no formula of the kind & (3y)De
€{Bo,.--» B}, let Byyy be B And in case there is such a formula, let
(3x)C dm the alphabetically first such formula, and let z be the first
member of V,; such that

OBy A ABYD O (Byn - AB AL ((FX)C, 2)) e 4.

Then let B,,., be Bz A C4/x.

(5) IfieSy,4 o (Where n>0), let Cy v -+ v C, v t =1 be the alphabetically
first formula of M of the kind D, v vD,vs=s such that for all
xeVap 1,(Croeery Co %, )¢ {Bo, ..., B}, and let z be the alphabetically
first member of Vi, such that

O(B A ABYD OBy A ABAL(Cy,., Cpzit)) 4.

Then let B, be z=t.

(6) If i€S;,45 (Where n>0), let C;v v C,v(3x)C be the alpha-
betically first formula of the kind D; v -+ v D, v (3¥) D such that for all -
%€V, £4(Cserr Cos (3%)C, %)§{Bo, ..., By}, and et z be the first member
of V,, such that

O(Bo A ABY2 OBy A >P>H,=AQ:,.. , C
(3Ax)C, z))e 4.

Then let B;,; be £,{Cy,..., Cpy (3x)C, 2).

Now we claim that for all i, B, is defined and {(Bya -+ A Bjed.
‘This is easily shown by induction; our assumption that ¢ Ae4 furnishes
the basis case. In Case ! of the construction, it is clear that B;,, is
defined, and ¢ (B A -+ A By4,)ed since for all formulas C, if it were the
case that O (Bon-ABAC)EA and O (ByasABa~C)¢d then
(BoA+- AB;)<Ced and (Bo A+ AB)<~Ced so that we would have
O (Bg A+ A B)¢4, contrary to assumption.

In Case 2, let # be the alphabetically first variable of M not to occur

“in any member of {By,..., B}, and let (3x)C be B, Then since

O (Bo A AB)ed, O@u) (BoA AByuy ACH[xAByyy A ABJEA.
The M-saturation of 4 guarantees that { (Ju) (BoA - AB,_y ACH[x A
ABy A AB)S O(BzABy A AB_y ACP[Xx AByyy A A Bjed for
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some z&Vy; and hence, since b, (EzA C?/x)o(3x)C, we have
O Bon - ABABzACElx)ed; ie, O (Bya- AByed.

In Case 3, B;,, is again defined because the M-saturation of 4 guaran-
tees that theére is a zeVyy such that h; (ByA - A B, z, t)ed; in Case 4,
B4, is defined because for some zeVy, £{By,..., B;, (3x)C, z)ed. For
the same reason, B,,, is defined in Cases 4 and 5, and again the in.
stantiating variable is chosen so that { (ByA - ABy)ed if O (Bya
A AB)ed.

Now let A'=1{J;.,B; Clearly, ded’; we further claim that A’ is
M-saturated and that 424", The set 4’ is Q3-consistent since for every
mcxmms.omoiﬂt.:, C,pofd, $ (Cyaver AC)edand hence by TS5, {C,...,

C, } is Q3-consistent. And A’ is negation-complete on M since Case1 ofthe
construction ensures that for all C, either Ced’ or ~Ced’. Similarly,
Cases 2, 3,4, 5, and 6 of the construction guarantee that A’ fulfills clauses
3, 4, 5, 6, and 7, respectively, of D4, Thus, A’ is M-saturated.

Tturthermore, suppose that []Cs4; then Ced’, since if ~CeAd’ then
we would have { ~Ced, contrary to assumption. Therefore A% A",

This completes the proof of L13.

1X. SEMANTICS OF (@3

A Q3-S4-model structure (in the present paper, abbreviated ‘Q3ms") is
a quadruple {A", &, @, @'>, where o is a nonempty set, # a binary
reflexive and transitive relation on ¥, & a function taking members 2 of
2 into nonempty domains B, and £’ a set disjoint with {_,. ,2,, such
that for all e, (2" U, »9,)— P, is nonempty.

Let =20l J,. 42, be the set of all individuals associated with
the Q3ms (", #, D, D). A Q3-interpretation 1 of a morphology M on
a Q3ms (X, &, 2, P> is a function which, for each gm.&\ assigns:

(1) To each x&Vy; a member I(x) of Z;

(2) To each ceCy; a member I, {¢) of Z;

(3) To omowwomwa a valve I, (P%) in {T, F} and to each P'eP}; QVS

a subset I, (PF) of the cartesian product 2°,
Again, where de®, I%/x is the interpretation differing (if at all)} from I
only in assigning d to x.

The truth-value 1,(4) in « of a formula 4 under a Q3-interpretation I

on a Q3ms (A", &R, D, 2, and the value I, (¢) assigned in « to a term'¢
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pnder such an interpretation, are defined by simuitaneous induction,
This time we omit the clauses for seniential connectives, which are
exactly like the corresponding clauses in the case of Q1. First, let
1, {x)=I(x), for all aes".
(1) L(Ptty) =T if {,{2,),.-
L, (Pt,...1,)=F otherwise;
() 1,(1,4)=the unique,de 2, such that I%/x,(4)=T, if there is such
an individual d, I,(1.4)=an arbitrary!! member of &'—2%,
otherwise ;12
3) L(s=¢)=Tif L{s)=L,(¢),
I, (s=1)=F otherwise;
(7 L((x)4)=T if for all de2,, I%/x,(4)=T,
I, ((x)A)=F otherwise.
Again, we record for later use a lemma concerning substitution.

L14. Let I be an interpretation of M on a Q3ms {4, #, &, %'} and
let 1(y)=d, where yeVy,. Then I%/x, (4) =1L, (47 /x).

The notions of simultaneous Q3-satisfiability and of Q3-validity are
defined as in the case of Q1. _

L15. Let I be an interpretation Q, M on a Q3ms (X", Z, 2, ") such
that for all de@ there is an xeVy such that I(x)=d. Let we". Then
the set I'={A/T,(A)=T and AeWy} of formulas of M simultaneously
Q3-satisfied by I in « is M-saturated.

Proor. Again, we can easily check that the axioms of Q3 are all
Q3-valid and that Q3-validity is preserved by the rules of proof of Q3.
Condition (1), as before, follows immediately from this, and condition
(2) is trivial. To establish condition (3), suppose that (x)4el’; then for
some ded,, I9x,(4)=F. Let I(¥)==d; by L13, I,(4¥/x)=F, and y has
been chosen so that Eyel’. Conditions (4)(7) are verified in the same
way.,

, Ha Q:vv mHn Quu_

X. SEMANTIC COMPLETENESS OF (33

L16. Let I be M-saturated. Then there is an interpretation I of M on a
Q3ms (A", &, D, ') and an ae A" such that I' is the set of formulas of
M simultaneously Q3-satisfied by I in o.

Proor. Let # be as in L13, and let " be the closure of {I'} under Z.
The relation o~ on Vy; such that x~y iff x=yel’ is an equivalence
relation and hence divides V,, into disjoint partitions; let 2* be a set
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of representatives, one from each of these partitions, and let f(x) be the
representative of the partition to which x belongs. Define a function 2
from 2 into subsets of Z*, as follows: Z,={f(x)/xeVy and
Exed}. Since r;(3x) Ex, Z, is nonempty for all 4e#". Finally, let
' ={f(x)/xeVy and for all dest’, ~Bxed}. It is easily. verified that
G =B~ |\ e @4 Also, for all Aei’, &¥— Z, is nonempty, for
because 4 is M-saturated there is a ye Vi such that y=1,(PA ~P)ed;
but £(»)e2* and £ ()¢ 2.

A2 and A3 again ensure that & is reflexive and transitive; it follows
that the quadruple {4, %, @, @'> is a {J3ms. We now define an inter-
pretation T of M on (X, #, &, 2",

For all 12Ty, and all dexf, there is an xeVy, such that x=ted,;
let g,(¢) be £(x). (The value g,(¢) is independent of the choice of x,
since if x=ted and y=teA, then x=yed and hence {x=yel'; there-
fore x=yeI' and f(x)=f(y).) Notice that for all xeVy, and Ade,
fx)=g4(x). |

For all xeVy, let I{x)=f(x); for all ceCy, let I,{c)=g(c); for all
POePy, let I,(P%)=T if P°cd and I,(P°)=F if P°¢4; and where
>0, for all PTePi; let I, (P ={<E(xy), ..., £(x;)>/P'x,...x,e4}. In case
there is no unique de& , such that I%x, (4) =T, let 1, (1,4) be g {1, 4).
To ensure that I, thus defined, is an interpretation of M on (4", %, 2, 27>
we must show that under these circumstances g,(7,4)e2,. This will
follow from the argument below.

By simultaneous induction on the complexity of 4 and z, we show that
forall Ae Wy, te Ty, and de ", 1,{A)=Tiff Aed, and that I, (¢) =g, (2).
We will omit the Cases (6, 7, and 8) of the induction concerning sentential
connectives; the remaining cases are as follows,

CASE 1. A is P%,...t;, By the definition of satisfaction, I,(P%,...t;)
=T iff <L(t;),.... 1, ()l (P)). By the hypothesis of induction,
Ta(t) =g, (1), for 1<k<i; hence, {T,(21),.... 1,(¢)>el, (P% if
{8alt)s s 84 (101, (PY). Now, for all k, 1<k<i, there is an x,&€Vy,
suchthatx, =f,ed andf(x,) =g, (#); therefore (g, (¢,). ..., g4 (¢)> 1 (P

A (), E(x)D €14 (PY). But by the definition of I, {f(xy),..., T{x,)>
el (P) iff Px,..x,ed, and in view of A8, Px,..x,ed iff
Pit,...t,ed.

CasE 2, The term ¢ is x where x&Vy,. By definition, I, (#) =f(x) =g, (x).

CasEg 3. The term ¢ is ¢, where ceCy. By definition, I,(e)=g,(c). .

3
i
:
H
!
;
3
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CasE4. A is s=¢t. By the hypothesis of induction, 1,(¢)=g,(¢) and
1, (s)=g,(s). By the definition of satisfaction, I (s=#) =Tiff I, (s) =1,(1),
and this holds iff g, (s)=g, (¢). But this holds iff there is an xeVy, such
that x=sed and x=ted, and (again, using A8"), this holds iff s=re4.

CASE 5. The term ¢ is 1, B. Suppose first that there is no unique de 4
such that I%/x,(B)=T. Then by definition, L,(¢)=g,(z). On the other
hand, suppose that there exists a unique f(y)e 2 4 such that e (B)=T.
Using properties of M-saturation, it is easy to sec that in this case,
(x) (B=x=f(y))ed. But then, in view of Al0" and A4', we have
Er1E(y)=f(y)=1,Bed; and by T6, ECIf(y)e4 since mm@vmm, §0 &.m_“
f(y)=1,Bed. Therefore, g,(7,B)=f(y). But, by the definition of satis-
faction, I,(1,B)=f(p).

CaSE 9. A is (x)B. By condition (3) of D3, 4eA iff for all yeVy, such
that Eyed, BY/xeA. By T7, this holds iff for all ye&,, BY[xzd; and by
the hypothesis of induction, this in turn holds iff for allye@,, 1,(BY[x)=

. =T. By L14, this is equivalent to the condition that for all yeZ,,

"/x,(B)=T; and by the definition of satisfaction, this iff I, (B)="T.

Now that this property of I has been established by induction, we can
return to the problem of showing I to be an interpretation, Suppose that
there is no unique de 2 ; such that 14/x, (4) =T. Then, clearly, (Alx)A¢d,
and so, by A9, E1,4¢4. But then by A%, E(g4(7,4))¢4 and hence
1,(1,4)¢92 . Thus, L is an interpretation of M on (A, R, D, D,

The induction above establishes that I'={A/I;(4)=T}, and so L16
is proved. :

The following lemmas and theorems ate proved in the same way as
1.7, L8, T1, and T2, above.

L17. A set I' is M-saturated iff for some Q3ms (X', %, D, 9" and
interpretation I of M on (X', %, &, 2" such that for all de@* there is
an xeVy such that I(x)=d, there exists an aesd” such that I'=
HAN&.\HR A\Av = ,H.w )

118. Let M’ be an w-extension of M, and I' a subset of Wiy Abmn.ﬁ
is simultaneously Q3-satisfiable iff I has an M’-saturated extension ﬁ

T3. (Strong semantic completeness of Q3).13 A subset I' of Wy is
Q3-consistent iff I' is simultaneously Q3-satisfiable.

T4. For all formulas 4, A is Q3-valid iff F; 4. , :

With these theorems, the main theme of this paper is completed. We
conclude with a brief account of how T3 may be used to demonstrate. the
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semantic completeness of yet another system of modal predicate calculus.

XI. THE 5YSTEM Q3°

This system is a deductive extension of Q3; it is obtained by adding an
axiom of permanence, (x) [ Ex, to the axioms and rules of Q3. Intuitively,
the meaning of this axiom is that no individual ever passes out of exis-
tence. The system Q3° is closely related to the system of modal predicate
calculus of Hintikka [5], chapter 6. ,

A Q¥ms can be defined by adding to the definition of a Q3ms
Loty By D, B> the requirement that for all «, fed’, &, =%, In the
usual way, this yiclds corresponding notions of simultancous Q3°-
satisfiability and of Q3P-validity.

T5. (Strong semantic completeness of Q3%). A subset I' of Wy is
Q3-consistent iff I" is simultaneously Q3°-satisfiable.

Proor. I'is Q3 -consistent iff I'w {{x} 1 Ex} is Q3-consistent. By T3,
ro{(x)0Ex} is Q3-consistent iff I' L {(x) 1 Ex} is simultaneously Q3-
satisflable. Let (", &, @, 2" be a Q3ms, and I an interpretation of M
on (A, &, F, D> such that for some e, L, ((x) OEx)=T. Let 2™
be the closure of {«} under %; clearly, (A%, %, @, @'} is a Q3°ms, and
I,(4)=Tiff I, (4)=T, where I' is the restriction of I to (¥, &, 2, Z'>.
Therefore, if I'U{(x)TEx} is simultaneously Q3"-satisfiable then I' is
Q3P-satisfiable. On the other hand, since every Q3Pms is a Q3ms, if I' is
Q3¥-satisfiable then I'u{(x)[1Ex} is Q3-satisfiable. Therefore, I' is
Q3 -consistent ilf I is simultaneously Q3P-satisfiable.

As usual, we obtain as a corollary the weak semantic completeness
of Q3°, :

T6. For all formulas A4 of M, 4 is Q3 validiff 4isa theorem of Q3°.

Yale University
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given, Prof. David Xaplan has informed me (in a private communication, April, 1967)
that the notion of Q2-validity cannot be recursively axiomatized.
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constants or definite descriptions, On the other hand, the system Q185 of modal pred-
icate calculus based on an §5-type modality and on a Q1-type theory of guantification
and identity is the svstem proved semantically complete in Kripke [6). In this case our
generalization of Kripke's results consists in allowing for sorts of modality other than
85, and in proving strong rather than weak comipleteness.

8 We will use dots in the usual way in place of parentheses; see Church [1], pp. 74-80.
4 This proof requires that the morphelogy (i.e. the set of formulas of the morphology)
be denumerable.,

5 See the articles of Kripke, especially [7] and [8], for an intunitive account of this
semantics, Another discussion of this sort may be found in Thomason [13].

% The requireiment that the domains be nonempty is easily lifted; in this case, one must
also drop A6 from the systemn Q3.

? This is the only place in the proof of semantic completeness which must be changed
to adjust the argument to kinds of modality other than S4.

8 The rules R4-R7 are nceded for the proof of semantic completeness of Q3. At
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