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Abstract

It has been claimed that counterpart theory cannot support a theory of actuality
without rendering obviously invalid formulas valid or obviously valid formulas invalid.
We argue that these claims are not based on logical flaws of counterpart theory itself,
but point to the lack of appropriate devices in first-order logic for “remembering” the
values of variables. We formulate a mildly dynamic version of first-order logic with
appropriate memory devices and show how to base a version of counterpart theory
with actuality on this. This theory is, in special cases, equivalent to modal first-order
logic with actuality, and apparently does not suffer from the logical flaws that have
been mentioned in the literature.

1. Introduction

Since shortly after its inception in [Lewis, 1968], and continuing to the present day, coun-
terpart theory has tended to draw fire. We divide the various criticisms directed at it into
three categories. The first and earliest criticisms construe the formulas of counterpart the-
ory as making direct metaphysical claims, which they then dispute. Allen Hazen, in [Hazen,
1976] rightly dismisses these criticisms as somewhat naive. Other criticisms treat counter-
part theory as a formulation of first-order modal logic and compare it with more standard
formulations that are based on Kripke frames and postulate individuals that are already
individuated across worlds.1 Here there is a legitimate area of debate. Some formulas that
counterpart theory renders satisfiable are implausible on logical grounds. A number of exam-
ples are cited in [Hazen, 1976]; also see [Cresswell, 2004]. But this debate seems inconclusive.
From the beginning, first-order modal logic has proved to be intuitively challenging from a
logical standpoint, and—as usual in such cases—has produced a variety of alternative logics,
making it difficult to draw definitive conclusions. Yet counterpart theory has some logical
advantages: because of its flexibility, it can be a useful tool in investigating combinations of
modality with first-order quantification.2

Third, some brief remarks of Hazen’s about the interaction between actuality and coun-
terpart theory [Hazen, 1976, p. 330] inspired several proposals for revising Lewis’ translation

1See [Garson, 1984, Braüner and Ghilardi, 2006] for general information concerning logical approaches to
first-order modal logic.

2See, for instance, [Corsi, 2002].



from modal to first-order logic in order to accommodate an actuality operator.3 The real-
ization that attempts to carry out such a revision apparently are flawed led to an extensive
review of the difficulties in [Fara and Williamson, 2005]. The authors of this paper conclude:

there is no coherent way to extend Lewis’ scheme for translation from the lan-
guage of quantified modal logic to the language of counterpart theory, if quantified
modal logic is regarded, as it should be, as containing an actuality operator.
[Fara and Williamson, 2005, p. 453]

We think that this conclusion is premature, that it presupposes a somewhat superficial
assessment of the challenge posed by combining actuality with counterpart theory, and that,
in engaging a problem that is primarily logical, it displays a pernicious insensitivity to logical
methodology. We begin by expanding on the methodological points, and then describe a
logical project that, we claim, leads to a reasonable accommodation of actuality in something
that is very like Lewis’ framework, although it does require a nontrivial extension of the
underlying logic. Some features of the resulting logic may be controversial, but as far as
we can see these features can be attributed to counterpart theory itself, rather than to
any special limitations of the counterpart approach that are uniquely incompatible with an
actuality operator. Therefore, although metaphysical objections to counterpart theory may
remain, objections on purely logical grounds seem to fail.

2. Methodological remarks and a proposal

Logic has become a branch of mathematics, so it inherits the methodology of mathematics. In
mathematics, general questions are settled positively, by providing a rigorous proof covering
all possible cases, or negatively, by providing a counterexample. Consider the problem
of whether there is a general method for trisecting an angle with ruler and compass. A
history of failed attempts to provide such a method goes back to antiquity. Despite this
history of failures, the mathematical question was considered to be open until 1837. In
fact, it became one of the most important open questions in geometry. The accumulation
of failed attempts did not in any way settle the question, and the impossibility of a general
method was only established when Pierre Wantzel devised an algebraic representation of ruler
and compass constructions. Wantzel’s proof introduces something fundamentally new—the
algebraic representation—an idea that is entirely missing from the record of failed attempts.

In effect, Fara and Williamson supply a list of failed attempts to combine actuality and
counterpart theory, and conclude from this that no adequate formulation of this extension of
counterpart theory exists. If the problem is mathematical, this is not appropriate method-
ology. On the other hand, if the problem cannot be formulated mathematically, because the
notion of an “adequate formulation” is hopelessly imprecise, then of course there would be
no way to find a provably correct way of adding actuality to counterpart theory. But for the
same reason, proving that such a formulation is impossible would be hopeless. In fact, in

3See [Forbes, 1982, Ramachandran, 1989].

2



this case it is hard to see the point of concluding or conjecturing that there is no coherent
way of reconciling counterpart theory with actuality.

Is the problem hopelessly imprecise? We believe it is not. The difficulty here is to
make the notion of a coherent extension of counterpart theory precise enough so that an
impossibility theorem can be proved or a coherent extension provided. The propositional
case of the problem is easy to formalize, using generally accepted theories of the logic of
actuality such as that of [Hodes, 1984]. The first-order case is more challenging, due to the
fact that some logicians feel that first-order counterpart theory without actuality is in some
sense incoherent. But even this case may be tractable, since the question is not whether
first-order counterpart theory is incoherent, but whether the addition of actuality makes
first-order counterpart theory incoherent in new and significantly different ways. Making
such a differential notion of coherence precise may not be as difficult as trying to settle the
vexing question of under what conditions a first-order modal logic is coherent.

In this paper, we work with a fairly weak notion of differential coherence: that a version
of counterpart theory with actuality should be equivalent to standard first-order modal logic
with actuality when the counterpart relation produces one and only one counterpart of each
individual in each world. It is an open question whether there are appropriate ways to
strengthen this notion, and whether counterpart theory can support an actuality operator
that respects these strengthened notions.

The problem of counterpart theory with actuality is a special case of a familiar logical
problem: how to extend a given logic by enriching its language. Typically, the set of intended
models of the base logic is well defined. The central problem is then to characterize the
models of the extended logic in a way that naturally and conservatively extends the original
models and that does justice to whatever intuitions are available. Sometimes the problem
is trivial; this is what happens when the new constructs are definable in the base logic. But
the history of modern logic provides many instances where the interpretation of the base
logic needs to be generalized in some fundamental way to accommodate the extension.

Adding first-order quantifiers to boolean propositional logic is a classical case of such a
nontrivial extension. Models of propositional logic are simply assignments of truth-values to
atomic formulas. This view of models is unable to deal with first-order models in which some
individuals have no names. Tarski’s solution to the problem was to generalize the notion of
a model to make assignments of truth-values relative to variable assignments (or, as they
are often called, sequences). As usual, this idea has many uses beyond the original one: for
instance, it is crucial for algebraic logic and dynamic logic.

Adding an actuality operator to a normal modal logic (or a nowness operator to a
normal tense logic) is a more germane case. An actuality operator [@] cannot be a normal
modality, since A → [@]A is valid but �[A → [@]A] is not. Worse, the model theory of
normal modal logics automatically validates the Necessity Rule, according to which �A is
valid whenever A is. One might be tempted to think that this shows that actuality cannot
be added to normal propositional modal logics; but that would be a hasty conclusion. As
in the previous case, the model theory of modal logic needs to be generalized to enable this
extension. The truth of formulas in a model needs to be relativized not to one, but to two
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worlds. This device, often called “double indexing,” enables the semantic evaluation of a
formula to “remember” the base world from which the evaluation started and relative to
which actuality is to be interpreted.4

This train of thought suggests that an initial obstacle in adding actuality to counterpart
theory—and perhaps the only obstacle—is to find a way to incorporate double-indexing in
counterpart theory. But this can’t be done by relativizing satisfaction to two worlds rather
than one, as in modal logic. Counterpart theory does not relativize satisfaction to worlds,
but adopts the quantificational apparatus of first-order logic, places worlds in the domain of
the first-order quantifiers, and relativizes satisfaction to variable assignments.

First-order logic is analogous to modal logic in validating an analog of the necessity
rule: ∀xA is valid whenever A is; therefore, we should expect a problem to arise in adding
actuality to counterpart theory that is similar to the one we find in normal modal logic. The
natural analog in counterpart theory to modal double-indexing would be revised variable
assignments that associate two individuals, rather than one, to individual variables. The
hope would be that this change to the base logic would smooth the way for the addition of
actuality to counterpart theory, just as the addition of double-indexing enables the addition
of actuality to propositional modal logic. This, in essence, is our project.

In this paper we show that counterpart theory can be modified to deal with modal
statements involving actuality, provided that the first-order basis of the theory is amended
as described above. We show that this modification is invisible in the usual language of
first-order logic; it affects the logic only in the presence of operators like actuality, that are
two-dimensional.

We prove that the quantifier-free part of two-dimensional propositional modal logics
that with actuality is equivalent to the corresponding two-dimensional counterpart theory
with actuality. We go on to show that first-order two-dimensional modal logic is equivalent
to a restricted fragment of the two-dimensional counterpart theory. These results, together
with case-by-case examination of specific examples, provide some confidence in the adequacy
of the counterpart theory.

In actualizing counterpart theory, we proceed as follows: (i) We prove that there is a
version of counterpart theory (worldless counterpart theory) making no explicit reference to
worlds, that is equivalent to Lewis’ standard counterpart theory as formulated in [Lewis,
1968]. This is inessential to our ultimate goal, but is a valuable simplifying step. (ii) We
prove that there is a natural translation from propositional modal logic into counterpart
theory such that a modal formula is valid if and only if its translation is. (iii) We show how
to properly introduce actuality into counterpart theory. In contrast to previous approaches
(e.g., [Forbes, 1982, Hazen, 1979, Hazen, 1976, Ramachandran, 1989]), we pave the way for
an actuality operator not by extensive alterations to Lewis’ translation scheme but rather
by modifying the satisfaction relation. These modifications parallel those of traditional two-
dimensional modal logics such as that found in [Hodes, 1984], where satisfaction becomes a
relation between a model, a formula, and not one but two worlds. (iv) Finally, we prove the

4The problem and its solution is well explained in [Kaplan, 1978].
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equivalence results mentioned above.

3. Formulating counterpart theory

3.1. Motivating a simplification of counterpart theory

David Lewis’ presentation of counterpart theory in [Lewis, 1968] uses a first-order theory
with two designated two-place predicates Cxy (“x is a counterpart of y”) and Ixy (“x is in
the world y”), and two one-place predicates Ax (“x is actual”) and Wx (“x is a world”).
If this theory is used to formalize a modal subject matter, it will of course contain other
constants as well. For definiteness, we will assume that the primitive logical operators of the
theory are negation ¬, the conditional →, and the universal quantifier ∀. We can assume
(when useful) that the language has no individual constants, since such constants can be
replaced by predicates.

Lewis provides eight postulates as a basis for counterpart theory. To these postulates,
we add a further postulate (P9), saying that worlds (and only worlds) are unindividuated
entities—they have no counterparts. This postulate may not be required for logical or
metaphysical purposes, but it is certainly natural, and it provides a simplified ontology that
makes our technical work easier.

(P1) ∀x∀y[Ixy → Wy]
(P2) ∀x∀y∀z[[Ixy ∧ Ixz] → y=z]
(P3) ∀x∀y[Cxy → ∃z Ixz]
(P4) ∀x∀y[Cxy → ∃z Iyz]
(P5) ∀x∀y∀z[[Ixy ∧ Izy ∧Cxz] → x=z]
(P6) ∀x∀y[Ixy → Cxx]
(P7) ∃x[Wx∧ ∀y[Iyx ↔ Ay]]
(P8) ∃xAx
(P9) ∀x[Wx ↔ ¬∃yCyx]

Let LC be the language of such a theory, and M be a model of the theory on the domain
D. M, an ordinary first-order model, will assign a set MC of pairs of D to C, a set MI of pairs
of D to I, and a subset MA of D to A.

Although worlds are a crucial motivating part of counterpart theory, they are dispens-
able for technical purposes, because information about worlds is implicitly available in the
counterpart relation itself: a world can be represented by an arbitrarily chosen individual
belonging to it, giving rise to a worldless version of counterpart theory. The models of the
modified theory are much simpler and easier to work with.

Worldless counterpart theory is not fully equivalent to ordinary counterpart theory:
the chief difference, of course, is that the worldless theory restricts its ontology to entities
that are individuated by the counterpart relation. But, as we will show, these differences
in the apparatus used to define modality do not affect the part of counterpart theory that
corresponds to familiar modal logics.
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Lewis’ account of modality involves quantification over both worlds and counterparts;
for instance,

�P xy
is expanded to

∀w[Ww → ∀x′∀y′[[Cx′x∧Cy′y ∧ Ix′w ∧ Iy′w] → P x′y′ ]].

The latter formula is equivalent to

∀x′∀y′[[∃w[Ww ∧ Ix′w ∧ Iy′w]∧Cx′x∧Cy′y] → P x′y′ ].

Explicit quantification over worlds can be eliminated here by replacing ∃w[Ww ∧ Ix′w ∧ Iy′w]
in this formula by a direct relation of cohabitation between x′ and y′:

∀x′∀y′[[Cohx′y′ ∧Cx′x∧Cy′y] → P x′y′ ].

More generally, quantification over worlds can be imitated by quantifying over counterparts
that are designated as representatives of the unique world that they inhabit.

A general language for worldless counterpart theory has three designated predicates: a
two-place predicate R, a two-place predicate C, and a one-place predicate A. R denotes a
relation between a counterpart and a fixed coinhabitant that serves to represent the coun-
terpart’s world. C denotes the counterpart relation. The predicate A denotes the property
of inhabiting the actual world.

Rather than dealing with this general language, we will consider a specialized sublan-
guage for worldless counterpart theory. We will show that the sublanguage is equivalent to a
sublanguage LC

Coh
of ordinary counterpart theory satisfying postulates (P1)–(P9). Since this

language is adequate for formulating counterpart-based theories of necessity, this justifies
using worldless counterpart theory in our investigation.

We don’t attach any metaphysical significance to the fact that explicit quantification
over worlds is not needed in the counterpart theory of modality. Anyone who takes counter-
part theory or modal logic seriously is likely to think in terms of possible worlds, and—as in
ordinary modal logic—explicit quantification over worlds can easily be added if it is desired.
The easiest way to extend the simplified logic in this way would be to use a two-sorted
first-order logic, with one sort for counterparts and another for worlds.

3.2. Technical presentation of worldless counterpart theory

The cohabitation-based worldless counterpart language LWLC

Coh
retains the counterpart pred-

icates C and A, having these as well as a cohabitation predicate Coh as its only dedicated
predicate constants.
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Definition 1. Cohabitation-based worldless counterpart language L
WLC

Coh
.

Formulas of LWLC

Coh
are defined by the following induction.

(1.1) P x1 . . . xn is a formula of LWLC

Coh
if P is an n-place predicate of LC other than

W and I and x1, . . . , xn are variables.

(1.2) Cohxy is a formula of LWLC

Coh
, where x and y are variables.

(2) If A and B are formulas of LWLC

Coh
, so are ¬A and A → B.

(3) If A is a formula of LWLC

Coh
and x is a variable, ∀xA is also a formula of LWLC

Coh
.

Definition 2. Worldless counterpart frame.
A counterpart frame F for worldless counterpart theory is an ordered quadruple 〈D, r,C, @〉
satisfying the following four conditions.

(1) D is a nonempty set.
(2) r is a function from D to D such that for all d ∈ D, r(r(d)) = r(d).
(3) C is a subset of D2 such that for all d, e ∈ D, if r(d) = r(e) then

〈d, e〉 ∈ C if and only if d = e.
(4) @ ∈ D and r(@) = @.

D is the domain of the frame; r is a function that for each worldbound individual picks the
individual that represents the world they both inhabit.

A model M of LWLC

Coh
on a worldless counterpart frame 〈D, r,C, @〉 assigns appropriate

values MP to constants P other than C, A and Coh. The values that M gives to C, A, and
A are determined by D: MC = C, MA = {d / r(d) = @}, and MCoh = {〈d, e〉 / r(d) = r(e)}.

Remark 1. As an immediate consequence of Definition 2, if F = 〈D, r,C, @〉 is a worldless
counterpart frame, then C is reflexive.

Definition 3. Habitation.
Let 〈D, r,C, @〉 be a worldless counterpart frame. We will say that d ∈ D inhabits w ∈ D
if r(d) = w.

We now show that worldless counterpart theory is equivalent to Lewis’ counterpart
theory on a sublanguage adequate for translating modal logic with necessity. We define
the appropriate sublanguage of Lewis’ theory and show that its models and the models of
worldless counterpart theory are interchangeable.
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Definition 4. Cohabitation-based sublanguage L
C
Coh

of LC .
A language L

C for Lewis-style counterpart theory will contain the special predicates C,
I, A, and W. Assume that LC has no individual constants—this loses no generality. The
cohabitation-based sublanguage L

C
Coh

of LC does away with the predicates W and I of LC .
but retains the counterpart relation C, the cohabitation relation ∃x′[Wx∧ Ixx′ ∧ Iyx′], and
the actuality predicate A.

(1.1) P x1 . . . xn is a formula of LC
Coh

if P is an n-place predicate of LC other than
W and I, and x1, . . . , xn are variables.

(1.2) ∃x′[Wx′ ∧ Ixx′ ∧ Iyx′] is a formula of LC
Coh

if x and y are variables, where x′ is
the first variable differing from both x and y.

(2) If A and B are formulas of LC
Coh

, so are ¬A and A → B.

(3) If A is a formula of LC
Coh

and x is a variable, ∀xA is also a formula of LC
Coh

.

There is a straightforward translation from L
C
Coh

to L
WLC

Coh
.

Definition 5. τ(A).
The translation τ(A) of a formula A of LC

Coh
into L

WLC

Coh
is defined as follows.

(1.1) τ(P x1 . . . xn) = P x1 . . . xn for all basic formulas of L
C
Coh

, where P is any
predicate other than W and I.

(1.2) τ(∃x′[Wx′ ∧ Ixx′ ∧ Iyx′]) = Coh(x, y).

(2) τ(¬A) = ¬τ(A), τ(A → B) = τ(A) → τ(B).

(3) τ(∀xA) = ∀xτ(A).

Theorem 1. Any model M of a language L
C for Lewis’ counterpart theory that satisfies

postulates (P1)–(P9) is equivalent over the sublanguage L
C
Coh

to a corresponding model of
worldless counterpart theory. That is, there is a model M′ of the worldless language L

WLC

Coh

such that for all formulas A of LC
Coh

, M |=f A iff M′ |=f τ(A), for all variable assignments f
which assign only nonworld values.
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Proof. Let M be a model of (P1)–(P9) on a domain D. (P9) ensures that
D = D1 ∪ D2 and that D1 and D2 are disjoint, where D1 is MW (the extension
of W in M) and D2 is the set of elements satisfying ∃yCyx. Postulates (P6)–
(P8) ensure that D2 is nonempty. Postulates (P1)–(P3) ensure that there is a
function η from D2 to D1 such that η(d) = e iff 〈d, e〉 ∈ MI. Therefore there is a
function θ from D2 to D2 such that θ(d) = θ(e) iff η(d) = η(e) and θ(θ(d)) = θ(d).
Postulates (P4) and (P6) ensure that MC is a subset of D2

2. Postulate (P5) ensures
that if θ(d) = θ(e) and 〈d, e〉 ∈ MC then d = e, and (P5) and (P6) ensure that
〈d, d〉 ∈ MC, for all d ∈ D2. (P7) ensures that there is a d0 ∈ D1 such that for all
e ∈ D2, η(e) = d0 iff e ∈ MA. By (P8), there is an e′ ∈ D2 such that η(e′) = d0.
Let θ(e′) be e0. Then for all e ∈ D2, θ(e) = e0 iff e ∈ DA.

Let D be D2, r be θ, C be CM, and @ be e0. The remarks above show that D is a
worldless counterpart frame.

Define a worldless model M′ on F so that M′ assigns to each predicate of LWLC

Coh

other than W and I the restriction of that predicate to the individuated elements
of the domain of M. That is, for all such predicates P , PM′ is the restriction of
MP to D2. In particular, then, M ′

C
= MC and M ′

A
= MA. Finally, 〈d, e〉 ∈ M ′

Coh
iff θ(d) = θ(e).

It is straightforward to show by induction on the complexity of formulas that for
all formulas A of LWLC

Coh
, and for all assignments f of values in D2 to the variables

of LWLC

Coh
, M |=f A iff M′ |=f τ(A).

In the other direction, we show that models for the cohabitation fragment of worldless
counterpart theory can be converted to equivalent models of Lewis’ counterpart theory.

Theorem 2. Any model of worldless counterpart theory is equivalent on the cohabitation
sublanguage to a corresponding model of Lewis’ counterpart theory satisfying (P9). That
is, for each model M of LWLC

Coh
on a worldless frame 〈D, r,C, @〉, there is a model M′ of the

corresponding language LC for Lewis’ counterpart theory such that M′ satisfies (P9) and for
all formulas A of LC

Coh
, M′ |=f A iff M |=f τ(A), for all variable assignments f on M′.
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Proof. Let M be a model of LWLC

Coh
on the frame F = 〈D, r,C, @〉. Using objects

foreign to D, create an isomorphic copy W of r(D); let α be the isomorphism
from r(D) to W. Let D′ be D ∪ W, let M′

W
be W, let M′

I
be {〈d,w〉 / r(d) =

e, and w = α(e)}, and let M′
C
be MC. For predicates P of LWLC

Coh
other than Coh,

let M′
P be MP .

It is straightforward to show that M′ satisfies all of the postulates (P1)–(P9). For
instance, suppose that 〈d,w〉 ∈ M′

I
, 〈d′,w〉 ∈ M′

I
, and 〈d′, d〉 ∈ M′

C
. Now, M′

I
is

defined so that w ∈ W. Since α is an isomorphism, there is a unique member of
r(D), say e, such that α(e) = w. Then r(d) = e and r(d′) = e. But 〈d′, d〉 ∈ M′

C
,

so〈d′, d〉 ∈ MC. So, by Condition (3) of Definition 2, d = d′. Therefore, M′

satisfies Postulate (5).

Furthermore, by an induction on complexity of formulas of LC
Coh

we can verify
that M′ |=f A iff M |=f τ(A), for all formulas A of LC

Coh
, where f is a variable

assignment on M.

These results justify using the simpler worldless counterpart theory in the subsequent
investigations. The results will transfer to a part of Lewis’ counterpart theory that is ad-
equate for characterizing modal logic. From here on, when we talk about “counterpart
theory,” we will mean worldless counterpart theory.

4. Counterpart theory and modal logic

Both counterpart theory and ordinary modal logic with the Kripke interpretation treat ne-
cessity as a sort of universal quantifier. We now show that this similarity runs fairly deep:
the two approaches are equivalent for propositional modal logic.

4.1. Modal counterpart theory as a normal modal logic

The modal language LWLC

Coh� is the result of adding a primitive necessity operator � to L
WLC

Coh
,

and restricting the atomic formulas to those having the form Pw, where w is a designated
free variable.

Definition 6. Propositional modal language L
WLC

Coh�.
Let w be a fixed designated individual variable of LWLC

Coh
. The propositional modal sub-

language L
WLC

Coh� of LWLC

Coh
is the quantifier-free sublanguage defined as follows.

(1) P w is a formula of LWLC

Coh� if P is a 1-place predicate of LWLC

Coh� other than C

and Coh.
(2) If A and B are formulas of LWLC

Coh�, so are ¬A, A → B, and �A.

The designated variable w serves in the proof of Theorem 3 as a world designator. We
can assume, if we like, that f(w) = r(f(w)).

The operator � can be defined in terms of first-order quantification, C, and Coh, using
Lewis’ equivalence:

10



(L) �A ↔ ∀y1 . . . ∀yn[Cy1x1 ∧ . . .Cynxn ∧Cohy1 . . . yn] → Ay1/x1 . . .
yn/xn,

where x1, . . . , xn are all the variables occurring free in A and y1, . . . , yn
are n different variables not occurring in A.

Here, Ay/x is the result of replacing every free occurrence of x in A with an occur-
rence of y. In case A contains no free variables, the equivalence (L) is simply �A ↔ A.
The generalized cohabitation predicate Coh that is used in (L) is defined by the following
induction.

Definition 7. Coh t1 . . . tn.
Cohst = ∃x[Rsx∧R tx].
Coh t1 . . . tnt = Coh t1 . . . tn ∧Coh tnt.

Note that M |=f Cohx1 . . . xn iff there is a d ∈ D such that r(f(xi)) = d for all i such
that 1 6 i 6 n.

Satisfaction in a model, relative to a variable assignment f, is defined as usual in first-
order logic for formulas other than �A. The satisfaction clause for �A that is determined
by (L) reads as follows:

M |=f �A iff
M |=f ∀y1 . . .∀yn[Cy1x1 ∧ . . .Cynxn ∧Cohy1 . . . yn] → Ay1/x1 . . .

yn/xn,
where x1, . . . , xn are all the variables occurring free in A and y1, . . . , yn are n
different variables not occurring in A.

(In case A contains just one free variable x, M |=f �A iff
M |=f ∀y[Cyx → Ay/x], where y is a variable not occurring in A. In case A
contains no free variables, M |=f �A iff M |=f A.)

We begin by showing that counterpart theory gives rise to a propositional modal logic
with a quite standard possible-worlds interpretation. We can relate formulas of counterpart
theory with one designated free variable in a natural way to propositional modal logic, and
the logic induced by the Lewis scheme corresponds to a standard modal logic in which the
necessity operator can be interpreted in the usual way, using relations over a set of possible
worlds.

Definition 8. Counterpart model M of LWLC

Coh�.
Let F = 〈D, r,C, @〉 be a frame for worldless counterpart theory. A counterpart model
M of LWLC

Coh� on F is an ordinary first-order model of the modal language L
WLC

Coh� on the
domain D, satisfying the Lewis scheme (L).

Our idea is to think of variable assignments as worlds. To keep the size of the resulting
set of worlds under control, we restrict ourselves to finitary assignments.
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Definition 9. Finitary variable assignment.
A finitary variable assignment (or sequence) on a frame F is an eventually constant
function f from the individual variables of L

WLC

Coh� to D. That is, we assume a fixed
ordering of the variables and that the set of these variables is denumerable, so that the
set of variables has the form {x1, x2, . . .}. Then for each finitary variable assignment f,
there is an n such that for all m,m′ > n, f(xm) = f(xm′).

Definition 10. Local variable assignment.
A variable assignment f for the language LWLC

Coh� on a frame F〈D, r,C, @〉 is local (on world
w) iff for all variables x and y, r(f(x)) = r(f(y)) = w.

In other words, a variable assignment is local if all its values inhabit the same world.

Definition 11. World of a local variable assignment.
The world of a local variable assignment is the world that all of its values inhabit.

Definition 12. σ(A).
Let L� be the standard language of propositional modal logic. The atomic for-
mulas of L� are variable-free, and �A is a formula of L� if A is. We now
define a translation σ from L

WLC

Coh� to L� by removing the variable w. That
is, the translation σ(A) of a formula A of L

WLC

Coh
into L� is defined as follows:

(1) σ(P w) = P .

(2) σ(¬A) = ¬σ(A), σ(A → B) = σ(A) → σ(B).

(3) σ(�A) = �σ(A).

Definition 13. Modal frame and model corresponding to a counterpart model.
Let M be a counterpart model of LWLC

Coh� on the frame F = 〈DF, rF,C, @〉. The corre-
sponding modal (Kripke) frame F

′ is the pair 〈W,R〉, where W is the set of finitary,
local variable assignments on D and (where f, g ∈ W) 〈f, g〉 ∈ R iff for all variables x,
〈g(x), f(x)〉 ∈ C. And the corresponding modal model M′ is defined by letting f ∈ M′

P iff
f(w) ∈ MP .

In other words, f bears the relation R to g iff g assigns every variable x a counterpart of
the value that f gives to x. (Since g is local, all these counterparts must inhabit the same
world.)

Definition 14. Modal satisfaction.
Let M′ be a modal model of L�, and f, g be local, finitary variable assignments. The
modal satisfaction relation M |=′

f A is defined as usual for formulas A of L�. In particular,
M′ |=′

f P iff f ∈ M′
P . And the clause for �A reads as follows:

M′ |=′
f �A iff M′ |=′

g A for all g such that 〈f, g〉 ∈ R.
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Theorem 3. Satisfaction according to Lewis’ rule in L
WLC

Coh� and modal satisfaction according
to Definition 14 coincide. That is, for all counterpart models M of L

WLC

Coh�, M |=f A iff
M′ |=′

f σ(A), where M′ is the modal model corresponding to M according to Definition 13.

Proof. We induce on the complexity of formulas of LWLC

Coh�. The only nontrivial
case is the one for formulas of the form �A. Suppose first that M |=f �A, where
M is a model on a worldless counterpart frame F. Using the satisfaction condition
for (L), this holds iff for all d ∈ D, if 〈d, f(w)〉 ∈ C then M |=f[d/w] A. Since A
contains no free variables other than w, this iff for all g such that 〈f, g〉 ∈ R,
M |=g A. By the hypothesis of induction, this iff M′ |=′

g σ(A) for all such g. This
iff M′ |=′

f �σ(A), i.e. iff M′ |=′
f σ(�A).

In the other direction, note that the above argument reverses.

Theorem 3 guarantees that Condition (L) produces a normal modal propositional logic,
with local variable assignments playing the role of possible worlds. Since the relation R
given by Definition 13 is reflexive, the construction of Theorem 3 yields a frame validating
the modal T axiom, �A → A. This theorem is restricted to the propositional case, but
later, in Theorem 10, we will provide a generalization involving the same idea.

4.2. Quantifiers in first-order modal logic and in counterpart theory

Standard approaches to the modal logic of quantification begin with domains of objects that
are individuated across worlds. Models literally employ the idea of “the same” individual
in different worlds. It is natural on these approaches to think of modalities as properties of
propositions. ‘Five is necessarily prime’, for instance, is true because the proposition that
five is prime is necessary. This necessity involves, of course, the number five and the property
of being prime, but involves them indirectly; the necessity applies directly to the proposition
that results from combining the individual and the property.

Counterpart theory is less uncritical about trans-world sameness. It uses world-bound
individuals and the counterpart relation to account for necessity. There is no appeal to
sameness of an individual across worlds in interpreting formulas such as ∃x�P x. Necessity
is explained by condition (L), so that the formula is true if and only if there is an individual
whose counterparts all satisfy P . No natural notion of a proposition is directly involved
in this account of modality—modal formulas are complex conditions involving properties of
world-bound individuals and the counterpart relation, and these conditions do not factor
naturally into a propositional element and a modal operator.

We have expressed these differences informally, and the comparisons involve some no-
tions (especially, that of individuation) which are problematic. But they are reflected in
formal characteristics of the models of these two approaches.

In counterpart theory, a one-place predicate P is assigned a set of individuals; atomic
formulas such as Px are interpreted locally—in a specific world—because a world is implicitly
determined by a value for x. Therefore the spectrum of values of Px, as x is allowed to
vary, is global—it reflects the behavior of P in all worlds. In first-order modal logics, the
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interpretation of every formula, including Px, is relativized to a world: as x is allowed to
vary, the values of Px represent the truth-values of Px in a single world. But the values
of formulas and many of their components can differ across worlds, and by varying the
world, one recovers a spectrum of values. Individual variables occupy a special—and in
some versions of modal quantification theory an exceptional—place in the theory. The value
of x—an individuated object—is global because x is assigned an object that occupies many
(in fact, all) worlds. Although you can talk about the value of x in a world, this way of
putting it is somewhat misleading, since this value inhabits all worlds, and is the same in all
of them.

In counterpart theory, the formula ∀x�Px says that every counterpart of anything
satisfies P ; in worldless counterpart theory, this amounts to saying that everything satisfies P .
In modal quantification theory, ∀x�Px says that for every individual, that same individual
satisfies P in every world.

Perhaps the most striking difference between the two theories of modality is that in
counterpart theory ∀xPx → �∀xPx is valid, whereas in modal quantification theory it is
invalid. This difference creates a strong suspicion that there is no simple, natural mapping
between the two theories that preserves validity, and it reinforces the idea, already present in
the motivation of the theories, that the ontologies of the two approaches are fundamentally
different.

One approach to relating the two approaches was suggested by Lewis:5 treat world-
bound individuals as pairs consisting of a world and an individuated individual. This idea
helps to clarify the differences between the two approaches to quantification and modality.
Models of modal quantification theory involve frames of the sort 〈W,R,D,w0〉, where W is
the set of worlds, R is a binary relation over W, D is the set of individuals, and w0 is a
member of W representing the actual world. Such a frame corresponds in a natural way to
a (worldless) counterpart frame F = 〈D, r,C,w0〉, where D = W × D, r(〈w, d〉) = 〈w, d0〉
(where d0 is an arbitrary member of D), and 〈w, d〉C〈w′, d′〉 iff d = d′. In other words, the
counterpart relation applies to world-object pairs that involve the same object.

Counterpart relations defined in this way over world-individual pairs have certain special
properties: for instance, a pair must have one and only one counterpart per world. This
provides support for Lewis’ claim that counterpart theory is more flexible and general than
quantified modal logic.6

However, this way of relating models of modal quantification theory to models of coun-
terpart theory does not induce a natural correspondence between formulas. Modality in
normal modal logic involves an (implicit) quantifier over worlds. Modality in counterpart
theory involves a quantifier over world-individual pairs. This is reflected in the fact that
formulas like ♦∀xP x → �∀xP x are valid in counterpart theory. This formula, of course,
is invalid in modal quantification theory.

5[Lewis, 1968][p. 115].
6This point only applies to the simplest versions of quantified modal logic. It would not apply, for instance,

to a version that quantifies over a (restricted) set of partial functions from worlds to individuals.
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Such facts mean that it will not be straightforward to establish object-language level
correspondences between the two approaches.

5. Introducing actuality into first-order logic

5.1. Actuality in ordinary modal logic

It can be instructive to extend a propositional modal logic L� by adding an “actuality
operator” [@], obtaining a language L�@. The idea is that interpretations are anchored
in an actual world, and that [@]A means that A holds in that world. Thus, for instance,
A ↔ [@]A is valid, but �[A ↔ [@]A] is not. This extension of modal logic can be interpreted
using “two-dimensional” interpretations; see [Hodes, 1984]. These two-dimensional models
employ double indexing techniques: formulas are satisfied with respect not to a single world
but with respect to an index, a pair 〈w,w′〉 of worlds. The crucial clauses of the satisfaction
definition are:

(1) M |=w,w′ �A iff for all u such that wRu, M |=u,w′ A.
(2) M |=w,w′ [@]A iff M |=w′,w′ A.

Two-dimensional validity is defined as follows.

Definition 15. Validity for formulas of L�@.
A formula of A of L�@ is valid if and only if for every model M, M |=w,w A for all
worlds w of M.

By identifying the two arguments of the satisfaction relation, Definition 15 confines attention
in determining validity to diagonal indices. It is this restriction that makes A ↔ [@]A valid,
even though �[A ↔ [@]A] is invalid.

The satisfaction definition for one-dimensional modal logic is a recursion in which a
parameter representing a possible world is maintained in the evaluation of a formula. In
determining whether M |=w A, an original value is given to the parameter ‘w’ at the outset
of the recursion. This value remains constant when boolean formulas are tested: for instance,
whether M |=w ¬A depends on whether M |=w A. It is varied for modal formulas: whether
M |=w �A depends on whether, for each world u such that wRu, M |=u A.

In two-dimensional modal logic, the first parameter plays the role of the one-dimensional
parameter: it keeps track of the world in which a formula is evaluated as the recursion unfolds.
The second parameter serves to remember a value that was visited earlier in the recursion—
in fact, the initial value. In testing for validity, the first value for each recursion will be
the world designated as actual for purposes of the evaluation. Since the value of the second
parameter never changes in the course of the recursion, it will serve to store this world.

We are now in a position to begin the project, outlined above in Section 2, of altering
first-order logic in a way that parallels the change in propositional modal logic from one to
two satisfaction parameters.
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5.2. Two-dimensional first-order logic

The question is this: what generalization of the satisfaction relation would be needed to
support an actuality operator, assuming that modality is characterized in terms of Condition
(L)?

5.2.1. A special case

Consider the following special case of Lewis’ condition (L):

�P x ↔ ∀y[Cyx → P y].

This produces the following satisfaction condition for �P x:

M |=f �P x iff M |=f ∀y[Cyx → P y].

This condition refers the question of whether �P holds of f(x) to the question of whether P
holds of all counterparts of f(x).

Let LFOL
x be a sublanguage of first-order logic in which the only variable to occur free

in formulas is x. The atomic formulas of the language have the form P x, where P is a one-
place predicate letter. Formulas are closed under boolean operations, and if A is a formula
then so is ∀y[Cyx, A]. This formula is equivalent to ∀y[Cyx → Ay/x] but is treated as an
independent construction, not as a universally quantified conditional.

For this fragment of first-order logic, we can relativize satisfaction to two individuals, in
exactly the same way that two-dimensional modal logic relativizes satisfaction to two worlds,
obtaining a semantics for modality and actuality. The satisfaction clauses are as follows.

(1) M |=d,e P x iff d ∈ MP .
(2) Boolean connectives are interpreted as usual.
(3) M |=d,e ∀y[Cyx, A] iff M |=d′,e A for all d′ ∈ D such that 〈d′, d〉 ∈ MC.
(4) M |=d,e [@]A iff M |=e,e A.

A formula A of LFOL
x is valid if and only if M |=d,d A for all models M of LFOL

x , for all
d ∈ D, where D is the domain of the model M.

This semantics parallels Hodes’ interpretation of standard modal logic with actuality,
and is equivalent to it, assuming that the modal language is quantifier-free. That is, we can
map formulas of modal actuality logic into L

FOL
x in such a way that formulas containing a

single free variable, x, are valid in the Hodes logic if and only if their translations are valid
in L

FOL
x .

5.2.2. The general case

Full first-order logic, however, has infinitely many individual variables. If we wish to base
counterpart theory with actuality on this logic, as Lewis does, we have to consider how to
introduce a mechanism for remembering variable assignments that is sufficiently general to
recall the appropriate world on demand when the supply of individual variables is infinite.
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No doubt there are many ways to do this. For our purposes, we want a simple mecha-
nism as close as possible to Hodes’ two-dimensional method for interpreting modal logic with
actuality. This suggests using “two-dimensional variable assignments,” which associate pairs
of individuals with variables. Equivalently, we use two one-dimensional variable assignments
to interpret formulas. The first assignment serves to interpret first-order quantifiers; the
second assignment remembers previous values.

Quantifiers serve two purposes in counterpart theory: (i) characterizing necessity and
(ii) supporting generalizations about individuals, as in any first-order theory. In two-
dimensional modal logic, the first purpose requires a record of previous values, but the
second does not. To capture this difference in two-dimensional first-order logic, we intro-
duce two sorts of variables. We start, as usual, with an infinite set of individual variables,
which we call “plain variables.” With each plain variable, we then associate infinitely many
“companion variables.” That is, where x is a plain variable the companions xc

1, x
c
2, . . . are

associated with x. Companion variables behave in most respects like ordinary variables, but
quantification with a companion variable remembers the previous value of the variable, while
quantification with a plain variable does not. (See Clause (3.2) of Definition 18, below.)

Definition 16. The language L
FOL
2D .

L
FOL
2D is an ordinary first-order language, extended with infinitely many “companion vari-

ables” for each “plain variable” of the language. Where x is a plain variable, ‘xc’ denotes
a companion of x.

When we say that quantifying with a plain variable x does not remember previous
values of x, this means that the clause for M |=f,g ∀xPx will change not only the value of f,
but the value of g. For technical reasons that will only become more clear in the proofs of
Theorems 8 and 10, we make the change to g as general as possible: M |=f,g ∀xPx iff for all
d ∈ D, M |=f[d/x],g[C(d)/x] A, where C is a function from D to D. In other words, g assigns x an
arbitrary function of d. The following definition imposes further conditions on the function
C in counterpart frames.

Definition 17. Two-dimensional first-order frame, two-dimensional counterpart frame.
A two-dimensional first-order frame is a pair 〈D, C〉, where D is a nonempty set (the
domain of the frame) and C is a function from D to D. A two-dimensional counterpart
frame is a 6-tuple 〈D, C, r,C, @, d′〉, where 〈D, r,C, @〉 is a worldless counterpart frame, C
is a function from D to D, and r(d′) = d′ (i.e., d′ is a world of the frame). The following
conditions apply:

(1) for all d ∈ D, r(C(d)) = d′,
(2) if there is an e such that 〈e, d〉 ∈ C and r(e) = d′, then 〈C(d), d〉 ∈ C. (In

other words, all values of C must inhabit the world d′, and if there is a
counterpart of d inhabiting d′ then C(d) is such a counterpart.)

Remark 2. We distinguish d′, the world that anchors the actuality operator, from Lewis’
actual world @. But it is tempting and very natural to identify the two.

17



Definition 18. Satisfaction in two-dimensional first-order logic.
Let M be a first-order model of LFOL

2D on the domain D.

(1) M |=f,g P x1 . . . xn iff 〈f(x1), . . . , f(xn)〉 ∈ MP .
(2) Boolean connectives are interpreted as usual.
(3.1) Where x is a (plain) individual variable, M |=f,g ∀xA iff for all d ∈ D,

M |=f[d/x],g[C(d)/x] A.
(3.2) Where xc is a (companion) variable, M |=f,g ∀xcA iff for all d ∈ D,

M |=f[d/xc],g A.

As usual in two-dimensional settings, for purposes of checking validity, satisfaction in
L

FOL
2D begins with special pairs of assignments, ones that are designated as initial. An initial

assignment pair is not only diagonal, but is local, and the values of g are correlated to the
values of f by the function C.

Definition 19. Local, uniform, initial variable assignment pair.
A variable assignment pair 〈f, g〉 for LFOL

2D is local on w and w′ iff f is local on w and g is
local on w′. It is uniform if for all plain variables x and companions xc for x, f(xc) = f(x).
〈f, g〉 is initial iff (i) f = g, (ii) 〈f, g〉 is uniform, and (iii) 〈f, g〉 is local on some w and w′.

Definition 20. Validity for formulas of LFOL
2D .

A formula A of LFOL
2D is valid iff for all models M and initial variable assignment pairs

〈f, g〉, M |=f,g A.

If we ignore companion variables, these changes make no difference: validity in L
FOL
2D is

the same as first-order validity. We record this fact as a theorem.

Theorem 4. Let A be a formula of LFOL
2D . Then A is valid in L

FOL
2D iff A is satisfied in

first-order logic by every normal variable assignment.

Proof. Where M |=f is the usual relation of first-order satisfaction in M relative
to a variable assignment, it is easily shown by induction on the complexity of A
that, for all assignment pairs 〈f, g〉, M |=f,g A iff M |=f A in ordinary first-order
logic. The theorem follows immediately. It also follows that if A contains no
companion variables, A is valid in L

FOL
2D iff A is valid in ordinary first-order logic.

Theorem 4 shows that LFOL
2D is not a particularly interesting generalization if we confine

ourselves to the language of first-order logic. This is analogous to the fact that validity in
two-dimensional modal logic is uninteresting without an actuality operator or some other
operator that depends on the second satisfaction parameter.

We now extend L
FOL
2D to include an actuality operator, obtaining the language L

FOL
2D@.

Actuality takes the form of a modal operator in L
FOL
2D@, as it does in modal logic. Therefore,

in addition to the usual formation rules of first-order logic, LFOL
2D@ has the following rule.

If A is a formula of LFOL
2D@, so is [@]A.

18



Our satisfaction rule for actuality is analogous to the modal rule: it forgets the first
parameter, replacing it with values from the second parameter.

M |=f,g [@]A iff M |=g,g A.

The interaction of the first-order actuality operator with two-dimensionality is illus-
trated by the formula Px → ∀xc

[@]P xc. This formula holds at the initial assignment pair
〈f, f〉 in a model M, i.e., |=f,f Px → ∀xc

[@]P xc, iff

(i) if f(x) ∈ MP then for all d ∈ D, M |=f[d/xc],f [@]Pxc.

And (using the satisfaction clause for [@]) (i) iff

(ii) if f(x) ∈ MP then for all d ∈ D, M |=f,f P xc.

Since the reference to d has been eliminated from the satisfaction clause, (ii) boils down
to

(iii) if f(x) ∈ MP then M |=f,f P xc.

Now, M |=f,f P xc iff f(xc) ∈ MP . But then (iii) follows from the fact that 〈f, f〉 is initial.

The following remark generalizes this example slightly.

Remark 3. Let A have no free occurrences of xc, and let A′ be Ax
c
/x. Then A ↔ ∀xc

[@]A′

is valid in L
FOL
2D@.

Proof. Let 〈f, f〉 be initial. M |=f,g ∀xc
[@]A′ iff M |=f[d/xc],f [@]A′ for all d ∈ D.

But (using the satisfaction clause for [@]) this iff M |=f,f A
′. Using properties of

substitution in first-order-logic, the fact that A has no free occurrences of xc, and
the fact that 〈f, f〉 is initial, this iff M |=f,g A.

The following remark follows directly from this, using simple properties of first-order
logic.

Remark 4. Let A have no free variables other than the distinct variables x1, . . . , xn, let

the companion variables xc
1, . . . , x

c
n not occur in A, and let A′ be Ax

c
1/x1 . . . x

c
n/xn. Then

A → ∀xc
1 . . .∀x

c
n[[Cx

c
1x1 ∧ . . . ∧Cxc

nxn ∧Cohx1 . . . xn] → [@]A′]

is valid in L
FOL
2D@.

The validity cited in Remark 4 is analogous to the validity of A → �[@]A in modal
logic with actuality, and is an important component of the case for the adequacy of this
treatment of actuality in counterpart theory.

The above remarks show that two-dimensional first-order logic with actuality produces
some distinctive validities that seem to go beyond first-order logic. But it seems implausible
to attach any metaphysical significance to the mechanisms that create these differences.
The domain of the quantifiers is unchanged, and the only novelty is the ability to recover
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previous values of variables. If anything, the differences between L
FOL
2D@ and ordinary first-

order logic seem more epistemological than metaphysical, being a matter of memory and so
of epistemology rather than, say, of ontology.

Counterpart theory based on two-dimensional first-order logic with actuality is our
candidate for a plausible extension of counterpart theory that accommodates an actuality
operator.

6. Justifying two-dimensional counterpart theory as a logic of ac-

tuality

We have proposed a satisfaction definition for counterpart theory with actuality that was
designed to parallel the two-dimensional definition for the corresponding possible-worlds
based account. It would be desirable, so far as this is possible, to support the adequacy of this
theory with general results. But, as we explained in Section 1, we can’t do this by showing
somehow that the theory has no implausibilities, because some features of counterpart theory
without actuality are controversial and—at least to some—implausible. The best we can do
is to show that the addition of an actuality operator adds no new implausibilities to ones that
counterpart theory may already have. To do that, we propose to eliminate the differences
between plain counterpart theory and first-order modal logic, and to ask whether adding an
actuality operator to this specialized version of counterpart theory introduces divergences
from modal logic with actuality. We begin this exercise with the quantifier-free case.

6.1. The quantifier-free case

We use the translation σ that was used in Section 4.1 to relate counterpart theory to propo-
sitional modal logic, extending the results of that section to languages with actuality.

Definition 21. The language L
WLC

Coh�@.
L

WLC

Coh�@ is the result of basing L
WLC

Coh� (see Definition 6) on the extension L
FOL
2D@ of first-

order-logic with companion variables and an actuality operator.

To relate L
WLC

Coh�@ to the modal language with actuality L�@ that was discussed in
Section 5.1, we extend the translation function σ (taking formulas of LWLC

Coh� to formulas of
L�) that was defined in Definition 12, adding a clause to cover actuality.

Definition 22. σ(A) for L�@.
(4) σ([@]A) = [@]σ(A)

We now proceed to prove that the validities of the modal language and their counterpart
theoretical equivalents are the same.

The two-dimensional modal frame and model corresponding to a two-dimensional coun-
terpart model M of LWLC

Coh�@ is defined as in Definition 13.
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Theorem 5. Let M′ be the two-dimensional modal model corresponding to the two-
dimensional counterpart model M of LWLC

Coh�@. Then for all formulas A of LWLC

Coh�@ and local
variable assignments f and g on L

WLC

Coh�@, M |=f,g A iff M′ |=′
f,g σ(A).

The proof of this theorem is an induction that doesn’t differ in important respects
from the proof of Theorem 3. The additional case, for formulas [@]A, is straightforward:
M |=f,g [@]A iff M |=g,g A. By the hypothesis of induction, this iff M′ |=′

g,g σ(A), and this iff
M′ |=′

f,g [@]σ(A), i.e. iff M′ |=′
f,g σ([@]A).

In the other direction, we start with a two-dimensional modal model and construct an
equivalent counterpart model.

Definition 23. Two-dimensional counterpart frame corresponding to a two-dimensional
modal model.

A two-dimensional counterpart frame F = 〈D, C, r,C, @, d′〉 corresponds to a two-
dimensional modal model M′ of L�@ on a modal frame 〈W,R〉 with initial world w′

iff D = W, r is the identity function, 〈u, v〉 ∈ C iff 〈v, u〉 ∈ R, and d′ = @. And the
corresponding two-dimensional model M has w ∈ MP iff w ∈ M′

P .

Theorem 6. If f(w) = w and g(w) = w′ then M |=f,g A iff M′ |=′
w,w′ σ(A), where M and M′

are as in Definition 23.

Except for actuality formulas, the proof of this theorem is the same as the one that
establishes the equivalence of modal and corresponding first-order models. For instance, see
[Blackburn et al., 2001, Section 2.4] for details concerning this sort of result. The generaliza-
tion to two dimensions and case of the induction for actuality formulas are straightforward.

From the preceding two theorems, we have the equivalence of validity for two-dimensional
modal logic and counterpart theory in the propositional case.

Theorem 7. σ(A) is valid in L�@ iff A is valid in L
WLC

Coh∀@w.

This result provides some positive support for the idea that two-dimensional counterpart
theory does not suffer from anomalies that can be ascribed to its treatment of the actuality
operator. To strengthen this support, we need to address stronger fragments of the two
logics, supporting quantifiers over individuals.

6.2. Comparing counterpart theory to first-order modal logic

We now consider the much more complex case where first-order quantifiers are allowed. We
begin by characterizing the modal logic.

6.2.1. The first-order modal logic L�@∀

L�@∀ is obtained from L�@ by allowing (plain) variables in atomic formulas and adding a
clause for universally quantified formulas: if A is a formula of L�@∀ so is ∀xA, where x is
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any plain variable. Identities are counted as atomic formulas.

Definition 24. L�@∀ frames and models.
A L�@∀ frame is a tuple 〈W,R,D〉, where 〈W,R〉 is a modal frame and D is a nonempty
set. A L�@∀ model on a frame 〈W,R,D〉 assigns each n-place predicate P of L�@∀ a
subset of Dn ×W.

Definition 25. L�@∀ satisfaction.
The only new case is that of formulas ∀xA:

M |=f,w,w′ ∀xA iff for all d ∈ D, M |=f[d/x],w,w′ ∀xA.

6.2.2. Adjusting counterpart theory for the comparison

A plausible and fair comparison between counterpart theory and first-order modal logic
requires several adjustments, all of them quite independent from considerations having to
do with actuality.

First, we need to address a fundamental difference in the way quantifiers are interpreted
in the two theories. This difference is illustrated by the formula ∀xPx → �∀xPx, which
was mentioned above in Section 4.2.

This formula is valid in counterpart theory, but is blatantly invalid in possible-worlds
based first-order modal logic. In counterpart theory, the quantifier ranges over all coun-
terparts, so that its truth means that not only everything in the actual world satisfies P ,
but also everything in every other world. The interconnection between truth about counter-
parts and necessity in counterpart theory produces the validity. There is no natural direct
correspondence, then, between modal ∀xA and counterpart theoretical ∀xA.

To adjust for this difference, we need to use relativized quantifiers to translate modal
first-order quantifiers in counterpart theory. The relativized quantifiers are restricted to
individuals that belong to the world of evaluation. Although standard counterpart theory
does not appeal to a “world of evaluation,” the special variable w in the translated formulas
provides what is needed here. Relativized quantifiers in the two-dimensional first-order
language L

FOL
2D@ have the form ∀x[Cohxw → A], where x is a plain variable.

The following definition introduces the sublanguage LWLC

Coh∀@ of two-dimensional counter-
part theory of actuality. LWLC

Coh∀@ is analogous to the language LWLC

Coh
discussed in Section 3.2.
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Definition 26. The language L
WLC

Coh∀@.
Atomic formulas of L

WLC

Coh∀@ are the correlates of atomic formulas of first-order modal
logic. That is, they contain no free variables and (except for identities) have w as an
extra variable. The formulas of LWLC

Coh
are closed under boolean operations, relativized

quantification, counterpart necessity, and actuality.

(1) Where x and y are plain variables, Cxy and Cohxy are atomic formulas of
L�@∀.

(2) If Px1 . . . xn is an atomic formula of L�@∀, then Px1 . . . xnw is an atomic
formula of LWLC

Coh
.

(3) x=y is an atomic formula of LWLC

Coh
.

(4) If A is a formula of LWLC

Coh∀@, so is [@]A.

(5) If A is a formula of LWLC

Coh∀@, so is ∀x[Cohxw → A].

(6) If A is a formula of LWLC

Coh∀@, x1, . . . , xn are the free variables in A, and for
1 6 i 6 n, xc

i is the first companion of Axi not occurring in A, then
∀xc

1 . . .∀x
c
n[[Cx

c
1x1 . . .Cx

c
nxn ∧Cohxc

1 . . . x
c
n] → A is a formula of LWLC

Coh∀@.

The satisfaction clause given in Definition 18 for ∀wc[Cwcw → Pwc] refers to the
satisfaction conditions of Cwcw → Pwc, which is not a formula of L�@∀, since it contains a
free companion variable. The following remark provides a way around this problem.

Remark 5. M |=f,g ∀xc
1 . . .∀x

c
n[[Cx

c
1x1 . . .Cx

c
nxn ∧CohxC

1 . . . xC
n ] → A] iff for all

d1, . . . , dn ∈ D, M |=f[d/y1...d/yn],g Ay1/xc
1 . . .

yn/xc
n, where y1, . . . , yn are plain variables

not occurring in A.

6.2.3. Equivalence of LWLC

Coh∀@ and first-order modal logic

We map formulas of L�@∀ into the language L
WLC

Coh∀@ by adding an extra argument w to
atomic formulas. As in Definition 12, w is a designated (plain) variable of LWLC

Coh∀@. Boolean
operators and the actuality operator are treated homomorphically, first-order quantifiers are
translated with a restricted quantifier, and the Lewis scheme with companion variables is
used to translate necessity formulas.

The extra argument allows us to accommodate modal formulas without free variables.
If, for instance, the translation A′ of A were to have no free variables, then A′ ↔ �A′ would
be counterpart-valid.
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Definition 27. The translation π(A).
For purposes of the translation, we suppose that the language of LFOL

2D@ contains all the
variables of the first-order language, as well as a designated plain variable w that does
not belong to the modal language, and a suite of companion variables for all of the plain
variables.
The translation function π from formulas of L�@∀ to formulas of LFOL

2D@ is defined as follows:

(1) π(Px1 . . . xn) = Px1 . . . xnw.
(2) π is homomorphic for identities, boolean formulas, and actuality.
(3) π(∀xA) = ∀x[Cohxw → π(A)].
(4) π(�A) = ∀xc

1 . . .∀x
c
n∀w

c[[Cxc
1x1 ∧ . . . ∧Cxc

nxn ∧Cwcw ∧Cohxc
1 . . . x

c
nw

c] →

π(A)x
c
1/x1 . . . x

c
n/xn

wc
/w], where x1, . . . , xn are all the variables

occurring free in A and xc
1, . . . , x

c
n, w

c do not occur in π(A).
(5) π([@]A) = [@]π(A).

Counterpart theory is much less constrained about individuation than first-order modal
logic. To obtain a fair comparison, we confine our attention to simple models of counterpart
theory, in which the counterpart relation imitates the individuation policy of first-order
modal logic.

Definition 28. Simple model of counterpart theory.
Let M be a model on a two-dimensional counterpart frame F = 〈D, C, r,C, @, d′〉. M is a
simple model iff (i) each individual in M has exactly one counterpart in each world, and
in fact there is a function Ctrprt from individuals and “worlds” in r(D) to individuals
such that Ctrprt(d,w) is the unique counterpart of d inhabiting w:

For all d, e ∈ M, C(d, e) and r(e) = w iff Ctrprt(d,w) = e.

Also, (ii) C(d) = Ctrprt(d,w′) and (iii) for all n + 1-place predicates P of LFOL
2D@ other

than the reserved predicates C and Coh, if 〈d1, . . . , dn,w〉 ∈ MP then r(w) = w and for
all i, 1 6 i 6 n, r(di) = w.

Definition 29. Validity in simple models of LFOL
2D@, validity in L

WLC

Coh∀@.
A formula A of LFOL

2D@ is valid in on simple models iff M |=f,g A for every simple model M
and every initial assignment pair 〈f, g〉 on the frame of M. And a formula A of LWLC

Coh∀@ is
valid iff A is valid on simple models.

Simple models of counterpart theory validate the following two formulas, characteristic
of first-order modal logic:

∀x∀y[x=y → �x=y],
∀x∀y[♦x=y → x=y].

We turn now to the relation between the translation π and satisfaction in models,
beginning by showing how to construct an equivalent counterpart model from a modal model.
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Definition 30. Two-dimensional counterpart model corresponding a two-dimensional first-
order modal model.

Let M′ be a two-dimensional model of L�@∀ on a Kripke frame 〈W,R,D〉, where R is
reflexive, and let w′ ∈ W. The counterpart model for LFOL

2D@ corresponding to M′ and w′ is
the model M defined as follows. The frame of M is 〈D, C, r,C, @, d′〉, where:

(1) D = W×D;
(2) r(〈w, d〉) = 〈w, d0〉, where d0 is an arbitrary fixed member of D;
(3) C(〈w, d〉) = 〈w′, d〉;
(4) 〈〈w′, d′〉, 〈w, d〉〉 ∈ C iff 〈w,w′〉 ∈ R and d = d′;
(5) @ = d′ = 〈w′, d0〉.

Finally, where P is an n-place predicate of L�@∀, 〈〈u1, d1〉, . . . , 〈un, dn〉, 〈w, d〉〉 ∈ MP iff
u1 = . . . = un = w, d = d0 and 〈d1, . . . , dn,w〉 ∈ M′

P .

Remark 6. Let M′ and M be as in Definition 30. Then M is simple with function
Ctrprt, where Ctrprt(〈w, d〉, 〈u, d0〉) = 〈u, d〉.

Definition 31. Variable assignment pair 〈f, g〉 on M corresponding to parameters h, w, w′,
on a two-dimensional modal model M′.

Let M′ and M be as in Definition 30, let h be a variable assignment for the modal language
L�@∀, and let w,w′ ∈ W. A variable assignment pair 〈f, g〉 on M corresponds to h,w,w′,
i.e., 〈h,w,w′, f, g〉 ∈ Π, iff:

(1) f(x) = 〈w, h(x)〉 and g(x) = 〈w′, h(x)〉, for all plain variables x;
(2) f(w) = 〈w, d0〉 and g(w) = 〈w′, d0〉.

These definitions are motivated by the intuitive correspondence between statements
about an individual d in a world w in the modal model and statements about the pair 〈w, d〉
in the corresponding counterpart model. Our first result shows that the correspondence we
have defined preserves truth: a formula is satisfied over reflexive frames in the modal logic
if and only if its translation is satisfied in the corresponding counterpart model.

Theorem 8. Let M′ be a two-dimensional model of L�@∀ on a Kripke frame 〈W,R,D〉,
where R is reflexive, and M be the corresponding two-dimensional counterpart model. Then,
where A is a formula of L�@∀ and 〈h,w,w′, f, g〉 ∈ Π, M′ |=h,w,w′ A iff M |=f,g π(A).

Proof. All the conditions on counterpart frames from Definition 2 are met
automatically except for Condition (3), which requires that if r(d) = r(e) then
〈d, e〉 ∈ C iff d = e. This condition, amounting to 〈d, d〉 ∈ C for all d ∈ D, follows
from the reflexivity of R.

The result is proved by induction on the complexity of A. We omit the cases
for boolean formulas, which, as usual, are trivial. To simplify the presentation,
we confine ourselves (except in the case of identities x = y) to formulas of L�@∀

containing a single free variable, x. The arguments for the general cases don’t
differ in any important respects.
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If A is an atomic formula Px, π(A) is Pxw. Now, M′ |=h,w,w′ Px iff 〈h(x),w〉 ∈
M′

P . And this iff 〈〈w, f(x)〉, 〈w, d0〉〉 ∈ MP . And this iff M |=f,g Pxw, where
f(w) = 〈w, d0〉, f(x) = 〈w, h(x)〉.

If A is x = y, M′ |=h,w,w′ A iff h(x) = h(y). But this iff 〈w, h(x)〉 = 〈w, h(y)〉, this
iff f(x) = f(y), and this iff M |=f,g A.

If A is �B, where x is the only free variable occurring in A, then π(A) is

∀xx∀xc[[Cxcx∧Cwcw ∧Cohxxwc] → π(B)x
c
/xw

c
/w].

Now, M′ |=h,w,w′ A iff
(i) M′ |=h,u,w′ B for all u ∈ W such that 〈w, u〉 ∈ R.

By the hypothesis of induction, we have (i) iff

(ii) for all u ∈ W such that 〈w, u〉 ∈ R, M |=fu,gu π(B),
where 〈h, u,w′, fu, gu〉 ∈ Π.

Let 〈h,w,w′, f, g〉 ∈ Π. Then g = gu and (since the only free variables occurring
in π(B) are x and w), M |=fu,gu π(B) iff M |=f[〈u,h(x)〉/x,〈u,d0〉/w],g π(B).
Therefore, (ii) iff

(iii) for all u ∈ W such that 〈w, u〉 ∈ R, M |=f[〈u,h(x)〉/x,〈u,d0〉/w] π(B).

And (iii) iff

(iv) for all δ, ǫ ∈ W × D, if M |=f [δ/xc,ǫ/wc] Cx
cx∧Cwcw ∧Cohxcwc then

M |=f [δ/xc,ǫ/wc] π(B)x
c
/xw

c
/w.

Finally, (iv) iff M |=f,g ∀x
c∀wc[[Cxcx∧Cwcw ∧Cohxcwc] → π(B)x

c
/xw

c
/w],

i.e., iff M |=f,g π(A).

If A is [@]B, then M′ |=h,w,w′ A iff

(i) M′ |=h,w′,w′ B.

By the hypothesis of induction, (i) iff

(ii) M |=f,g π(B), where 〈h,w′,w′, f, g〉 ∈ Π.

But then f = g. So, finally, (ii) iff M |=g,g π(B), and this iff M |=f,g π([@]B).

If A is ∀xB, then π(A) is ∀x[Cohxw → π(B). Now, M′ |=h,w,w′ A iff for all
d ∈ D, M′ |=h[d/x],w,w′ B. By the hypothesis of induction, this iff

(i) for all d ∈ D, M |=fd,gd π(B), where 〈h[d/x],w,w′, x, fd, gd〉 ∈ Π.

Let 〈h,w,w′, f, g〉 ∈ Π. Then f[〈w, d〉/x] and fd agree on all variables occurring
free in π(B), and g[〈w

′, d〉/x] and gd agree on all variables occurring free in π(B).
In particular, gd(x) = 〈w′, d〉. So (i) iff

(ii) for all d ∈ D, M |=f[〈w,d〉/x],g[〈w′,d〉/x] π(B).

Now, (ii) iff

(iii) for all δ ∈ W× D such that r(δ) = w, M |=f [δ/x],g[C(δ)/x] π(B).
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And (iii) amounts to this: for all δ such that r(δ) = 〈w, d0〉,
M |=f[δ/x],g[C(δ)/x] π(B).

So (iii) iff

(iv) for all δ ∈ W ×D, M |=f [δ/x],g[C(δ)/x] Cohxw → π(B).

By Clause (3) of Definition 27, and using Clause (3.1) of Definition 18, (iv) iff
M |=f,g π(A).

This concludes the induction, and the proof of Theorem 8.

It follows from this result that if π(A) is valid in L
WLC

Coh∀@, then A is valid in the first-order
normal modal logic T (the normal modal logic with axiom �A → A) supplemented with an
actuality operator.

Theorem 9. If π(A) is valid in L
WLC

Coh∀@, then A is valid on reflexive frames for L�@∀, for all
formulas A of L�@∀.

Proof. Suppose that a model M of L�@∀ on a reflexive frame fails to satisfy
A. Then the corresponding model M′ constructed according to the proof of
Theorem 8 fails to satisfy π(A) in L

WLC

Coh∀@, and if 〈h,w,w′〉 is modally initial and
〈h,w,w′, f, g〉 ∈ Π, then 〈f, g〉 is counterpart initial.

In the other direction, we construct a model of L�@∀ from a simple model of LWLC

Coh∀@.

Definition 32. Two-dimensional first-order modal model corresponding a simple two-
dimensional counterpart model with base world w′.

Let M be a simple model of L
WLC

Coh∀@ on a two-dimensional counterpart frame F =
〈D, C, r,C, @, d′〉, with counterpart function Ctrprt. The two-dimensional first-order
modal model ′ corresponding to M and its Kripke frame 〈W′,R′,D′〉 is defined as follows.

(1) W′ is r(D);
(2) Where w, u ∈ W′, 〈w, u〉 ∈ R′ iff 〈u,w〉 ∈ C;
(3) D′ is the set {d / r(d) = @};

Finally, where P is an n-place predicate of L�@∀ and d1, . . . , dn ∈ D′, let 〈d1, . . . , dn,w〉 ∈
M′

P iff 〈Ctrprt(d1,w), . . . ,Ctrprt(dn,w),w〉 ∈ MP .

Definition 33. Satisfaction parameters h, w, w′, corresponding to the variable assignment
pair 〈f, g〉.

Let M and M′ be as in Definition 32, and let 〈f, g〉 be a variable assignment pair on M.
Then 〈f, g, h,w,w′〉 ∈ Π′ iff w′ = d′ = @, f is local on w, g is local on w′, and for all plain
variables x, g(x) = C(f(x)) and h(x) = Ctrprt(f(x), @).

Remark 7. If 〈f, g, h,w,w′〉 ∈ Π′ then 〈f, g〉 is local on w and w′, f(x) = Ctrprt(h(x),w),
and g(x) = Ctrprt(h(x),w′).

Theorem 10. Let M be a simple two-dimensional model of LWLC

Coh∀@ on a two-dimensional
counterpart frame F = 〈D, C, r,C, @, d′〉 with counterpart function Ctrprt, and let M′ be
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the two-dimensional first-order modal model corresponding to M′, as in Definition 32. We
then have the following correspondence between the two models:

For all formulas A of L�@∀, if 〈f, g, h,w,w
′〉 ∈ Π′, then M′ |=h,w,w′ A iff

M |=f,g A.

Proof. We induce on the complexity of formulas A of L�@∀, confining ourselves
(except for identities) to A containing only one free variable, x. Again, the general
case doesn’t differ importantly from this special case.

If A is a propositional atom Px, then π(Px) = Pxw. M′ |=h,w,w′ A iff 〈h(x),w〉 ∈
M′

P . And this iff 〈Ctrprt(h(x),w)),w〉 ∈ MP . This iff 〈f(x),w〉 ∈ MP , and,
finally, this iff M |=f,g Pxw.

If A is x = y, then π(Px) is x = y. M′ |=h,w,w′ A iff h(x) = h(y). This iff
Ctrprt(h(x),w) = Ctrprt(h(y),w). This iff f(x) = f(y), and this iff
M |=f,g x=y.

If A is �B, then M′ |=h,w,w′ A iff M′ |=f,u,w′ B for all u such that 〈w, u〉 ∈ R′. By
the hypothesis of induction, this iff

(i) for all u such that 〈w, u〉 ∈ R′, M |=fu,gu π(B), where 〈fu, gu, h, u,w′〉 ∈ Π′.

Let 〈f, g, h, u,w′〉 ∈ Π′. Now, f(x) = Ctrprt(h(x),w), f(w) = w, fu(x) =
Ctrprt(h(x), u), and fu(w) = u. Also, gu(y) = Ctrprt(h(y),w′) for all plain
variables y. So fu and f[Ctrprt(h(x), u)/x, u/w] agree on all variables occurring free
in π(B), and gu and g agree on on all variables occurring free in π(B).

Therefore, (i) iff
(ii) for all u such that 〈w, u〉 ∈ R′, M |=f[Ctrprt(f(x),u)/x,u/w],g π(B).

Now, (ii) iff
(iii) for all d, u ∈ D, if M |=f[d/xc,u/wc],g Cx

cx∧Cwcw ∧Cohxcwc then

M |=f[d/xc,u/wc] π(B)x
c
/xw

c
/w.
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And this iff M |=f,g ∀x
c∀wc[[Cxcx∧Cwcw ∧Cohxcwc] → π(B)x

c
/xw

c
/w],

i.e., iff M |=h,g π(�B).

If A is ∀xB, π(A) is ∀x[Cohxw → π(B)].
Now, M′ |=h,w,w′ A iff for all d ∈ D′, M′ |=h[d/x],w,w′ B. By the hypothesis of
induction, this iff

(i) for all d ∈ D′, M |=fd,gd π(B), where 〈fd, gd, h[d/x],w,w′〉 ∈ Π′.

Let 〈f, g, h,w,w′〉 ∈ Π′. Then fd[Ctrprt(d,w)/x] and fd agree on w and x, the only
free variables occurring in π(B). And gd[Ctrprt(d,w)/x] and gd also agree on the
variables w and x.
Therefore, (i) iff

(ii) for all d ∈ D′, M |=f[Ctrprt(d,w)/x],g[Ctrprt(d,w)/x] π(B).
Finally, (ii) iff M |=f,g ∀x[Cohxw → π(B)], i.e. iff M |=f,g π(∀xB).

If A is [@]B, then M′ |=h,w,w′ (A) iff M′ |=h,w′w′ B. By the hypothesis of induction,
this iff M |=f,g π(B), where 〈f, g, h,w′,w′〉 ∈ Π′. But then f = g, so this iff
M |=g,g π(B). Finally, this iff M |=f,g π([@]B).

This completes the induction, and the proof of the theorem.

Theorem 11. If a formula A of L�@∀ is valid on reflexive frames, then π(A) is valid in
simple models of LWLC

Coh∀@.

Proof. Suppose that a simple model M of LWLC

Coh∀@ fails to satisfy π(A). Then the
corresponding model M′ of L�@ constructed according to the proof of Theorem 10
fails to satisfy A. And if 〈f, g〉 is counterpart initial and 〈f, g, h,w′,w′〉 ∈ Π′ then
〈h,w,w′〉 is modally initial (i.e., w = w′).

Finally, putting together Theorems 9 and 11, we have the equivalence of validity in
simple models of two-dimensional counterpart theory and validity over reflexive frames in
first-order two-dimensional modal logic.

Theorem 12. Validity in L�@ on reflexive frames coincides with validity in L
WLC

Coh∀@, with
respect to the translation π.

Taken together, these results provide general support for the claim that if counterpart
theory with actuality is properly constructed, the actuality operator itself does not produce
any anomalous or unintuitive patterns of validity when effects due to counterpart theory
itself are eliminated.

6.3. A list of allegedly problematic examples

Beyond the assurance provided by Theorem 12, we can, of course, look at the examples that
have been presented in published attempts to arguments that counterpart theory cannot
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provide an adequate account of actuality. The following four formulas are taken from [Fara
and Williamson, 2005].

1. P x∧¬[@]P x.

This formula appears literally in L
FOL
2D@ as P x∧¬[@]P x, which, as expected, is not

satisfiable.

2. ♦∃x[[@]F x ↔ [@]¬F x].

The translation of this example into counterpart theory is

∃wc[Cwcw ∧∃x[Cohxw ∧ [@]F xwc ↔ [@]¬F xwc]].

This formula is not satisfiable in L
FOL
2D@—which seems to be the desired result.

3. x=y ∧ [@]¬x=y.

This formula is rendered literally in L
FOL
2D@ without any changes. It is not satisfiable,

which again is the desired result.

4. ♦∃x[[@]F x∧ [@]¬F x].

Again, we need to add an extra variable to the translation to get a sensible result. The
translation of this into L

FOL
2D@ is then

∃wc[Cwcw ∧ ∃x[[@]F xwc
∧ [@]¬F xwc]].

This formula is not satisfiable.

We know of no other counterexamples mentioned in the literature that differ signifi-
cantly from these.

7. Conclusion

We have avoided metaphysical and foundational issues in this paper, concentrating on purely
logical shortcomings that have been alleged to attach to counterpart theory. We have tried
to show that the challenge of adding a plausible actuality operator to counterpart-based
modality has nothing to do with flaws in Lewis’ approach to modality, but originates in
the fact that ordinary first-order quantifiers forget their previous values—values that need
to be retrievable in order to provide an adequate theory of actuality. And we have shown
how adding a very limited memory mechanism to the underlying first-order logic allows a
plausible theory of actuality to be developed within counterpart theory.

We do not intend these results to settle debate about the value of counterpart theory.
The merits and plausibility of the theory remain at issue. But we hope to have shown
convincingly that productive debate on these issues should concentrate on metaphysical
issues having to do with individuation and the interpretation of the quantifiers, rather than
on alleged logical defects of counterpart theory.
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