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Abstract—The breakdown point of signal subspace methods,
which is the SNR below which the algorithm’s performance
deteriorates dramatically, is intimately related to the breakdown
point of PCA based signal subspace estimation. We shed new light
on this breakdown point for a broad class of signal-plus-noise
models, provide a transparent derivation that highlights its origin
and verify the accuracy of the high-dimensional predictions with
numerical simulations for a moderately sized system.

I. INTRODUCTION

The breakdown in performance of signal subspace methods
due to low SNR has been well-documented in the signal
processing literature (see e.g. [1], [2], [3]). Advances in
random matrix theory [4] have deepened the understanding
of the connection between the deterioration in performance of
subspace based algorithms and the breakdown in the principal
component signal subspace estimates at low SNR in high
dimensional settings. This paper extends this line of inquiry
by providing 1) a succinct, closed-form expression via the T -
transform of the noise-eigenspectrum for the breakdown point
for a broader class of models that goes well beyond the Wishart
models considered in [5], [6], [7] (see Section III) and 2)
presents the simplest derivation yet that brings into sharp focus
the mechanism that induces this phenomenon (see Section IV).
Applications and extensions are discussed in Section V.

II. A GENERAL SAMPLE COVARIANCE MATRIX MODEL

Consider the standard model for the snapshot vectors:

yi = Asi + zi for i = 1, . . . ,m. (1)

In the setting where the n× r matrix A has full column rank
and we the model the r � n dimensional signal vector si
and the n dimensional noise-only vector zi as mutually inde-
pendent and i.i.d. Gaussian with mean zero and covariance, Ψ
and In , respectively, the snapshot vector yi ∼ N (0, Pn + In)
where Pn = AΨA is the rank-r signal covariance matrix.

The additivity of the Gaussian signal and noise im-
plies that the signal-plus-noise sample covariance matrix
Sn = 1/m

∑
i yiy

′
i can be decomposed as Sn = (Pn +

In)1/2Xn(Pn + In)1/2 where Xn = 1/m
∑m
i=1 xix

′
i with

i.i.d. xi ∼ N (0, In) can be thought of as the noise-only
random sample covariance matrix. Since xi, thus defined, is a
spherically symmetric Gaussian random vector, it is invariant
under distribution to unitary (or orthogonal) transformations
and so will1 the matrix Xn.

1In other words, the joint probability distribution f(Xn) = f(Q′XnQ)
for arbitrary orthogonal or unitary matrix Q.

A. The model & assumptions

The preceding argument shows that a Wishart distributed
sample covariance matrix (SCM) Sn = 1/m

∑
i yiy

′
i formed

assuming the generative model for the snapshots yi as in (1)
can be represented as

Sn = (Pn + In)1/2Xn(Pn + In)1/2 (2)

where the signal covariance matrix Pn has low rank r.
This motivates our general model for the signal-plus-noise

SCM in (2) with the assumptions:
• Xn is some unitarily invariant noise-only random matrix
• Pn =

∑r
i=1 σiuiu

′
i is the “signal” covariance matrix with

“signal” eigenvalues {σi} and eigenvectors {ui}
The unitarily invariant noise assumption is common in the

literature (see [8]) and constitutes a natural class of models
wherever PCA based signal subspace estimation is justified.
This setup has the advantage that it allows us to treat the
SCM in (2) as a noisy, matrix-valued signal in and of itself
and examine the statistical properties of its eigen-structure
independent of any explicit or implicit generative model such
as (1) for the snapshots used to form the SCM.

Additionally we make two assumptions on the statistics of
the eigen-spectrum of Xn: 1) that the empirical distribution
µXn

of the eigenvalues {λj(Xn)} of Xn, defined as the
probability measure:

µXn
=

1
n

n∑

j=1

δλj(Xn),

converges almost surely weakly, as n→∞ to a non-random,
compactly supported probability measure µX and 2) that the
largest (resp. smallest) eigenvalue of Xn converges almost
surely to b (resp. a). These are also the supremum (resp.
infimum) of the support of µX .

Recall that the signal subspace estimate formed from the
SCM Sn is the span of the r eigenvectors {ũi} corresponding
to the r (assuming r is known) largest eigenvalues {λi(Sn)}
of Sn.

We now provide a precise and succinct characterization,
summarized in Figure 1, of the biases and breakdown point of
subspace estimation - this is the point at which the sample
“signal” eigenvalues and eigenvectors are “noise-like”. In
stating the results, it will initially prove to be more convenient
to analyze the matrix S̃n = Xn(In + Pn) instead which is
closely related to Sn.
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(a) When σ > σBREAK. := 1/TµX (b+)
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(b) When σ ≤ σBREAK. := 1/TµX (b+)

Fig. 1. (left panel) The signal subspace/eigenvector estimate ũ is biased relative to the true eigenvector u with the magnitude of the bias given by Theorem
3.2 that is entirely characterized by the T -transform of noise eigen-spectrum µX and its largest eigenvalue b . (right panel) When the signal eigenvalue is
below the breakdown point σBREAK., the signal eigenvectors are “noise-like”.

III. CHARACTERIZING THE BREAKDOWN POINT

Theorem 3.1 (Eigenvalue bias and breakdown): The “sig-
nal” eigenvalues of S̃n exhibit the following behavior as
n −→∞. We have that for each i = 1, . . . , r

λi(S̃n) a.s.−→

{
T−1
µX

(1/σi) if σi > 1/TµX
(b+) = σBREAK.,

b otherwise,

where the T -transform of µX is given by

TµX
(z) =

∫
t

z − t
dµX(t) for z /∈ suppµX ,

and a.s.−→ denotes almost sure convergence.

Theorem 3.2 (Bias in sample eigenvectors): Consider in-
dices i0 ∈ {1, . . . , r} such that 1/σi0 ∈ (TµX

(a−), TµX
(b+)).

For each n, let ṽi be a unit norm eigenvector of S̃n associated
with the eigenvalue λi(S̃n). Then we have
a)

|〈ṽi, ker(σi0In − Pn)〉|2 a.s.−→ −1
σ2
i0
ρT ′µX

(ρ) + σi0
,

where ρ = T−1
µX

(1/σi0) is the limit of λi(S̃n);
b)

|〈ṽi,⊕j 6=i0 ker(σjIn − Pn)〉| a.s.−→ 0,

as n −→∞, where ker is the kernel or nullspace.
Theorem 3.3 (Breakdown of sample eigenvectors): When

r = 1, let the sole non-zero eigenvalue of Pn be denoted by
σ. Suppose that

1
σ
/∈ (TµX

(a−), TµX
(b+)),

and
T ′µX

(b+) = −∞
Then, we have

|〈ṽi, range(Pn)〉| a.s.−→ 0

as n −→∞.

Under additional natural conditions (omitted here for brevity
- see [9]), Theorem 3.3 holds for general r ≥ 1.

A. Extension to Sample Covariance Matrix Form

Recall that we were interested in the sample covariance
matrix Sn = (In + Pn)1/2Xn(In + Pn)1/2 which is related
to S̃n = Xn(In + Pn) by a similarity transformation so that
they share the same eigenvalues and consequently the same
breakdown point as in Theorem 3.1.

Additionally, if ũi is an eigenvector of Sn associated with
λi(Sn) and when 1/σi0 < TµX

(b+), we have:

|〈ũi, ker(σi0In − Pn)〉|2 a.s.−→ − σi0 + 1
σi0T

′
µX

(ρ)

and
|〈ũi,⊕j 6=i0 ker(σjIn − Pn)〉| a.s.−→ 0.

The results hold for general r ≥ 1 under additional natural
conditions that have been omitted here for brevity [9].

B. Connection with Free Probability Theory

The T -transform of the noise eigen-spectrum plays in im-
portant role in Theorems 3.1-3.3 in determining the breakdown
point and the biases of signal subspace estimation. The S-
transform defined as

Sµ(z) :=
1 + z

z

1
T−1
µ (z)

, (3)

is closely related and is the analogue of the Mellin transform2

in free probability theory [10] in the sense described next.
The operation free multiplicative convolution �, is defined

as the binary operation on the set of probability measures
on [0,+∞). Given two independent, unitarily invariant ran-
dom matrices An, Bn, with empirical eigenvalue distributions
µAn

a.s.−→ µA and µBn

a.s.−→ µB , the empirical eigenvalue
distribution of their product µAnBn

a.s.−→ µA � µB will be
characterized by the fact that SµA�µB

= SµA
SµB

.
This connection between free multiplicative convolution and

T−1
µ , via the S-transform, is what makes its manifestation in

Theorem 3.1 natural since we were investigating a signal-plus-
noise random matrix of the form S̃n = Xn(In + Pn).

2Recall that the Mellin transform of the product of two independent, scalar
valued random variables is the product of the respective Mellin transforms.
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(b) When σ ≤ σBREAK. := 1/TµX (b+).

Fig. 2. Relating the biases and breakdown in signal subspace estimates to the signal eigenvalue σ and the T -transform of the noise-eigenspectrum µX .

IV. A SIMPLE DERIVATION OF THE BREAKDOWN POINT

Consider the setting where r = 1, so that P = σ uuH ,
with u being a fixed, unit norm column vector. Since X is
assumed to be invariant, in law, under unitary conjugation,
the eigendecomposition of X = Qdiag(λ1, . . . , λn)QH =
QΛQH will produce isotropically random eigenvectors Q.

A. Largest Eigenvalue Phase Transition

For any z ∈ C such that z is not an eigenvalue of X , we
have

z −X(I + P ) = (z −X)× (I − (z −X)−1XP ),

so that z is an eigenvalue of S̃ = X(I+P ) if and only if 1 is
an eigenvalue of (z−X)−1XP . But (z−X)−1XP = Q(z−
Λ)−1ΛQHσ uuH has rank one, so its only non-zero eigenvalue
will equal its trace, which in turn is equal to σTµn

(z), where
µn is a “weighted” spectral measure of X , defined by

µn =
n∑

k=1

|wk|2δλk
, (4)

where the wk’s are the coordinates of w = QHu. Thus any z
out of the spectrum of X is an eigenvalue of S̃ = X(I + P )
if and only if

n∑

k=1

|wk|2

z − λk
=: Tµn(z) =

1
σ
. (5)

Equation (5) describes the relationship between the eigenval-
ues of X(I+P ) and the eigenvalues of X and the dependence
on the coordinates of the vector w = QHu (via the measure
µn).

This is where randomization simplifies analysis. Since Q
is isotropically random, the vector w = QHu is a random
vector with uniform distribution on the unit n-sphere. Hence,
we have that for large n, |wk|2 ≈ 1

n with high probability.
Consequently, we have µn ≈ µX so that Tµn

(z) ≈ TµX
(z).

Inverting equation (5) after substituting these approximations
yields the location of the largest “signal” eigenvalue to be
T−1
µX

(1/σ) as in Theorem 3.1 and Figure 2-(a).
The breakdown point exists because under our assump-

tion that the limiting probability measure µX is compactly
supported on [a, b], the T -transform TµX

is defined outside
[a, b] and unlike what happens for Tµn , we do not always

have TµX
(b+) = +∞. Consequently, when 1/σ < TµX

(b+),
we have that λ1(S̃) ≈ T−1

µX
(1/σ) as before. However, when

1/σ ≥ TµX
(b+) then the phase transition manifests and

λ1(S̃) ≈ λ1(X) = b, as in Figure 2-(b).

B. Eigenvectors Phase Transition

Let ṽ be a unit eigenvector of S̃ = X(I + P ) associated
with the eigenvalue z that satisfies (5). From the relationship
(X +XP )ṽ = zv, we deduce that, for P = σ uuH ,

(zI −X)ṽ = XPṽ = σXuuHv = (σuH ṽ)Xu,

where the last equality follows because uHx is a scalar thereby
implying that ṽ is proportional to (zI−X)−1Xu. Since ṽ has
norm one, we have

ṽ =
(zI −X)−1Xu√
uHX(zI −X)−2Xu

(6)

and

|〈ṽ, u〉|2 =
(uH(zI −X)−1Xu)2

uH(zI −X)−2u
(7)

=
wH(zI − Λ)−1Λw
wHΛ(zI − Λ)−2Λw

(8)

Equation (8) describes the relationship between the eigenvec-
tors of S̃ = X(I + P ) and the eigenvalues of X and the
dependence on the coordinates of the vector w = QHu

Here too, randomization simplifies analysis since for large
n, we have µn ≈ µX and so that when 1/σ < TµX

(b+),
which implies that ρ = T−1

µX
(1/σ) > b, we have

|〈v, u〉|2 a.s.−→ −1
σ2ρT ′µX

(ρ) + σ
,

whereas when 1/σ ≥ TµX
(b+) and TµX

has infinite derivative
at b, we have

〈v, u〉2 a.s.−→ 0.

An extension of these arguments for r > 1 yields the
general result. We rely on concentration inequalities to make
the arguments rigorous [9].



Fig. 3. A heat map of the empirical root mean squared error (RMSE) of the
signal subspace MUSIC direction-of-arrival (DOA) algorithm [14] in degrees
versus c = number of sensors to number of signal-plus-noise snapshots
phase space illustrating the performance breakdown and the accuracy of the
theoretical predicted solid black line. In this example, we chose a uniform
line array with half-wavelength spacing, number of sensors n = 250,
with N = n/c i.i.d. normally distributed snapshots and signal-plus-noise
covariance I+P = diag(σ1 = 1+SNR, 1, . . . , 1). We placed one source at
broadside and searched over a ±3.5 degree window. The RMSE was averaged
over 1000 Monte-Carlo trials and a grid of 100 equally spaced points in the
-10 dB to 15 dB (eigen) SNR range and 100 equally spaced points in the
c space. The values of the colormap at each of the 100 × 100 faces were
interpolated across each line segment and face to obtain the above plot.

V. APPLICATIONS AND EXTENSIONS

In Section III, we provided a succinct, closed-form ex-
pression for the breakdown point in high-dimensions for a
general class of signal-plus-noise models. The signal-plus-
noise models were characterized by the fact that the noise-
only component had isotropically random eigenvectors. This
is a very natural assumption in settings where the use of signal
subspace methods (or PCA) is appropriate.

This assumption allows us to treat the sample covariance
matrix as a noisy, matrix-valued signal in and of itself and
examine the statistical properties of its eigen-structure inde-
pendent of any explicit or implicit generative model for the
snapshots used to form the sample covariance matrix. Conse-
quently, our results are very general and go well beyond the
Wishart matrix-based generative models previously considered
in the literature [5], [6], [7], [11], [12], [13].

Moreover, since the breakdown point (see Theorem 3.1) is
entirely characterized by the T -transform of the noise eigen-
distribution, kernel based noise eigen-distribution estimation
methods can be used to predict the subspace breakdown points
from data. In [9] we extend this to other signal-plus-noise
models. Figure 3 illustrates the agreement between the theo-
retical predictions in high-dimensions (expression omitted for
brevity) and numerical simulations for moderate dimensions
for the MUSIC DOA algorithm in the Wishart setting that has
also been considered in [3].

VI. CONCLUSION

In this paper, we used random matrix theory [9] to predict
the breakdown point for PCA-based signal subspace estimation
methods for a broad, natural class of signal-plus-noise models.
The utility of the asymptotic predictions for moderate system
performance breakdown analysis was demonstrated in Figure
3 for the MUSIC DOA algorithm. The generality of the
results presented provides a principled common basis for
evaluating the performance of various signal subspace-based
algorithms and facilitates the comparison of subspace-based
versus alternative algorithms in the weak signal regime.

In that regard, this work represents the signal subspace
breakdown counterpart to the sparse approximation breakdown
work of Donoho and Tanner [15]. In contrast to [15], an
important feature of the signal subspace breakdown point is
its non-universality, i.e., the explicit dependence on the noise-
only eigen-spectrum via its T -transform (see Theorem 3.1).
The emergence of the T -transform as a predictive statistic
emerges from the intimate connection with (non-commutative)
free probability theory as discussed in Section III-B.
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