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What are Screening Trials?

Evaluate large number of agents to identify
promising ones for further study.

Typically agents are potential medical therapies, but
approach also applies to non-medical applications.

Each agent tested independently of all others.

Want average trial to be inexpensive, accurate.
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Assume screening test (pilot study) has binary response,
each agent has an unknown success parameter � .

Given cut-point
� � �����	��


, an agent is positive if � � �
.

Use a Bayesian approach: assume prior distribution on � .
Beta priors are used in our examples and were used in
related work by others, but techniques apply to any priors.
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Previous Work

We focus on the work in three papers:

1. Yao, Begg, Livingston (1996, Biometrics)

2. Yao and Venkatraman (1998, Biometrics)

3. Wang and Leung (1998, Biometrics)

These researchers concentrated on designs optimized for
fixed type I and type II error rates: F 
 and F �
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1-Stage

Yao, Begg, Livingston (1996): given fixed F 
 and modified
F � (discussed later), determine fixed (1-stage) agent
sample size that minimizes total sample size until first
promising agent identified.

� Historical data showed that sample sizes used in
practice were far too small.

� They noted benefit of early stopping (curtailment).
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2-Stage

Yao and Venkatraman (1998): same constraints and goal,
but for 2-stage design. 2nd stage size fixed, but may be
omitted (truncation or optional stopping).

� Expected agent and total sample sizes significantly
smaller than 1-stage design of Yao, Begg, Livingston.
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Fully Sequential ( � stage)

Wang and Leung (1998): minimize total sample size until
first promising agent identified, for fully sequential design
with optional stopping.

� Expected total sample size minimal, but time maximal.

� Use costs of type I, II errors, not fixed error rates.
However, these are not intended to represent true
costs, but rather to act like Lagrangian multipliers.

� Optimize total cost = error cost + sample size.

� Unlike the relatively straightforward calculations need
for the previous work, here they employ a complex and
slow iterative approach, much like a Gittins index
calculation.
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Our Approach

Optimize a cost-based model that is realistic, very flexible,
and computationally feasible.

Decision-theoretic approach incorporating

� Trial constraints, such as

– maximum observations per stage

– maximum number of stages

– maximum number of observations

� Trial costs, such as

– setup cost per stage

– cost per observation

– cost per failure

� Decision costs, i.e., costs of false positive, false
negative decisions. May increase with distance from
cut-point.
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Goal

Minimize expected total cost per agent

I.e., obeying the trial constraints, minimize the sum of the
trial and decision costs.

Note that screening designs are used internally to make
proceed/stop decisions, rather than for convincing
regulatory agencies that a therapy is efficacious. Thus cost
analysis more natural than test of hypotheses.

Computational technique: Dynamic programming.
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Example Design

Given prior, cost structure, constraints, trial might be:
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Multistage design. Variable stage sizes,
Variable number stages

Structure determined by costs and constraints, not by fixing
F � and F � in advance.

Each step determined by prior and observations.

Optional stopping (truncation) is designed in.
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Cost-based approach explicitly incorporates relevant
factors.

Previously, one specified false positive and negative rates
(F 
 and F � ), trying to take into account the costs of such
mistakes versus costs of the screening tests. Typically just
a rough guess, especially since cost of screening trial not
known.

Making tradeoffs more explicit, and directly optimizing
them, improves the decision-making process and quality of
the results.
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Illustrative Results

� Trial: Unit cost per item, no setup cost per stage.

� Decision: Cut-point = 0.7, FNC (false negative cost) =
FPC (false positive cost), use 500, 1000, 2000, 4000.
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Some Bayesian Operating Characteristics

FPC = FNC = 1000
sample

stages cost size F 
 F �
1 95 29 0.110 0.047

2 76 29 0.075 0.036
3 69 28 0.064 0.031

� 58 26 0.051 0.025

FPC = FNC = 4000
sample

stages cost size F 
 F �
1 242 79 0.068 0.029
2 178 69 0.045 0.020

3 157 66 0.037 0.017
� 125 56 0.028 0.013
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Comparison of 2-Stage Designs

Yao and Venkatraman 2-stage design versus our optimal
2-stage design.

Their requirements:

� False positive rate F 
 � 0.1

� Prob false negative on any agent until promising agent
found � 0.1.

This is not the same as setting F � value: if k agents
examined until promising agent found, then need�
1-F ����� � 0.9.

We artificially manipulated error costs to achieve their
goals.

The Yao and Venkatraman design fixes the size of the
second stage, while our design allows it to depend on the
outcome of the first stage.
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Cut- Beta Opt Y & V Y & V
point Mean E(N) E(N) Excess

0.3 0.2 28.70 35.00 22%
0.3 0.3 24.20 32.80 36%
0.3 0.4 13.46 18.30 36%
0.3 0.5 7.10 7.90 11%
0.6 0.2 65.93 77.10 17%
0.6 0.3 96.35 100.60 4%
0.6 0.4 70.62 81.50 15%
0.6 0.5 37.74 44.50 18%

Prior is Beta with given Mean and Variance = 0.08
(their choices)
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Optimization Technique

Optimal design obtained via dynamic programming,
working from end of trial towards beginning. All
optimization is exact.

For all possible (sample size, successes observed)
endings, determine expected false positive and false
negative costs. The terminal decision is the one with least
cost.

At each intermediate stage, for each (sample size,
successes) pair try all options satisfying the constraints,
determine which optimizes costs from there to end. This
uses costs and decisions computed for the next stage.
Note that one option is to stop.

Bayesian framework is critical, allowing one to compute
probabilities of outcomes and hence expected cost.

Program efficient, no need for slower iterative computation
used by Wang and Leung.
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Evaluating Designs

The designs are optimized with respect to given priors, and
the operating characteristics shown so far have been
determined with respect to these priors.

Some additional evaluations one may desire

� Bayesian: robustness against misspecification of priors

� Frequentist: pointwise determination of costs and F 
 ,
F � rates.

Exact evaluations are provided for all examples shown,
using path induction (Hardwick & Stout 1999).

A wide range of other exact evaluations can be easily
performed.
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Example Bayesian Robustness Evaluation

Suppose have

� Trial: unit cost per observation, � 2 stages

� Decision: FPC = FNC = 1000, cut-point = 0.7

Design Prior Be(1,1)

sample
cost size F 
 F �

76 28.7 0.076 0.036

Evaluation Prior Be(3,3)
94 31.9 0.199 0.034

Design Prior Be(3,3)
90 30.4 0.145 0.045

Evaluation Prior Be(1,1)
79 33.2 0.051 0.049
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Example Pointwise Operating Characteristics
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Reexamining Error Costs

Typically cutoff indicates value where it is expected to be
worthwhile to continue.

However, agents below but near cutoff might have payoff if
continued, while agents above but near are less likely to
have large payoff. I.e.,

Costs of false positives and false negatives for
agents near the cutoff are less than for those far
from the cutoff.

Despite this, all previous work, including our examples
above, uses step-function costs.
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Example Continuous Cost Function

Replace step-function costs with
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Comments

A unified approach to optimizing true costs, given trial
constraints.

� There are a variety of costs and constraints for
conducting a trial.

� Decision costs need not merely correspond to type I,
type II error probabilities, e.g., distance from cutoff may
be significant.

� Our 2-stage design superior to Yao and Venkatraman
design, even using their objectives, because our 2nd
stage size can depend upon outcome of 1st stage.

� More generally, this approach yields designs with
significantly reduced costs because trial structure not
artificially restricted.

� 2-stage designs significantly better than 1-stage, and
fully sequential better still.

� We provide optimal designs and wide range of exact
evaluations.
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� Prior researchers noted usefulness of curtailment (early
stopping) if responses have variable delays. A program
is being developed to optimize designs for such
situations.

� In other work, we’ve incorporated some costs and
experimental constraints into clinical trial designs.

� Cost and constraint model may be appropriate for other
experimental situations. We are interested in learning
about these, as well as general adaptive situations.
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