
Ultrafast Graph Algorithms

on Reconfigurable Meshes

(Extended Abstract)

Douglas M. Van Wieren Quentin F. Stout

Computer Science and Engineering

University of Michigan

Ann Arbor, MI 48109

dvw@umich.edu qstout@umich.edu

Abstract

We present a selection of related algorithms which run in Θ(log⋆(n)) expected time
for random graphs on the modestly reconfigurable architecture known as the Mesh
with Row and Column Subbuses (RCS-Mesh). Notably, this base model has been
implemented as part of the communication architecture of the MasPar MP series [17];
in addition, algorithms for RCS-Mesh can be directly implemented on the more powerful
(and more widely studied) Reconfigurable Mesh (RMesh).

Specifically, we show that the n × n RCS-Mesh can find and mark a Hamiltonian
cycle (or determine that none exists) in a random graph Gn,p on n vertices (p is the
probability of an edge existing between any two given vertices) in Θ(log⋆(n)) expected
time. Moreover, with only additional constant time the RCS-Mesh is capable of labeling
the vertices in the order in which they appear in the Hamiltonian cycle.

Our approach hinges on an algorithm with the same time bounds for performing bi-
partite semi-matching—given a random bipartite graph with constraints on the relative
sizes of the partitions, the algorithm finds a set of edges which map the smaller partition
injectively into the larger. This algorithm forms the basis of a log⋆ paradigm for the
RCS-mesh and can be applied to problems outside the consideration of this paper.

Beyond the immediate implications such as exact matchings and depth-first search
trees, our approach to the Hamiltonian cycle problem can be ported simply to other ar-
chitectures and allows unusual generalizations. In particular, our method allows proba-
bilistic location of regular structures of bounded degree in a random graph in Θ(log⋆(n))
expected time, with probability of failure bounded above by rn for some r ∈ (0, 1). Ex-
amples of this include finding tori and complete binary trees.

We also show that RCS-Mesh can determine, in Θ(1) expected time, if a random
graph is strongly nǫ-connected, where ǫ is an arbitrary constant less than one.

Keywords: Mesh with Subbuses, Hamiltonian cycles, NP-Completeness,
Random Graphs, Average Case Analysis

1

1 Introduction

This paper shows that a variety of difficult problems on random graphs can be solved very rapidly
using the modest reconfigurable bus structure of the RCS-mesh. The RCS-Mesh is an n× n mesh
with a unique, partitionable bus for each row and column. Comparatively, the stronger RMesh
model is an n × n mesh with bus segments between adjacent processors and arbitrarily complex
connections between the segments are allowed. Since we may impose the additional restriction on
our base model that both row and column bus operations may not occur within the same time
step, even the variation of the RMesh model which does not allow crossover connections can utilize
algorithms for the RCS-Mesh directly. In fact, unlike many models of parallel computation, the
RCS-Mesh model has been, in effect, implemented as part of the MasPar MP series [17].

Further, the CRCW PRAM with n2 processors and priority-write protocol can also trivially
simulate the RCS-Mesh with constant time overhead, implying that any complexity lower bound
for either the RMesh or the relevant PRAM model must also apply to the RCS-Mesh.

The RCS-Mesh is a very natural architecture for the study of graph problems. In [24], the
authors have shown that a variety of problems — breadth-first search, k-connectivity, and small
subgraph isomorphism — have simple, direct solutions for random graphs on the RCS-Mesh. Much
of the simplicity is owed to the natural representation of a graph on an n×nmesh, where each vertex
vi is represented by the ith processor on the diagonal and each directed-edge (vi, vj) is represented
by the processor in the ith row and jth column. For each vertex vi, the ith column contains all the
information relating to the in-edges of vi; the ith row, all the information relating to the out-edges.
We refer to this representation of input as having the graph stored in the natural manner, and we
may refer to processors in the mesh arrangement by the corresponding graph element.

To define our other input assumption, let n be a positive integer and 0 < p < 1 be a real constant.
The random graph on n vertices, Gn,p, is a random object, where, for each distinct pair of vertices,
v1 and v2, the edge (v1, v2) exists with independent probability p (the parameter p is referred to
as the edge probability and is treated as part of the problem definition or, equivalently, as input).
Modifications of this definition will produce random bipartite graphs, random directed graphs, and
semi-random graphs (the probability of an edge existing is at least p). Thus, given a particular graph
problem, the corresponding random graph problem provides a well-defined probabilistic input.

Within this context, we describe a routine forming the basis of log⋆ paradigm for this archi-
tecture. A related paradigm exists for the CRCW PRAM with n processors [20]. For PRAM
problems involving only n processors and Θ(n) memory cells, stepwise simulation of the PRAM
log⋆ paradigm by an n×n RCS-Mesh would yield the same time bounds. However, if n processors
and ω(n) memory are involved then the RCS-Mesh may require significantly more time even if it
can simulate the memory cells one per processor, because simulating the PRAM may force the
RCS-Mesh to try to move m values from a

√
m × √

m subsquare, which will take Θ(
√
m) time.

Thus real-time simulation of the Θ(log⋆(n)) expected time PRAM algorithms is not always possi-
ble; in particular, real-time simulation of the Θ(log⋆(n)) expected time PRAM Hamiltonian cycle
algorithm of [19] is not possible.

Using our paradigm, the RCS-Mesh can find and mark a Hamiltonian cycle in a random graph
or demonstrate that no such cycle exists in Θ(log⋆(n)) expected time. Immediate corollaries include
results for directed Hamiltonian cycles, depth-first search trees, and exact matchings — including
results for k-partite random graphs. Our method gives a simpler, easier-to-generalize approach to
many other problems related to Hamiltonian cycles, which can be easily ported to other architec-
tures.

The average case solutions of NP-complete problems (with varying probability distributions
on input) have always been of great interest. Bollobás, Fenner, Frieze [5], demonstrated a serial

2

algorithm which finds a Hamiltonian cycle in Gn,p (if one exists) in expected polynomial time
when p ≥ 1

2 . Both Gurevich and Shelah [14] and Thomason [22] gave serial algorithms which
run in linear expected time and find a Hamiltonian cycle (if one exists) for p > 0. Frieze [11],
using n log2 n processors and O((log log n)2) expected time, and MacKenzie and Stout [19], using
n/ log∗(n) processors and Θ(log⋆(n)) expected time, demonstrated Hamiltonian Cycle algorithms
for the CRCW PRAM. In the latter paper the expected running time Θ(log⋆(n)) was shown to be
optimal for the construction of a Hamiltonian cycle, a maximal matching, or a spanning tree.

We demonstrate here that the RCS-Mesh, arguably a more feasible architecture than the PRAM,
can accomplish many of the same tasks within the same expected running time; furthermore, as
shown in [24], the problem of finding a breadth-first spanning tree can be solved in Θ(1) expected
time on the RCS-Mesh. We also show that if the graph is Hamiltonian, the RCS-Mesh is capable
of marking the cycle index with only constant additional time. This extension is beyond what has
been previously shown for the PRAM model.

The PRAM results [19] depend upon base operations which the RCS-Mesh is incapable of
performing in Θ(log⋆(n)) time; thus, the algorithm used for solving the Hamiltonian cycle problem
in that reference could not be ported. The algorithm developed here is conceptually different.
With minimal changes, it can be ported to a variety of architectures — including both the target
architecture used in [19] with the same time bounds and related PRAMmodels with correspondingly
altered time bounds. We believe that the RCS-Mesh-based method is simpler and easier to extend.

We also show that general structures—such as tori—can also be found/constructed within a
random graph in Θ(log⋆(n)) time with very high probability. This kind of result has unexpected
applications, and we provide an example: Given a directed random graph stored in the natural
manner on a RCS-Mesh, one can decide whether or not the graph is strongly k-connected where
k = nǫ for a fixed ǫ ∈ (0, 1), in Θ(1) expected time. This problem, when expressed for arbitrary
graphs and values of k, is co-NP-complete.

Throughout this paper, we often provide results only for directed graphs. Most of the methods
can be easily generalized to work with undirected graphs and other related kinds of input.

1.1 Probability

When an event E occurs with probability at least p(n) in the execution of some algorithm on a
problem of size n, we say that E occurs with high probability if, for some real values r > 1 and
ǫ > 0, r(n

ǫ) ∈ O((1− p(n))−1).
For the graph problems we’re about to consider, we will show a probabilistic algorithm P for the

RCS-Mesh which attempts to solve the problem with a random graph as input and demonstrate that
it succeeds (signaling failure otherwise) with high probability. In the event of failure, the algorithm
will employ another approach to the problem, a routine P ′ which solves the problem within f(n)
expected time. When f(n) is polynomial or mildly exponential, the expected additional time needed
to handle failures is eventually dominated by a constant.

For problems such as the Hamiltonian cycle problem, the existence of a serial solution running
in polynomial expected time for a semi-random graph is a known result — the second stage of the
Gurevich and Shelah algorithm [14] suffices. Unfortunately, given that the first stage fails with Gn,p

as input, we can no longer assume that Gn,p is a random graph. Borrowing another method from
Gurevich and Shelah (also described in [14]), we can still construct the desired algorithm with P
as a base, where the additional expected time needed to handle failures is Θ(1).

3

2 A log⋆ Paradigm for the RCS-Mesh

Many sublogarithmic PRAM algorithms involve assigning processors to a rapidly decreasing set of
problems, and, with a log⋆ paradigm, the relative number of problems decreases exponentially. As
noted before, for PRAM problems involving ω(n) memory cells direct stepwise simulation of the
PRAM paradigm by the RCS-Mesh or RMesh may not be possible. Moreover, unlike the RMesh,
the RCS-Mesh is incapable of counting in constant time, requiring that natural randomization
techniques for the stronger model be adapted to work work with estimates and/or close bounds on
certain quantities. Despite these handicaps, the RCS-Mesh architecture has a similar paradigm in
that we may assign rows of processors to handle an exponentially decreasing number of problems.

In this section, we describe an algorithm which runs in Θ(log⋆(n)) time and solves a specific
random graph problem on the RCS-Mesh with high probability. Although the problem is expressed
in graph-theoretic terms in order to it make directly applicable to the problems considered in this
paper, the general principles may be abstracted to other problems, allowing simple construction of
algorithms which run in Θ(log⋆(n)) expected time on reconfigurable architecture. Specifically, we
describe this paradigm relative to random graph problems as the randomized matching of vertices
between two distinct sets, where the ratio of sizes is at least a constant K, K not dependent on n.

Problem 2.1 (Bipartite Semi-Matching) Let G = (V1, V2, E) be a bipartite directed semi-
random graph (V1 and V2 are disjoint sets of vertices, E is the set of edges) such that the size
of the second partition, V2, is more than K times the size of the first, V1, and the independent
probability of any directed edge existing is p1 if it leads from V1 to V2, p2 if it leads from V2 to V1,
and zero otherwise. Mark a subset E′ of E such that

1. If (v1, v2) ∈ E′, then (v2, v1) ∈ E′.

2. For each v1 in the smaller partition, there exists a unique v2 such that (v1, v2) ∈ E′.

In an instance of the above, we do not assume that the values of |V1| and |V2| are known initially;
instead, we use the values of K and n to form, respectively, strict upper and lower bounds on those
quantities — Fub and Plb — including a ǫ measure of strictness.

In the informal description of how our solution to the above is applied — in the context of
finding Hamiltonian cycles — the larger partition V2 corresponds to the set of “patches” and the
smaller partition corresponds to the set of “flaws.” These labels are sufficiently descriptive to
warrant their employment here. The fixed constant K will be a lower bound on the ratio of patches
to flaws, a requirement for our algorithm. Here, our solution is demonstrated with K at least
(e ln 2)/(p1p2) (initially). The weaknesses of the RCS-Mesh architecture — the inability to count,
to assign rows arbitrarily, etc., make this bound necessary; however, the authors have developed
nontrivial variations which show that this restriction can be lowered.

The core of our solution to the above is the routine presented as Algorithm 2.2 which, with
high probability, matches a large number of vertices from the smaller set with unique members
of the larger. Careful examination of relevant probabilities allows the bounds to be adjusted and
thus yields a semi-matching problem where the ratio of sizes has been increased dramatically —
such that Θ(log⋆(n)) repetitions of the routine will completely exhaust the smaller set with high
probability. For brevity, define R by

R = Fub

(

e
p1p2

e

)

−
Plb
Fub .

4

Partial Uniform Selection

Step 1: Each processor within a column with a vertex in V1 and a row with a vertex in V2

chooses a random integer between 1 and Fub (uniformly and independently of any
other processor). It records a success if it has chosen 1.

Step 2: Each row corresponding to a vertex in V2 is tested for the condition that exactly one
success occurred. If true, the successful processor’s id number is broadcast to the
processor on the diagonal.

Step 3: With two time steps, the processor corresponding to a vertex in V2 can verify whether
or not the double-edge pair exists with respect to the vertex in V1.

Step 4: Each of the vertices in V1 marks the least–numbered distinguished in-edge (if it exists).
Within constant time, it can then select only the elements corresponding to that
match. All other distinguishing properties are erased.

Algorithm 2.2

Bipartite Semi-Matching

Step 1: Calculate Fub and Plb initially. Set T =
√
Plb.

Step 2: While Fub is more than T , use the procedure described in Algorithm 2.2, removing
and saving all successful matches, and resetting Fub to ⌈R⌉ and Plb to

⌊

1

2
Plb

⌋

.

Step 3: Reset Fub to T and use the procedure described in Algorithm 2.2, removing and saving
all successful matches.

Step 4: If any vertices in V1 have not been successfully matched, signal failure and terminate.

Algorithm 2.5

The value of R can be shown to be greater than (but relatively close to) the expected number of
unmatched flaws remaining after an execution of Algorithm 2.2.

In the analysis of Algorithm 2.2, we may eliminate consideration of those vertices from the larger
set, patches, which may have become biased during prior executions of the routine. Simply, all the
directed edges will exist with the desired independent probability if we consider only those patches
which have not attempted to test the existence of any edges as being available for subsequent
iterations. From a Chernoff bound, we expect, with high probability, less than half of the rows
representing vertices in the larger set to have the unique success described in Steps 1 and 2.

In a similar way, we may state two deeper results concerning the number of unmatched vertices
remaining in V1 after an execution of Algorithm 2.2.

Lemma 2.3 Let Fr be such that Fr ≥ R. With probability greater than 1 − e−Fr , the number of
vertices in V1 which were not matched to unique vertices in V2 after an execution of Algorithm 2.2
is not more than (1− ǫ)Fr.

Lemma 2.4 With probability greater than 1−R, Algorithm 2.2 has matched every vertex v1 in V1

to a unique vertex v2 in V2 such that both directed edges, (v1, v2) and (v2, v1), exist.

With these lemmas, we can now examine the main algorithm for solving the bipartite semi-
matching problem when K is strictly greater than (e ln 2)/(p1p2) (given as Algorithm 2.5).

5

Note that we avoid the transition between large and small deviations by careful adjustment
of the bounds at the value T . Restating the relevant lemmas with this value in place, we have
Lemma 2.3 demonstrating the high probability of the next bound being valid, and Lemma 2.4
demonstrating the high probability of success with the final use of the subroutine.

Moreover, the ratio of patches to flaws can be shown to be increasing (with high probability),
and an examination of the implicitly iterated function demonstrates a fixed point; showing the
necessity for the bound on K.

Theorem 2.6 For an n× n RCS-Mesh, given an instance of Problem 2.1 with the graph G stored
in the natural manner, the problem can be solved in Θ(log⋆(n)) time, correctly signaling failure or
success and succeeding with high probability.

3 Hamiltonian Cycles and Exact Matchings

Using the log⋆ paradigm, we can now develop RCS-Mesh algorithms for random graph problems
related to Hamiltonian cycles which run in Θ(log⋆(n)) expected time.

Our approach to random graph problems involving Hamiltonian cycles on the RCS-Mesh is
based on the failure of a naively simple approach — testing the vertices in their natural order for
the desired structure. Although we do not expect all the required edges to be present, with high
probability, a large number may be expected to exist. For each missing edge, which we describe
as a flaw, we try to locate a unique element from a set of potential patches. The critical step of
matching flaws and patches will be accomplished by our solution to the bipartite semi-matching
problem.

In the case of a simple Hamiltonian cycle on an undirected random graph when n is even,
we may describe those odd-numbered vertices incident to missing edges as flaws, and all other
odd-numbered vertices as potential patches. The mechanism of repair is to transpose vertices.
Explicitly, we can transpose a flaw i and a patch j if neither would be classified as a flaw after the
transposition.

With high probability, the original number of flaws will not exceed (1 + ǫ)(1 − p2)n/2 and the
original number of patches will be at least (1 − ǫ)p2n/2. Thus, when p is sufficiently large, we
may apply our solution to the bipartite semi-matching problem immediately. In the general case,
however, the ratio of patches to flaws will not necessarily exceed any given constant. The following
lemma, due to Frieze, implies a solution:

Lemma 3.1 (Frieze [11]) A random graph Gn,p does not contain a Hamiltonian cycle with prob-

ability at most n2 (1− p)(n−1) .

Simply, any subgraph of a random graph is also a random graph. We partition the RCS-Mesh
into submeshes of size X×X (where X is a constant not dependent on n) and look at the submeshes
along the diagonal. Each represents a random graph, GX,p. Using the submeshes concurrently, we
can search exhaustively for a Hamiltonian path in each subgraph. Since X is a constant, the time
required is constant. Some submeshes will fail, but, if we’ve chosen X carefully, enough will succeed
so that we may claim that the expected percentage of flaws is below any fixed constant. The lemma
suggests how to choose the value of X. Other cases follow similarly. In the case when we are seeking
a directed Hamiltonian Cycle in a directed random graph, we may use the probability function in
the following corollary.

Corollary 3.2 A directed random graph Gn,p does not contain a directed Hamiltonian cycle with

probability at most n2
(

1− p2
)(n−1)

.

6

In this particular case, we may select our value of X so that 1/f(X) > (1+ǫ)(e ln 2/p4+1) where
ǫ is a positive fixed constant. (To make our calculations easier, we may also assume the X exceeds
any constant.) Careful analysis of Chernoff bounds, even with overly pessimistic assumptions for
intractable quantities, yields the desired ratio of patches to flaws with high probability.

After demonstrating some subtleties regarding information movement, we can prove the fol-
lowing (where the phrase a simple Hamiltonian structure includes directed Hamiltonian cycles,
uni-directional Hamiltonian cycles, bi-directional Hamiltonian cycles and related structures such as
exact matchings, etc.):

Theorem 3.3 (Enumerated Hamiltonian Cycle) For an n × n RCS-Mesh, given a directed
random graph Gn,p stored in the natural manner, one can attempt to mark and enumerate the
vertices and edges in a simple Hamiltonian structure or decide that no such structure exists in
Θ(log⋆(n)) time, correctly signaling failure or success and succeeding with high probability.

Utilizing the method of Gurevich and Shelah [14] and appending their routine in the event of
failure, gives us the complete result as a corollary.

Corollary 3.4 (Enumerated Hamiltonian Cycle) Given the same conditions as in Theorem 3.3,
one can mark and enumerate the vertices and edges in a simple Hamiltonian structure or decide
that no such structure exists in Θ(log⋆(n)) expected time.

Also, since we expect success with high probability, we can obtain related results, such as finding
and marking depth-first search trees (including the enumeration) in Θ(log⋆(n)) expected time.

Remark 3.5 Continuing in this manner, it is possible to find exact matchings and Hamiltonian
cycles in k-partite random graphs where all the partitions are of equal size and strongly ordered
(vertex vi is in partition i modulo k). Moreover, the same is possible for k-cyclic random graphs
which are strongly ordered (the probability of an edge existing between vertices vi and vj is p if
j − i ≡ 1 (mod k), 0 otherwise). All of the above may be accomplished in Θ(log⋆(n)) expected
time.

4 General Structures and Other Applications

The term structure is highly overloaded; unfortunately, for brevity, we must avoid precisely formal-
izing the notion here. The notion with which we’re specifically concerned we will merely describe
as simple structures.

A directed Hamiltonian cycle is a particular example of a well-defined simple structure, a
directed cycle involving n vertices. Another example based on cycles is that of a uni-directed
Hamiltonian cycle — where we’re concerned with the nonexistence of edges as well as their existence.
Examples of simple structures include d-dimensional tori with all dimensions having the same
extent, balanced binary trees, and cube-connected cycles.

A simple structure has three properties meriting some discussion. First, the structure has at
most one associated graph with n vertices for each value of n; second, the degree of all graphs
associated with the structure must be bounded by a fixed value; third, a single processor may
calculate all the relevant aspects of an associated graph — edge existence, coloring functions, etc.
for a fixed value of n within constant time.

The first allows the structure to be well-defined; the second is equivalent to many coloring
properties (necessary and sufficient conditions for the algorithm to proceed); and the third merely

7

subsumes preprocessing time. In fact, the critical preprocessing involves a coloring of the vertices
with a constant number of colors where the percentage of vertices with each color is bounded below
by a positive constant. The second property alone is equivalent to the existence of this coloring.

With some limitations, our approach to finding Hamiltonian cycles in random graphs may be
extended to these simple structures, resulting in RCS-Algorithms which, with high probability, find
the desired structure in a random graph within Θ(log⋆(n)) time.

Our strategy for finding simple structures in a directed random graph is to proceed sequentially
through the vertex colors, fixing the labels or positions of vertices of each color relative to those
that have been previously fixed. Thus, the algorithm may be described as a constant number of
repetitions of a solution to bipartite exact matching.

The analysis proceeds by induction. We hypthesize that all vertices of colors less than k have
already been fixed so that all edges between fixed vertices exist in accordance with the structure.
Exactly the vertex processors which have color k are distinguished as being active. An active vertex
vi is a flaw if, for some fixed vertex vj, there is an edge requirement between ℓ(vi) and ℓ(vj) which
is not satisfied by the state of the corresponding edge, (vi, vj) in the random graph. A patch will
be any active vertex which is not flaw. The mechanism for repair is to exchange labels if, after the
exchange, neither vertex will be a flaw. After some tedious detail in showing that all the testing
can be done in constant time, the following theorem can be demonstrated.

Theorem 4.1 (Simple Structures) For an n×n RCS-Mesh, given a directed random graph Gn,p

stored in the natural manner, one can attempt to mark and enumerate the vertices and edges in
a simple structure or decide that no such structure exists in Θ(log⋆(n)) time, correctly signaling
failure or success and succeeding with a probability which eventually dominates 1 − rn for some
value of r ∈ (0, 1).

The higher probability is derived in the same manner that Corollary 3.2 was derived from
Lemma 3.1. Since the probability that a particular vertex will have no edges is Θ(rn) for some
value of r ∈ (0, 1), the probability bound in Theorem 4.1 is close to optimal for general structures
whose elements are associated with connected graphs.

Importantly, the above result not only allows us to claim the ability to find, in Θ(log⋆(n))
expected time, regular tori (of any dimension), binary trees, cube-connected cycles, etc., within a
random graph on the RCS-Mesh, but also it extends to virtually any structure of bounded degree.

4.1 Connectivity

Here we show an unusual application of our result. In [24], the authors have shown the following
results:

Theorem 4.2 For an n× n RCS-Mesh, given a random graph Gn,p stored in the natural manner,
for any fixed constant ǫ ∈ (0, 1), one can attempt to determine if Gn,p is nǫ-connected in Θ(1) time,
correctly signaling failure or success and succeeding with high probability.

Theorem 4.3 For an n× n RCS-Mesh, given a directed random graph Gn,p stored in the natural
manner, for any fixed constant ǫ ∈ (0, 1/2), in Θ(1) expected time one can decide if Gn,p is strongly
nǫ-connected.

(As with the parameter p, ǫ is considered part of the problem definition rather than input;
hence, we assume that it is fixed relative to n.)

8

The second theorem follows from appending an exhaustive test in the event of failure. When
ǫ ≥ 1/2, the expected additional time in the event of failure is no longer constant. The routine for
finding simple structures within a random graph will provide a replacement for the second stage of
that algorithm when 1/2 ≤ ǫ < 1. First, we require the following:

Claim 4.4 Given a regular d-dimensional torus T on n vertices where d is greater than 2. The
removal of less than nǫ vertices, where ǫ < d− 2, will leave a large connected component such that
the number of vertices outside that component is O(n(1−1/d)).

The second stage requires two operations. First, we select the least integer d such that (d −
2)/d > ǫ, and set X = (⌊ d

√
n⌋)d. Using p/4 as the edge probability parameter, we attempt to find a

regular d-dimensional torus in the last X vertices of the graph. If the attempt fails, the algorithm
signals failure and terminates. Second, for every vertex, we count the number of incident edges, if
any vertex obtains a sum less than pn/4, the algorithm signals failure and terminates.

The entire second stage takes polynomial time and succeeds with high probability. In the
event of the failure of this stage, the exhaustive approach will add Θ(1) additional expected time.
Specifically, we can demonstrate the following:

Theorem 4.5 (Connectivity) For an n × n RCS-Mesh, given a directed random graph Gn,p

stored in the natural manner, for any fixed constant ǫ ∈ (0, 1), one can attempt to determine if
Gn,p is nǫ-connected in polynomial time, correctly signaling failure or success and succeeding with
a probability which eventually dominates 1− rn for some value of r ∈ (0, 1).

Now, with all the stages put together (and suitable adjustments for edge probability parame-
ters), we can extend the range of ǫ in Theorem 4.3 to all of (0, 1).

5 Conclusion

We have described a log⋆ paradigm tailored for reconfigurable architecture which can be imple-
mented naturally on a modest (and commercially available) model, the RCS-Mesh. In addition,
we have demonstrated the power of that paradigm, producing random graph algorithms with time
bounds equivalent or superior to those known to exist for the CRCW PRAM architecture. This oc-
curs despite the fact that the RCS-Mesh cannot do a real-time simulation of the CRCW PRAM, nor
of many of its log⋆ algorithms. While the algorithms for the RCS-Mesh have similarities with algo-
rithms for the CRCW PRAM, they also have many critical differences to overcome the limitations
of the weak RCS-Mesh model.

In particular, we have focused on problems related to Hamiltonian cycles. We have shown an
algorithm which can find and mark a Hamiltonian cycle, giving each vertex an index indicating
its position within the cycle, in Θ(log⋆(n)) expected time. Notably, this property has not been
demonstrated for the relevant PRAM model. These results follow from a simple approach, a
decomposition into patches and flaws, which offers immediate promise of portability as well as a
large number (and a wide variety) of simple extensions. We have demonstrated some of these here;
most notably, an unexpected relationship with a general connectivity question.

9

References

[1] D. Aldous. Approximate counting via markov chains. In Probability and Algorithms, pages 31–38.
National Academy Press, Washington, D.C., 1992.

[2] D. Angluin and L. G. Valiant. Fast probablistic algorithms for hamiltonian ciruits and matchings. J.
Comput. System Sci., 18:155–193, 1979.

[3] P Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM. In Proc. 19th
ACM Symp. on Theory of Computing, pages 83–93, 1987.

[4] B. Bollobás. Random Graphs. Academic Press, Inc., London, 1985.

[5] B. Bollobás, T. I. Fenner, and A. M. Frieze. An algorithm for finding hamiltonian paths and cycles in
random graphs. Combinatorica, 7(4):327–341, 1987.

[6] J. A. Bondy and U. S. Murty. Graph Theory with Applications. North-Holland, New York, 1976.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis on the sum of observations.
The Annals of Mathematical Statistics, 23:493–507, 1952.

[8] E. Dahlhaus, P. Hajnal, and M. Karpinski. On the parallel complexity of hamiltonian cycle and matching
problems on dense graphs. Journal of Algorithms, 15:367–384, 1993.

[9] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc., pages 69–81, 1952.

[10] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
In Proc. 23rd IEEE Symp. on Foundations of Computer Science, pages 165–169, 1982.

[11] A. M. Frieze. Parallel algorithms for finding hamiltonian cycles in random graphs. Inform. Process.
Lett., 25:111–117, 1987.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company, New
York, 1979.

[13] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. In
Proc. 32nd ACM Symp. on Found. of Comp. Sci., pages 698–710, 1991.

[14] Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path problem. Siam J. Comput.,
16(3):486–502, June 1987.

[15] W. R. Hamilton. Letter to John T. Graves on The Icosian, 17 oct., 1856. In H. Halberstam and R. E.
Ingram, editors, The Mathemathical Papers of Sir William Rowan Hamilton, volume 3 (Algebra), pages
612–625. Cambridge University Press, 1931.

[16] B. Jackson. Hamilton cycles in regular 2-connected graphs. J. Comb. Theory (B), 29:27–46, 1980.

[17] R. E. Ladner, J. Lampe, and R. Rogers. Vector prefix addition on sub-bus mesh computers. In Proc.
5th ACM Symp. on Parallel Algorithms and Architectures, pages 387–396, 1993.

[18] J. E. Littlewood. On the probability in the tail of a binomial distribution. Adv. Appl. Prob., 1:43–72,
1969.

[19] P. MacKenzie and Q. Stout. Optimal parallel construction of hamiltonian cycles and spanning trees
in random graphs. In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, pages 224–229,
1993.

[20] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time—with applications to
parallel hashing. In Proc. 23rd ACM Symp. on Theory of Computing, pages 307–316, 1991.

[21] P. Ragde. On the parallel simplicity of compaction and chaining. Journal of Algorithms, 14:371–380,
1993.

[22] A. Thomason. A simple linear expected time algorithm for the hamiltonian cycle problem. Discrete
Math., 75:373–379, 1989.

[23] B. F. Wang and G. H. Chen. Constant time algorithms for the transitive closure and some related
problems on processor arrays with reconfigurable bus systems. In IEEE Proc. Parallel and Distrib.
Sys., pages 500–507, 1990.

[24] D. Van Wieren and Q. Stout. Random graph algorithms for the mesh with row and column subbuses.
To Appear, 1994.

10

