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Abstract

This paper gives algorithms for determining real-valued uni-
variate unimodal regressions, that is, for determining theopti-
mal regression which is increasing and then decreasing. Such
regressions arise in a wide variety of applications. They
are shape-constrained nonparametric regressions, closely re-
lated to isotonic regression. For unimodal regression onn
weighted points our algorithm for theL2 metric requires only
Θ(n) time, while for theL1 metric it requiresΘ(n log n)
time. For unweighted points our algorithm for theL∞ metric
requires onlyΘ(n) time. All of these times are optimal. Pre-
vious algorithms were for theL2 metric and requiredΩ(n2)
time. All previous algorithms used multiple calls to isotonic
regression, and our major contribution is to organize these
into a prefix isotonic regression, determining the regression
on all initial segments. The prefix approach reduces the total
time required by utilizing the solution for one initial segment
to solve the next.

Keywords and phrases: unimodal regression, umbrella
ordering, isotonic regression, monotonic, prefix operation,
scan, persistent data structure, pool adjacent violators (PAV)

1 Introduction

Givenn univariate real data values(xi, yi, wi) with nonnega-
tive real weightswi, i = 1, . . . , n, wherex1 < · · · < xn, and
givenp ∈ [1,∞], theLp isotonic regressionof the data is the
set{(xi, ŷi) : i = 1, . . . , n} that minimizes

(
∑n

i=1
wi|yi − ŷi|

p)
1/p if 1 ≤ p < ∞

maxn
i=1 wi|yi − ŷi| if p = ∞

(1)

subject to the increasing isotonic constraint that

ŷ1 ≤ ŷ2 · · · ≤ ŷn.

Note that the values are merely required to be nondecreasing,
rather than strictly increasing. TheLp unimodal regression
of the data is the set{(xi, ŷi) : i = 1, . . . , n} that minimizes
Equation (1) subject to the unimodal constraint that there is

anm ∈ {1, . . . , n} such that

ŷ1 ≤ ŷ2 · · · ≤ ŷm ≥ ŷm+1 · · · ≥ ŷn,

i.e., such that{ŷi} is increasing on1 . . .m and decreasing on
m . . . n. The unimodal constraint is also called an umbrella
ordering, and isotonic regression is often called monotonic
regression, though in some application areas this term means
the values decrease.

Isotonic regression does not yield a smooth curve, but
rather a collection of level sets where the regression is con-
stant. Figure 1 gives an example of an isotonic regression of
a set of data with equal weights, where circles represent data
points and lines represent level sets, with a filled circle repre-
senting a data point which is also a level set. Figure 2 shows
a unimiodal regression.

By theerror of a regressionwe mean the quantity in Equa-
tion (1). In the algorithms the value callederror is actually the
pth power of this quantity in order to simplify calculations.

Both isotonic regression and unimodal regression are ex-
amples of nonparametric shape-constrained regression. Our
interest in efficient unimodal regression was motivated by its
repeated use in dose-response problems with competing fail-
ure modes [7, 10]. For such problems, as the dose increases
the efficacy increases but the toxicity increases as well. The
goal is to find the dose that maximizes the probability of be-
ing efficacious and non-toxic, and it is usually assumed that
this probability distribution is unimodal. More generallysuch
regressions are of use in a wide range of applications when
there is prior knowledge about the shape of a response func-
tion but no assumption of a parametric form. See, for exam-
ple, the references to water-level time-series data in [6] and
to tree growth in [18]. The latter is another example of com-
peting failure modes, where as trees in a newly planted grove
grow, their “vigor” initially increases as they increase insize,
but eventually starts decreasing as they compete for nutrients
and light.

In Section 2 we examine previous work on the problem of
determining unimodal regression. In Section 3 we introduce
the notion of prefix isotonic regression, and in Sections 3.1
through 3.3 we develop algorithms for theL2, L1, and un-
weightedL∞ versions of this problem, taking timeΘ(n),
Θ(n log n), andΘ(n), respectively. These then yield uni-
modal algorithms of the same time complexity. All of these



Figure 1:L2 Increasing Isotonic Regression

Figure 2: A Unimodal Regression

algorithms, both isotonic and unimodal, are optimal, and, ex-
cept for the isotonicL2 problem, all are the first optimal solu-
tions to their problems. In Section 3.4 we examine the slightly
different problem of determining the value atxi of the iso-
tonic regression on the firstm values. Section 4 contains an
immediate corollary of the results on prefix isotonic regres-
sion, namely that unimodal regression can be computed in
the same time bounds. Section 5 concludes with some final
remarks.

Throughout, we assume that the data is given in order of
increasingxi values. If the data is not so ordered, then an
initial sorting step, takingΘ(n log n) time, is needed. Since
the values of thexi are irrelevant we simplify notation by
assumingxi = i.

2 Previous Work

It is well-known that theL2 increasing isotonic regression can
be determined inΘ(n) time. Apparently all published algo-
rithms use the “pair adjacent violators” (PAV) approach [2].
In this approach, initially each data value is viewed as a level
set. At each step, if there are two adjacent level sets that are
out of order (i.e., the left level set is above the right one) then
the sets are combined and the weightedL2 mean of the data
values becomes the value of the new level set. It can be shown
that no matter what order is used to combine level sets, once
there are no level sets out of order the correct answer has been
produced [15]. The PAV approach also produces the correct
results forL1 andL∞.

Apparently all previous work on unimodal regression has
concentrated onL2 regression, though the basic approach can
be applied to arbitrary metrics. Previous researchers solved

{mode: location of mode of best unimodal fit}

do 0 = 1, n

errorl(i) = error increasing iso regres(x1 . . . xi)
errorr(i) = error decreasing iso regres(xi . . . xn)

enddo

mode=argmin {errorl(i)+errorr(i+1): 1 ≤ i ≤ n}

Figure 3: Best Previous Unimodal Regression Algorithm

Figure 4: Data Values with Nonunique Mode

the problem by trying each possiblei as the location of the
maximum, where the smallest error attained corresponds to
the solution of the problem.

Testing each new value ofi involved new calls to proce-
dures to determine isotonic fits. The fastest and most straight-
forward approach, used in [4, 5, 9, 13, 17] and given in Fig-
ure 3, fits an increasing curve to the values corresponding to
x1 . . . xi and a decreasing curve to the values corresponding
to xi . . . xn. SinceL2 isotonic regression ofm points can be
determined inΘ(m) time, this approach takesΘ(n2) time.
A far less efficient approach, takingΘ(n2n) time, was used
in [10].

In general, the mode of the best unimodal fit is not unique.
For example, if the weighted data values are as in Figure 4,
then for any norm, one optimal unimodal fit has the leftmost
point as mode and the mean of the other two as a level set,
while another optimal fit uses a level set on the two left points
and the rightmost point as mode. All of the previously pub-
lished algorithms, and the ones herein, can locate all of the
modes that correspond to best fits, and some secondary crite-
ria could be applied to select among them. The algorithms in
this paper do not apply such criteria, but the modifications to
do so are straightforward.

Despite the nonuniqueness of the optimum, it is easy to
show that for anyLp metric with p < ∞, for any optimum
modexm, the value atxm of its optimum fit is the original
data valueym. It is also easy to see that the increasing iso-
tonic regression onx1 . . . xm has valueym at xm, as does
the decreasing isotonic regression onxm . . . xn, and thus the
error of the unimodal regression is the sum of the errors of
these two regressions. Figure 2 shows a unimodal regression
where all of the data points have equal weights.
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{left(i): left endpoint of level set containing xi}

{mean(i): mean value of level set containing xi}

{error(i): error of increasing isotonic regression on
x1 . . . xi}

mean(0) = −∞

left(0) = 0
error(0) = 0
do i = 1, n

initialize level set of i

mean(i) = yi

left(i) = i

while mean(i) ≤ mean(left(i)-1) do
merge level set of left(i)-1 into level set of i

left(i) = left(left(i)-1)
endwhile
levelerror = weighted error of mean(i) to

(yleft(i), wleft(i)), . . . (yi, wi)

error(i) = levelerror+error(left(i)-1)
enddo

Figure 5: Prefix Isotonic Regression

3 Prefix Isotonic Regression

By determining an isotonic regressionwe mean determining
the error of the regression and the extents and regression val-
ues of the level sets. Givenn real-valued weighted data val-
ues{(xi, yi, wi) : 1 ≤ i ≤ n} with nonnegative real weights
wi, and given a metricµ on the reals, let Isom denote theµ
isotonic regression on{(xi, yi, wi) : 1 ≤ i ≤ m}. Theµ
prefix isotonic regression problemis to determine Isom for all
1 ≤ m ≤ n.

Note that prefix isotonic regression determines exactly
the set of increasing isotonic regression problems examined
by [4, 5, 9, 13, 17]. However, the critical observation is that
determining all of them should be approached as a single in-
tegrated problem, rather than merely as a collection of calls
to a subroutine to solve each subproblem. Prefix operations,
also calledscan operations, are utilized as building blocks for
a variety of efficient algorithms. In parallel computing, prefix
operations are also known asparallel prefix operationssince
often all values can be determined concurrently.

The basic prefix isotonic regression algorithm is given in
Figure 5. The outermost loop oni goes through the points
in increasing indexing order, adding them to the previous so-
lution. The loop invariant is that at the start of the do-loop,
Isoi−1 has been determined. In right to left order, it consists
of:

• the level set of all points with indices in the interval
[left(i−1), i−1], with valuemean(i−1)

Regression of first 4 points, i.e., Iso4

Level sets of 5 points after 1st while-loop iteration

Level sets of 5 points after 2nd (final) iteration, i.e., Iso5

Figure 6: Constructing Iso5 from Iso4

• the level set of all points with indices in the interval
[left(left(i−1)−1), left(i−1)−1], with value
mean(left(i−1)−1)

• the level set of all points with indices
[left(left(left(i−1)−1) −1), left(left(i−1)−1)−1]
with valuemean(left(left(i−1)−1)−1)

and so on. Further, the error of this regression iserror(i−1).
If the value of the new point,yi, is greater than the mean of

the level set containingxi−1, then Isoi is Isoi−1 unioned with a
new level set consisting only ofxi with valueyi. However, if
yi is less than or equal to the mean of the level set containing
xi−1, then they are out of order and must be merged. This
new merged level set is then compared to the level set to its
left. If they are in order, i.e., if the mean of the left level set
is less than the mean of the right level set, then the process
is done, while if their means are out of order they are merged
and the process of comparing to the left is repeated. This is
accomplished in the while-loop. The fact that this merging
process correctly determines Isoi follows immediately from
the PAV property mentioned in Section 2. Figure 6 illustrates
this process.

After the algorithm in Figure 5 has completed, for any in-
dex m, 1 ≤ m ≤ n, Isom has errorerror(m) and its level
sets can be recovered inΘ(ℓ) time from the values stored in
left andmean, whereℓ is the number of level sets. The recov-
ery proceeds exactly as above, in right-to-left order. Notethat
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when the point at indexi is added, only theleft(i), mean(i),
anderror(i) entries are updated, with the earlier entries un-
changed since values for other indices within the merged
level set will never be referred to again. Theleft, mean, and
error arrays form apersistent data structure, allowing one to
rapidly recreate the intermediate regressions.

To apply the algorithm in Figure 5 to a specific metric, one
needs to determine how to do the operations inside the while-
loop, i.e., how to determine the mean and error of the merged
level sets. As will be shown in Sections 3.1, 3.2 and 3.3,
efficiently implementing these operations depends upon the
metric.

Observation: If the operations of determining the
mean and error in the while-loop can be accom-
plished inO(f(n)) time for an increasing function
f , then the algorithm requires onlyO(n · f(n))
time. This is because the total number of iterations
of the while-loop can be at mostn − 1. This may
not be obvious since the while-loop may be iterated
Θ(n) times for a single value ofi, and the loop is
encounteredn times. However, every time the loop
is iterated, two disjoint nonempty level sets have
been merged. One can view the data set as initially
beingn disjoint sets, and these can be merged at
mostn−1 times. All of the other operations within
the while-loop take constant time per iteration, and
the operations outside the while-loop take a con-
stant time per iteration ofi.

Notice that if one determines the mean and error functions
for a level set by just calling a function to compute them,
given all the elements, then it will takeΩ(m) time for a set of
sizem, and it is easy to see that this would require the algo-
rithm to takeΩ(n2) total time in the worst case. To achieve
better results, one needs to utilize previous calculationsfor
the level sets to aid in the calculations for the newly merged
sets. Techniques to do this depend upon the metric.

3.1 L2 Prefix Isotonic Regression

To apply the prefix isotonic regression algorithm to theL2

metric, one needs procedures for determining the mean and
error of theL2 level sets. Fortunately, it is well known that the
algebraic properties of this metric make this a simple task,as
is shown in Figure 7. These operations require only constant
time, and hence by the Observation the algorithm takes only
Θ(n) time.

3.2 L
∞

Prefix Isotonic Regression

Efficient algorithms for weightedL∞ isotonic regression are
rather complicated, see [8], so here we only consider the case

{sumwy(i): weighted sum of values in xi’s level set}
{sumwy2(i): weighted sum of squares of values in xi’s

level set}
{sumw(i): sum of weights of xi’s level set}

to initialize level set of i:
sumwy(i) = wi · yi

sumwy2(i) = wi · y
2
i

sumw(i) = wi

to merge level set of j into level set of i:
sumwy(i) = sumwy(i)+sumwy(j)
sumwy2(i) = sumwy2(i)+sumwy2(j)
sumw(i) = sumw(i)+sumw(j)
mean(i) = sumwy(i)/sumw(i)

levelerror = sumwy2(i)−sumwy(i)2/sumw(i)

Figure 7: Modifications forL2 Regression

where all of the weights are 1. The unweightedL∞ mean
of values{y1, . . . , yk} is (ymin + ymax)/2, whereymin =
min{y1, . . . , yk} andymax is defined similarly. The error of
using this mean is(ymax − ymin)/2.

The simplistic nature of theL∞ mean and error makes
the isotonic regression particularly easy. We introduce func-
tionsmaxy andminy, as shown in Figure 8, wheremaxy(i) is
the maximum, andminy(i) is the minimum, of they values
in the level set containingi. These operations take only con-
stant time, and hence by the Observation the total time is only
Θ(n).

While the regression determined by Figure 8 is quite natu-
ral, it is not the only optimalL∞ regression. For example, if
the data values are (1, 4, 2, 6), then the algorithm will produce
the fitted values (1, 3, 3, 6), with error 1. However, another
solution with the same error is (0, 3, 3, 7), and there are in-
finitely many solutions with optimal error. It is easy to see
that the solution found here has the property that if a level set
L with valuey is created on indicesi . . . j, thenL is an op-
timal L∞ isotonic regression on the values for those indices.
In some applications one may prefer to specify a criterion
to select among the optimal regressions, though it is usually
difficult to achieve a given criterion for all prefix regressions
without substantially more time and revisions from one prefix
to the next.

3.3 L1 Prefix Isotonic Regression

WeightedL1 regression is more complex than the previous
metrics. Given a weighted set of values, theirL1 mean is the
weighted median. Weighted medians are not always unique,
so for simplicity we utilize the smallest such value. In an
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{miny(i): minimum value in xi’s level set}
{maxy(i): maximum value in xi’s level set}

to initialize level set of i:
miny(i) = yi

maxy(i) = yi

to merge level set of j into level set of i:
miny(i) = min{miny(i), miny(j)}
maxy(i) = max{maxy(i), maxy(j)}
mean(i) = [miny(i)+maxy(i)]/2

levelerror = (maxy(i)−miny(i))/2
error(i) = max{error(left(i)-1), levelerror}

Figure 8: Modifications for UnweightedL∞ Regression

application one might wish to add secondary criteria to deter-
mine which weighted median to use.

While it is well-known that one can determine a weighted
median in time that is linear in the number of values, a naive
approach based on this would only yield an algorithm tak-
ing Θ(n2) time. Unfortunately there are no algebraic identi-
ties which easily allow one to reuse calculations when merg-
ing level sets, so a more complicated approach is needed. A
Θ(n log n) algorithm is presented in [1], but its use of scal-
ing does not seem to translate into an efficient algorithm for
the prefix problem. The author presented a prefix algorithm
in [16], but the following is much simpler and can be applied
in more general settings. This approach is outlined in Fig-
ure 9.

For a level set corresponding to (value,weight) pairs
{(yj, wj), (yj+1, wj+1), . . . , (yi, wi)}, create a red-black tree
T containingi−j+1 nodes which have as keys the values,
i.e., the tree is ordered by the values. Red-black trees are
not specifically required, in that other balanced tree structures
(AVL, weight-balanced, etc.) could be used equally well. Ifp
is a node of the tree, thenp.y represents the value it contains,
andp.w the value’s associated weight. Each node also has
additional fields:

p.sumw =
∑

q.w

p.sumwy =
∑

q.w · q.y

where the sums are over all nodesq in the subtree rooted at
p. GivenT , an easy top-down path traversal usingp.sumw
can determine a weighted median in time linear in the height
of the tree, i.e., inΘ(i−j) time. Search trees with additional
fields such asp.sumw and p.sumwy are sometimes called
augmented treesand are often used for dynamic order statis-
tics such as this.

To determine the error of the regression on a level set, let
m be a weighted median. LetW< (W>) be the sum of all

{root(i): root of tree containing all y values in xi’s level set}
{p.y: the y value stored in node p}
{p.w: the weight corresponding to p.y}
{p.sumw: sum of weights in p’s subtree}
{p.sumwy: sum of w · y in p’s subtree}

to initialize level set of i:
initialize tree(i) to have single node, root
root.y = yi

root.w = wi

root.sumw = wi

root.sumwy = wi · yi

to merge level set of j into level set of i:
merge tree(j) and tree(i), updating sumw and sumv

fields while merging
determine mean(i) from tree(i)

determine levelerror from tree(i) and mean(i)

Figure 9: Modifications forL1 Regression

weights corresponding to values less than (greater than)m,
and WY< (WY>) be the sum of allw · y products corre-
sponding to values less than (greater than)m. The error of
the regression is

WY> − m · W> + m · W< − WY<

Once m has been determined, another top-down path
traversal involvingp.sumw andp.sumwy can be used to de-
termineW<, W>, WY<, and WY> in time linear in the
height of the tree, i.e. inΘ(log n) time. Analyzing the time
to do all tree mergers is a bit more delicate. A straightfor-
ward merger of trees of sizes andt, wheres ≥ t, repeatedly
inserts the elements of the smaller tree into the larger, taking
Θ(t log s) time, which would result inΘ(n log2 n) worst-
case total time. However, the merge procedure in [3] takes
Θ(1 + t · log(s/t)) time, and their results show that all of
the mergers can be done inΘ(n log n) total time. Standard
extensions to their procedure allow one to maintain all of the
fields associated with each node without altering the time re-
quired, and thus the total time isΘ(n log n) time. This im-
proves upon the algorithm in [12], which takesΘ(n log2 n)
time.

To show thatΘ(n log n) time is optimal, note thatL1 pre-
fix isotonic regression is as hard as sorting real numbers. To
see this, let{yi : 1 ≤ i ≤ n} be any set of real numbers,
and let{y∗

i : 1 ≤ i ≤ n} be the same set in decreasing or-
der. Letu = −1 + mini yi andv = 1 + maxi yi. Then
for the weighted sequence(0, v, n+1), (1, y1, 1), (2, y2, 1),
. . .(n, yn, 1), (n+1, u, 2), (n+2, u, 2), . . . , (2n+1, u, 2),
Ison+i is a single level set of valuey∗

i , for 1 ≤ i ≤ n. This
is because atn+i there are at leastn+i+1 weighted values
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1 2 43 5 6 7 8
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6 8

Figure 10: Coverage Tree

greater than or equal toy∗

i (n+1 of valuev, andy∗

1 . . .y∗

i ),
and at leastn+i+1 less than or equal to (y∗

i . . .y∗

n and2i of
valueu). (The use of “at least” and “equal to” takes care of
the possibility of ties.) Thusy∗

i is the weighted median. In
Ison+i no prefix has smaller median nor does any final inter-
val have higher median, so there is a single level set. Thus
determining these regressions yields the values in decreasing
sorted order, so the algorithm is optimal.

3.4 Pointwise Evaluation

There are other reasonable goals for prefix isotonic regres-
sion. For example, once the regressions have been com-
puted, one might want to be able to determine Isom(x) for
1 ≤ m ≤ n and arbitraryx. One can do this inΘ(log n)
time by creating another persistent structure in the general
prefix algorithm, adding onlyΘ(n) time to the algorithm.
Note that ifx is not an abscissa of one of the data points then
the value of Isom(x) is the interval [Isom(xi), Isom(xx+1)]
if xi < x < xi+1, or (−∞, Isom(x1)] if x < x1, or
[Isom(xn),∞) if x > xn. Thus it suffices to be able to de-
termine Isom(xi) for arbitrary indexi. Note that givenx one
can determine the appropriatei in Θ(log n) time.

The following is a sketch of the procedure. The data struc-
ture is illustrated in Figure 10, where the leaf nodes corre-
spond to the indices of the values. This tree is maintained
in addition to the data structures in Figure 5. Let smallest(p)
and largest(p) denote the indices of the smallest and largest
elements in the subtree with rootp, and let cover(p) denote
the smallestr > largest(p) such that all indices beneathp
are contained in the same level set in Isor, i.e., they are con-
tained in the level set containing Isor(r). Note that all ele-
ments ofp are contained in the level set containingr in Isos,
for s ≥ r, and thatIsom(i) = Isos(s) for the largests ≤ m
such that the level set containingi was merged with the level
set containings. Let R denote this value.

Initially all nodes have an empty cover value. Whenever
a level set with indices in the interval[a, b] is merged with
level set [c, d], b < c, the node corresponding tob has
its cover value set tod. Let p denote this node and let

{Throughout, i was in r’s level set in Isor}
{R is the minimal index such that Isom(i)=IsoR(R)}

p=i’s node
r=cover(i)
while r > largest element under p do
{R is in a subtree to the right of p}

p=parent of p

if cover(p) ≤ m then r=max{r,cover(p)}
q=right child of p

if cover(q) ≤ m then r=max{r,cover(q)}
end while

while p not a leaf {R is in p’s subtree}
q=left child of p

if cover(q) ≤ m then r=max{r,cover(q)}
p=child of p containing r

end while

Isom(i) = Isor(r) = mean(r)

Figure 11: Algorithm to Determine Isom(i)

q = parent(p). If [smallest(q), largest(q)] is a subset
of [a, d) then setcover(q) = d, p = q, q = parent(q),
and repeat the process. If it is not a subset then stop
because no higher node can be newly covered. Note thatq
could not have been previously covered. The values in the
nodes in Figure 10 are the cover values that would result if
during the prefix construction with 8 data points, the level
sets were: 1:{1}; 2:{1}{2}; 3:{1}{2,3}; 4:{1}{2,3}{4};
5:{1}{2,3,4,5}; 6:{1}{2,3,4,5,6}; 7:{1}{2,3,4,5,6}{7};
8:{1}{2,3,4,5,6}{7,8}

The total time to compute the cover values isΘ(n), since
whenever an upward path is being followed it does not use
any edge previously used and there are onlyn−1 edges.

The second loop in Figure 11 shows how this tree is used.
By the end of the first loopp is the lowest node that has both
i andR beneath it. To see thatR is beneathp, if i is in the
right subtree ofp then the value ofr whenp was reached is
greater than largest(p) and the loop would have continued. If
i is in the left subtree andR is not beneathp then the level set
in IsoR(R) containingR also contained all elements in the
right subtree ofp since they are betweeni andR. Hence that
subtree is covered, so the loop would have continued because
the value ofr would have been larger than largest(p).

A similar argument can be applied to the second loop,
showing that at all timesR will be underp. This does not
say thatR is known whenp is encountered, merely that it is
beneathp. Sincep keeps decreasing in height, eventually it is
a leaf node, i.e., the node corresponding toR.

Implementing this tree is straightforward. To store the
cover value of the leaf nodes use the arraylcover[1:n] where
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lcover(i) is the value of the node corresponding toi. For the
nonleaf nodes use the arraytcover[1:n−1]. Let i ∈ [1, n−1]
and letk be the largest power of 2 evenly dividingi. Then
tcover(i) stores the value of the node over[i−2k+1, i+2k].
It is easy to show that this is a 1–1 correspondence between
elements oftcover and nonleaf nodes in the tree.

3.5 Time Required

Combining the algorithms in the previous sections gives the
following:

Theorem 1 Given weighted data{(xi, yi, wi) : i =
1, . . . , n} sorted byxi, the prefix isotonic regression problem
can be solved in

• Θ(n) time for theL2 metric,

• Θ(n) time for theL∞ metric with unweighted date,

• Θ(n log n) time for theL1 metric.

Further, given this solution, for all1 ≤ m ≤ n,

• In constant time one can determine the error of, and in
Θ(ℓ) time can determine the level sets of, Isom, whereℓ
is the number of level sets.

• In Θ(log m) time one can determine Isom(x) for arbi-
trary x.

2

Note that one can also use thecover information to deter-
mine Iso−1

m (y) in Θ(log m) time.

4 Unimodal Regression

It is a very simple process to modify the algorithm in Figure 3
to utilize prefix isotonic regression. Theerrorl values are cal-
culated via a standard prefix increasing isotonic regression,
and theerrorr values are calculated via a prefix increasing iso-
tonic regression going through the data in right-to-left order.
The time complexity of this algorithm is quite straightforward
since its total time is dominated by the time to perform the
isotonic regressions.

Theorem 2 Given weighted data{(xi, yi, wi) : i =
1, . . . , n}, their unimodal regression can be determined in

• Θ(n) time forL2 regression

• Θ(n) time forL∞ regression on unweighted data

• Θ(n log n) time forL1 regression.

2

As noted earlier, the optimum mode is not necessarily
unique. The algorithm in Figure 3 merely selects an arbitrary
mode among the optimal ones, but in some applications one
may want to apply secondary criteria to make this selection,
or to list all optimal modes.

5 Final Comments

It has been shown that the problem of determining the uni-
modal regression of a set of data can be optimally solved
by using an approach based on prefix isotonic regression.
This approach is quite similar to that in [4, 5, 9, 13, 17],
but achieves greater efficiency by organizing the regression
calculations into a systematic prefix calculation. The prefix
approach not only reduces the asymptotic time of unimodal
regression, it does so in a manner which is noticeable even for
small data sets. Prefix isotonic regression on a set of values
needs only the same amount of time as regular isotonic re-
gression, and unimodal regression needs only twice as much.

Prefix isotonic regression is of interest in its own right.
For example, if the data is from an ongoing time series, then
it allows one to continually update the regression using, on
average, only a constant number of calculations per obser-
vation. Further, the algorithm in Section 3.4 allows one to
quickly determine how later observations have changed the
regression on earlier points.

One can extend unimodal regression to index structures
other than the linear ordering of the index set used here. For
example, for an arbitrary rooted tree ofn nodes, theL2 iso-
tonic regression can be determined inΘ(n log n) time [11].
An algorithm forL1 regression on rooted trees has also been
presented, but there was no analysis of its time complex-
ity [14]. L∞ regression on rooted trees can be determined
in Θ(n log2 n) time by using the general digraph algorithm
in [8]. If the tree structure was given as an undirected graph
with no root, then a unimodal regression would be needed to
locate the best root.
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