
TOPOLOGICAL MATCHING

Quentin F. Stout
Mathematical Sciences
State University of New York
Binghamton, NY 13901 USA

3. ~ ~ Q ~

There i~ a lot of practical and theo-
retical interest in designing algorithms
to process digital pictures, of particu-
lar interest are prcbl~ms arising when
one starts with an nxn array of pixels
and stgres it, one pixel per processor,
in some sort of array-like parallel com-
puter. One of the e~rliest systematic
exasinations of such problems was Beyer's
thesis [I], in which he gave several
algorithms for a computer we call a mesh
automaton (defined below). One of the
problems he considered was topological
matching, in which one is given two pic-
tures and is (rouqhly) asked if it is
possible to stretch one picture so that
it looks like the other. (A precise
definition is qiwen below.) Beyer gave
several solutions, one of which required
@(n~) time, and Dietz and Kosaraju [2]
later gave a @(n*~2) solution. In this
paper we qive an optimal @(n) time solu-
tion, based on a simpler 8(n) time solu-
tion for a more powerful computer called

mesh computer. B~yer sugqested that
this problem was ~ prime candidate for a
non-linear recognition problem, but our
result shows that this is not true.

Our dfqitized pictures are given in
the fdrm of an nxn array of Ei~2!~, where
each pixel is either black or white.
Pixe!s ar~ located at positions (i,j),
with 1<i,j<n, and the entir~ array is
called a f~e.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

We need to define the notion of a con-
nected component, which is made slightly
confusing by the digitization. In order
to hawe such standard results as the Jor-
dan Curve Theorem, we need to use
slightly different definitions for black
and white. (See Rosenfeld [10,11].) Two
black [white) pixels at (a,b) and (c,d)
are adjacent if and only if

I = I a-c I + { b-d I
(I = max[{ a-c ~, I b-d []) ,

and are cQnn~c~d if and only if there is
a path of adjacent black (white) pixels
from one to the other. Given any pixel,
the set of all pixels connected to it is
called a comR~ent. To simplify discus-
sion, from now on we will assume that the
pixels on the edge of the figure are all
white, and their component is called the

A component C' is ~2~i~ed in a com-
ponent C if C'~C and any path of adjacent
pixels (using either definition of adja-
cency, with the path being allowed to
contain both colors) from C' to the edge
must contain a pixel in C. C' is a son
of C, and C is the Z~h~ of c', if c' is
contained in C and for any other compo-
nent D, if C' is contained in D then so
is C. Notice that sons of white compo-
nents are black, and vice versa. The son
relation forms a rooted tree whose root
is th~ backqround. Figure I shows a sam-
ple figure and its component tree.

Beyer [I] defined the ~ ! ~ i ~ !
~ h ! ~ ~ d i ~ on pairs of figures F
and G to be true if an~ only if F's com-
ponent tree is isomorphic (as a rooted
tree) to G's. This predicate captures
the correct digit~i version of homotopy
of two-dimensional figures, in that two
figures are equival~nt only if one can be
changed into the oth~r by stretching
without ripping. It i~ therefore a very
basic predicate, although it has yet to
receive much attention.

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 9 - 0 / 8 3 / 0 0 4 / 0 0 2 4 $00 .75

24

i " --

i ! / •
I I ~I F

i i ~ •
I I I •

A Figure and Its
Component Tree

Figure I.

Our machine models are ~sed on arrays
of processors. A ~h ~R~!~K ~ ~i~
n~=2 consists of n~2 copies of a proces-
sor P, with these copies located at posi-
tions (i,j), where 1<i,j<n. Processors
(i,j) and (k,l) have a unit-time communi-
cat ion link if and only if I = I i-k I +
I j-I] . All operations take unit time,
and P is assumed to have only a fixed
number of registers, independent of n,
each of which holds on~ word. If we
assume tha~ the sor,~size is fixed to be
independent of n then ~ur model is equi-
valent to assuming that P is a finite
state automaton, and the resulting array
machine is called a mesh autom~!on. Mesh
automata were among the first types of
"parallel machines to b9 investigated
[1,3,5,11], while r~centl~ there has been
greater interest in a more powerful
machine. In ~= the_ more powerful model,
which we call simply a ~h ~9~@~, the
wordsize of P is 8(loq(n)). In a mesh
computer each processor can stor~ its
coordinates, which is impossible with a
mesh automaton. ~esh computers have
appeared in [6,7,~,13,1~] and many o.h..
places.

Borer worked cn the problem of comput-
ing the topological matching predicate on
a mesh autcmaten, wher~ a figure is
stored so that pixel (i,j) is in proces-
sor {i°j). He gave sever~l solutions,
one of which compun~d • binary string
r=presentation of the fiqur~'s componont
tree. The representation was chosen so
that the string uniquely identifies the
isomorphism claEs of the tree. It is
easy to see that strings can be compared
in e(n) time, so th~ problem reduces to
the pzobl@m of rapidly computing a string
representation. 99v;nr's string genera-
tion procedure r~quired e(n~-~) time, and
Dietz and Kosaraju [2] found an algorithm
requiring e(n*=2) time. We will reduce
the m~sh automaton time to e(n), which is
the b~st possibl~, we first qivo a e(n)
algorithm for a mesh cgmputer, and then
convert this to ere for a mesh automaton.
As far as we c~n dez~rmine, no one had
previously considered performing topo!o-
qical matching on a mesh computer.

~e fill follow 89yer's lead an~ com-
pute the topological m~tching predicate
by transforming e~ch figure into its tree
and then applying a map e from rooted
trees to binary strings, where e has
the property that ~[T)=e(T') if and only
if T and T' are isomorphic. Let T be a
rooted tree, and let i T I denote the
size of T {i.e., the number of nodes in
T). e{T) will be such ~h~,

!enqthie{T)) = 2=I T I ,
and it is defined as follows:

~ I T I =I then ~ (T) =01
~Isl let TI, ..., Tk be the subtrees

whose roots are the sons of the
root of T. Sort 9(TI), ...,
e(Tk) by lenq:h, lon~est strings
first, and among strings of the
same length, sort numerically.
Let S d~note the concatenation
of the sorted lists. Then
e(T)=0S1.

For example, if T is the ~ree in Figure
I, then

e{T) = 0000011011100011011011 .
It is easy to see that e(T)=e(T I) if an(]
only if T and I. are isomorphic, and
J~gth(~(T)) < n~=2 for any tree T aris-
ing from an nxn £iqure (n>1).

The algorithm has two parts: initiali-
zation and string formation. During ini-
tialization, for each component a record
is created which represents the component
and which moves about during string for-
mation. This record contains the compo-
rent's label, which is the smallest row-
major index of any pix~l in th~
component. {The row-major index of pixel
{i,j) is (i-1)*nfj.) It also contains
the component's depth in the component

25

tree, the size of the subtree that i+ is
the root of, its parent's label, and the
size of ~he largest of its sons' sub-
trees. In the Initializa-ion section we
show that this can be constructed in
S{n) time.

Strinq formation is somewhat more com-
plicated. We recursiv~ly construct the
strinq, storing I bit per processor. We
initially "assign" processors I through
2~(size of the component tr~e) to the
entire tree. In g~neral, given a tree T
with root p, which has been assigned pro-
cessors A through B, we first put ~ 0 in
A and a I in B. There are three situa-
tions which can occur:

I. IT i = 1, in which case we are fin-
ished.
2. The larqest son of p has a subtree
of size <0.5.~ T ~ , in which case pro-
cessors ~+I through 8-I are divided
into blocks among the subtrees whose
roots are sons of p, each subtree
receiving twice as many processors as
the size of the subtree. These
blocks are assiqne~ so that larger
trees come first, with ties broken
arbitrarily. Each node of T, except
for P, determines which block to move
to and moves there. Then the strings
in each block are determined, and
when finished strings in blocks of
the same size are sorted numerically.
3. The largest son of p has a subtree
of size >0.5'I T] , in which case
there is a unique node g, with larg-
est son r, such that

~ Tree|q) ~ > 0.5~I T i ~nd
I Tree(r) ~ < 0.5=~ T ~,

where Tr~e(q) is the subtree with
root q. Nodes on :he path from p to
q are called "spine.' nodes, and each
spine node determines where its block
is. (Except for p, each spine node's
block is within another's.) Each
spine node puts a 0 at the front of
its block, a I at the end, and helps
its sons determine their subblocks.
Each node moves to an appropriate
block, in which the strings are gen-
erated. Then strings of the same
length corresponding to sons of the
same spine node are sorted numeri-
cally, completing the processing for
T. Notice that even though a spine
node s is a son of a spine node t,
s's strinq is not compared that of
any other son of t since all other
sons have shorter strings.

In the String Generation section we show
that given a tre~ of N nodes, all of the
processinq in cases 2 ~r 3, except for
the qeneration of substrinqs, can be
accomplished in e(N~*0.5) time. The role
of the ~pine nodes is to guarantee that
each suhblock, which is where the recur-

sire strinq formation occurs, is no lar-
ger than one-half of the oriqinal. If
S(N) denotes ~he worst-case time to g Dn-
orate the strinq for a tree of N nodes,
qiven that initialization has been done,
then S will satisfy:

S(I) = C
S(N) = D~N=~0.5 + S (N/i)

which gives S (N)=B (N=~0.5) • Since
N<n~2 , we have

TheQK~N ~ Using a mesh computer of size
n*~2, our alqorithm derides topological
matchinq in 8(n) tlm~.

Both the initializauion and string
formation algorithms use simulated random
access reads and writes. In a random
~GqZZ~ E[~ there are several processors,
each of which needs to fetch a word of
data in some source processor. TheTe may
be several different source processors,
and for any source there may be several
processors trying to r~ad from it. Each
processor knows the coordinates of th~
source processor it is tryinq to read
from. In a random acq~s~ ~Ki~i there are
processors which are trying to writ% a
word of data to some t~rqet processor,
where ther~ may be multiple targets and
multiple processors trying to writ9 to
the same target. Writing introduces an
addition complication in that one must
specify how conflicts ~re to be resolved,
since two or more processors may try to
write different values into the same tar-
qet. Sometimes we want the maximum value
being sent, and sometimes we want the
sum. By utilizing sorting, random access
reads and writes can ~9 performed in @(n)
time on a mesh computer of siz~ n**2,
assuming that the conflict resolution for
the writes is reasonable [9]. (Reason-
able resolutions include any of the ones
used here.)

We need to show hew to create th=
record used to represent a component in
the strinq formation phase. First we
label each component, as described in
Nassimi and Sahni [7]. (B~cause of the
different definitions of ccnnectedn~ess,
we must use slightly different procedures
for white and black components.) The
label of e component is the smallest
row-major number of any pixel in it, and
at the e~d each processor knows the label
of its component. For each component,
the pixel who s~ ~ow-major index equals
that of its component is called the com-
ponent's ~ R ~ ~ X ~ and is responsi-
ble for creati~q the component's record.

First each representative finds the
label in the processor to its left, which
is the label of the component's parent.

26

Now each processor does a random access
read, readin~ from its component's repre-
sentative the label of the component's

parent. Then each processor creates a
record containinq its label, that of its
compenent's parent, and a counter which
is initially 0. In each row these
records are rotated from left to right,
with only the representatives really
using them. Each representative also
keeps a depth counter, which is initiall~
0. The first ti~e the representative
receives a record which starts with its
parent's label, it adds I to its depth
counter, adds I to the record's counter,
remembers its qrandparent's label, and
then passes the record on. The first
time it receives a record starting with
its qrandparent's label it adds I to its
depth counter, adds I ~o ~he record's
counter, remembers i~s greatgrandparent's
label, passes the record on, and so on.
This continues until each processor
receiv{s bac~ the record it started, at
which time each representative's depth
counter has the correct value.

~ach processor now does a random
access write to its component's represen-
tative, writing the counter in the record
circulated above, with these values being
summed by the write operation. When fin-
ished each representative knows the size
of its subtree, and with a few more ran-
dom access reads an4 writes each repre-
sentative can complete the record it is
creating for its component. The total
time for this pa~t is @(n).

1 2 15 16 17 20 21 22

4 3 14 13 18 19 24 23

5 8 9 12 31 30 25 26

6 7 i0 11 32 29 28 27

59 58 55 54 33 36 37 38

60 57 56 53 34 35 40 39

61 62 51 52 47 46 41 42

64 63 50 49 48 45 44 43

Processor Number ing

The Recursive Pattern

Figure 2. Proximity Ordering

~-~ ~ ~Q~A~ZQ~

we need to use an ordering which com-
bines some of the best features of
snake-like ordering and shuffled row-ma-
jor ordering [7,14]. Figure 2 illus-
trates this recursively constructed ord-
ering, where we assume n is a power of 2.
While we have not seen this ordering used
elsewhere, we suspect that perhaps it has
been since it is fairly natural. It has
the property that there is a constant c<~
such that processors numbered i and j are
no more than C-J i-j]~*0.5 communication
links ~part, and for this reason we c~l!
it a ~ i ~ X - Q ~ . Further, there
is a constant D such that any block of
processors i..j contains a square of
edqelenqth D~(j-i)~e0.5 . This enables
us to treat any block as if it were a
square since we can always move all the
required data to this subsquare, in
O((j-i)-.0.5) time, putting only I/D
items per processor. An important point
is that we need not iterate this, that
is, we never encounter a situation where
we must compress data into a square and
then while processing it we create a sub-
block which in turn must compress the

data. Any time data is compressed we
then uncompress it before performing a~y
operations on subblocks. We use this
proximity ordering throuqhout string for-
mation, and also omit any further ~xpli-
cit discussion of when to compress.

We need to show that if a tree T, with
root p, has h~en assigned processors A
through B (where 8-A+I = 2~ T J), and
all nodes of T are in this block, then
for either case 2 or 3, in @(l T J*~0.5)
time the subblocks can be determined and
each node can move to the appropriate
subbiock. The root p knows which case
holds, so by a random access read each
node will know.

First suppose case 2 holds. In A..B
we sort the nodes so that p is first,
followed by its sons, followed by all
others. The sons of p are sorted in
decreasing order of the size of their
subtree. Since A..B is approximately a
square, we sweep accross e~ch row to find
the sum of the sizes of p's sons' sub-
trees. We then go down the first column,
assigning space to each row, and then
back accross each row assigning subblocks

27

to p's sons. 8¥ usinq path comprgssion,
as in Nassimi and $ahni [7], each node
determines which son of p it is beneath.
Now each node does a random access read
to read from this son the subblock to
move to.

Cas~ 3 is quit~ similar, except that
first ~ach node needs to determine if it
is a spine node. It does this by reading
p's subtr~e's si2~ ~nd comparing it to
its own. If q is a spine node and g'~
depth is k larger than p's, then
Tree(q) 's block go gs from A+k to
A+k-1÷2-] Tree (q) I . If q's largest son

is not a spine node (recall that q knows
the size of its largest son) then all
nodes in its subtrge move to q's block,
while if q has a spine node for a son
then q computes the region where all
node~ under q, but not under its spine
son, should move to. If S is the size of
q's spine son's tree then :he region goes
from A+k+I+S tc A+k-]+2*l Tree(q)] .
Once each spine node has computed this
information, each node determines (via
path compression) its nearest ancestor
which is a spine node, and from this det-
ermines what region to move to. Once
there, no{-spine node sons of a spine
node calculate their subblocks, and then
all nodes move to the proper subblock.

Whichever case holds, the total time
is at most 8(IT]**0.5) . After the
strings for th~ subblocks have been
fgrmed there may be a final sort phaso,
which also takes at most 8(~ T]~0.5)
time. This finishes the proof that
strinq formation t~kes no more than S(n)
time on a mesh computer of siz~ n~2,
which in turn finishes the proof of Theo-

To convert the previous algorithm into
one for a mesh autgmaton we will use
clerks to simulate the processors of the
mesh :omputer. Clerks are just a syste-
matic form of counting, and counter-based
solutions have b£~n given fo~ many mesh
automaton problems [3,11]. Clerks are.
described in [12.13], and use @(log(n))
processors to simulate one processor of a
mesh computer, with unit-time operations
being s~mulated in 8(!oq(n)) time. At
most 8(n$~2/loq(n)) processors can be
simulated so we must reduce the number
necessary.

We do this by dividing the nzn array
into squares of edgelength K, where
K=S(log(n)~2). There are 4~K-~ proces-
sors on the edge of each square, and in
each square we create an equal number of
clerks, as in Figure 3. In each square
we set up a 1-I correspondence between
the edge pixels and the clerks, and from

r

c._ltrk

C t ~,'k

K

I c,,,k I "" [c,,,k > SCIogC.,D

I I " " 1 c , , .k -

C l,.,..l,c

Figure 3. Clerks in a Square

now on when we speak of edge pixels doing
some calculation we mean their associated
clerk. The clerks form a 8(n/log(n)) x
Sln/log(n)) array, so any major opera-
tion, such as sorting or random access
reads, which takes 8(n) time on a mesh
computer of size n*~2 will take
e(n/log(n)) steps on the clerks. Since
each step takes 8(log(n)) time, the total
time remains 8(n).

First a procedure similar to that in
[13] is used to label each component
which includes an edge of some square,
where the label is the minimum row-major
index of any edge pixel in the component,
and where only edge pixels know of the
label. We call any such component a
!~i~ ~e~aea~n~, and all others are
~!~I~ ~s~aaa~. Note that unla-
beled components lie entirely within a
KxK square, and ~ence are the root of a
subtree of size lass than K$~2. Any com-
ponent which is the root of a tree with
fewer than K**2 nodes is cal~ed sm~ll,
and all others are I~S~. -~-- All large com-
ponents are labeled, but small components
may be either labeled or unlabeled. Pro-
cessing of large components will closely
follow the mesh ccm~uter algorithm, but a
different procedur~ is needed for small
ones.

We divide the mesh automaton algorithm
intothree parts: initialization, string
formation for small components, and
string formaticn for large components.

28

Once the clerks have been formed and
the labeled comBcnents determined (taking
e(n) time), we need to find essentially
the same information as was found in the
initialization section for mesh compu-
ters. When we determine the size of a
node's subtree w~ will separately count
the number of labeled and unlabeled
descendants, and we must be a bit more
careful when determining depth. Within a
square there may be several edge pixels
in the same labeled component. Once
labeling is completed we need only one of
these per square, so we use the one of
minimal row-major index, and from now on
the rest are iqncred.

In each square each edge pixel first
counts its unlabeled descendants within
the square, not counting descendants of
labeled offspring. Any simple procedure
can be used since the squares are so
small. Each pixel then writes its count
to its component,s representative, with
these values beinq summed. In 8(n) time
each component k~ows the number of unla-
beled components in its subtree, not
countinq ones beneath labeled offspring.

Each component representative deter-
mines its compen~nt's parent, and by a
random access read each edge pixel reads
this. To determine the component's depth
and size we circulate information as
before, but now entire squares are moved.
Notice that if a compcnent's representa-
tive tried to add to the counter of each
of its ancestors then it may have to do
this B(n) times, resulting in e(n*log(n))
total time. To avoid this, first each
edge pixel forms a record containing its
label, the label of the closest ancestor
which does not intersect its square, Zhe
difference in depth between it and this
ancestor, and a counter which is ini-
tially 0. (It finds the closest ancestor
outside the square by finding the the
qreatest ancestor touching the square and
using its parent.) Now this information
is rotated, squales moving together. As
before, as each square arrives each
representative is looking for a recor~
corresponding to a specific ancestor. If
that ancestor is present th~n the repre-
sentative adds its count of unlabeled
descendants, plus I, to the ancestor's
counter. It then takes note of the next
ancestor to search for (in later squares)
and adds the depth information to its own
depth counter. This takes 8(K) time per
square, for a total time of e(n) before
each square's records return to it.

Now each edge pixel adds to its coun-
ter the counts of all edge pixels lying
in the sguare which are in descendant
components. All ~dqe pixels do a random
access write to their representative,

writing their counter, with these values
beinq summed. At this point all repre-
sentatives of labeled components know
their depth and the size of their sub-
tree, and the rest of initialization is
as before.

For small string formation we think of
the region below one clerk and above
another as being a ,'bag,, attached to the
top clerk. A bag has 8(Iog(n)*~2) pro-
cessors and is used to store string
representations cf small components,
storing one bit ~er processor. Bags are
less passive than their name implies for
they occasionally help their clerk per-
form operations.

In each square a ~ S @ is prepared
by each edge pixel which is in a compo-
nent having unlabeled sons in the square.
The package contains the string represen-
tations of all u~lab~led sons in the
square, and also some header information.
The strings are in the bag, and the
header is in the clerk. Some packages
are too big for a s!nqle b~q, in which
case several clerks help carry them. One
can show that there is enough room for
all the packages.

Th~ header contains the package's
size, which component it is in, and a
~e~. If the component is large then
it is the target, but if it is small then
the target is th~ component's greatest
ancestor which is small. By path com-
pression each component can determine its
target. Also, each small component
representative plepares a p~ckaqe with no
strings, but which has a h~ader with the
component, its parent, and its tarqet.

We now sort packages by their tarqet.
If the tarqet is small than all of its
packages are used tc form the component's
strinq. Any simpl~ procedure can be used
since the size and number of packages is
o(loq(n)t*~). The strinq is put into a
new packaqe with the component's parent
as target, and a second sort by target
occurs.

The only targets remaininq are large
components. A larqe component may
receive many packaqes, with O(n~*2) total
size, but each string they contain is no
lonqer than O|Ioq(n)~4). This fact can
be used to order and then concatenate all
the strinqs in Cln) time. The result is
packed into baqs with a he~der giving its
length and the label of the component,
and the entire assembly is called a ~a~
laB-

29

To finish ~he small component string
formation phase, w~ now sort the cara-
vans, with longer caravans first and,
among equal lenqths, sorting numerically.
There may be groups of caravans which are
equivalent, and 0ow the clerk holding the
header of a caravan does a random access
write to the component, telling it the
start of aIl equivalent caravans. This
completes this section, taking 8(n) total
time. we should mention that, while all
of the clerks may have been involved in
the forming of the strings for the small
components, they also retained all of the
information about the edge pixel they
represent.

S.~ L~RS~ ~JS ~Q~A~!Q!

The large s#rinq formation is almost
identical to that for the mesh computer,
and now we are only generating a bit per
clerk, instead of the bit per processor
used in the packets and caravans. One
difference is that we only count the num-
ber of large descendants when we assign
zpace.

If a tree T has large sons SI, ...,
St, if the string part of its caravan is
R, and if the sons a~e ordered so that
I Sj ~> S{j+I) I o~ else I Sj H S(j÷I) I and
efSi)"<"e(S(~+1)), then e(T) will be
0e(S1) ..e (St) RI. Here the ordering "<"
is slightly different than before. As we
are comparing st=ings, if they are equal
up to a point and then one stops because
the rest is in a caravan, while the other
one still has more bits arising from
larqe components, then the second one is
judged larger, while if they both stop we
compare the ~cint~rs back to the caravans
to finish the comparison. This has
changed cur e function, but does not
chanqe the fact that it preserves tree
isomorphism for t~ees generated from fig-
ures of the same size. One deficiency is
that the sam~ tre~ can have different
string representations when it arises
from figures of different sizes (this
occurs because the definition of small
depends on the figure size). While this
does not alter cuz ablilit~ ~o cempute
the topoloqical matching predicate, it is
not desirable. The deficiency can be
corrected, in e(n) time, by fairly
straightforward techniques which we omit.

To comDleze the algorithm we need to
insert the c~ravans into the large compo-
nent strings, storing everything as I
bit/processor. This can be done in 8(n)
time, which completes our proof of the
followinq theorem.

~ K ~ ~ On a mesh automaton of size
n~*2, our algorithm decides topoloqical
matching in 8(n) tim~.

Following Beyer's lead, we have com-
pUted the topological matching predicate
by transforming a figure into a binary
string which identifies the isomorphism
class of the figure's component tree.
Since we have shown that such a string
representation can be computed in linear
time on either a mesh automaton or a mesh
computer, we can give linear time solu-
tions to several other topological prob-
lems. For example, it is easy to show
that the string can be processed in
linear time to d~cide if the figure is
connected, or simply connected, or to
determine the figure's genus. Linear
time sqlutions were already known for
these problems [3,11], but our algorithm
provides a systematic, albeit compli-
cated, approach which presumably can be
used for related problems.

Since the ccm~onent tree captures the
notion of homotopy for two-dimensional
digital figures, it is natural to con-
sider higher dimensions. Our algorithms
can be extended to hiqher dimensional
mesh computers and automata, remaining
linear in the edqelenqth, but unfortu-
nately the component tree is not as use-
ful in hiqher dimensions. For example,
if one three-dimensional figure consists
of two disjoint solid black tort in a
white background, and a second figure has
the two tort disjoint but linked, then
the teo figures will have equivalent com-
ponent trees, even though they are not
homotopic.

Beyer's thesis included a large number
of open problems, most of which have now
been solved [3,11,13]o The labeling
technique used in our mesh automaton
algorithm can be used to solve two more
of these, namely the "representative"
problem and the "qold plate" problem.
(This labelinq technique for mesh autom-
ata was introduced in [13], but I forgot
to mention that it also solved these
problems.) In the representative problem
exactly one Dixel in each black component
is to be changed to red. To do this,
just have what we called the representa-
tive in the mesh automaton solution act
as the representative here. This solves
the problem for all labeled components,
and in each square we can use a simple
8(K*~2) alqorithm to pick the representa-
tives for the unlabeled ones. In the
gold plate problem one component has a
qold pixel and we are to make the rest of
its component golden also. If it is an
unlabeled component we use a @(K~2)
alqorithm, while if it is labeled we
notify all edge ~ixels in that component~
and they in turn propogate the gold
throuqhout their square.

30

The one remaining open problem from
Bever's thesis is to determine a minimal
distance solution to a maze. In this
problem one is given a solvable black/
white maze with designated start and stop
positions and is to mark a minimal dis-
tance path between them. Beyer showed
that one could decide if the maze was
solvable or not in linear time, but to
date no linear time algorithm has been
found for marking the path. Linear time
algorithms for d~ciding the solvability
of mazes on higher dimensional mesh
automata appear in [4,13], and a linear
time algorithm for marking a minimal path
on a (2-dimensional) mesh computer
appears in [6]. Determining if there is
a linear time algorithm for marking a
minimal path is a particularly intrigue-
inq question.

12. Q. F. Stout, Drawing straight lines
with a pyramid cellular automaton, Into.
Proc. Letters 15 (1982), 233-237.

13. Q. F. Stout, Using clerks in parallel
processing, 23rd Found. of Computer Sci.,
1982, 272-279.

14. C. D. Thompson and H. T. Kunq, Sort-
ing on a mesh-connected parallel compu-
ter, Comm. ACM 20 (1977), 263-271.

R~E~RZM~_s

I. W. T. Beyer, ~ecoqnition of topologi-
cal invariants by iteraive arrays, Ph.D.
thesis, Bathematics, MIT, 1969.

2. P. Dietz and S. R. KosarajO, Recogni-
tion of topological equivalence of pat-
terns by array automata, J. Comp. and
Sys. Sci. 20 (19~0), 111-116.

3. S. R. Kosaraju, Cn some open problems
in the theory of cellular automata, IEEE
Trans. Computers 23 (197~), 561-565.

4. S. R. Kosaraju, Fast parallel process-
inq array algorithms for some graph prob-
lems, ACM Symp. cn Theory of Computing 11
(1979} , 231-236.

5. S. Levialdi, Cn shrinking binary pic-
ture patterns, Comm. ACM 15 (1972),
789-801.

6. R. Miller and Q. F. Stout, Mesh-compu-
ter alggcithms for some topological and
geometric problems, to appear.

7. D. Nassimi and S. Sahni, Finding con-
nected components and connected ones on a
mesh-connected parallel computer, SIAR J.
Computing 9 (1980), 744-757.

8. D. Nassimi and S. Sahni, Data broad-
casting in SIMD computers, IEEE Trans.
Computers 30 (19@1), 101-106.

9. A. Rosenfeld, Digital topology, Amer.
Math. Monthly 86 (1979), 621-630.

demic Press, 1979.

11. A. R. Smith III, Two-dimensional for-
mal languages and pattern recognition by
cellular automata, 12th Symp. on Switch-
ing and Automata (1971), Iq4-152.

31

