
In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures (1993), pp. 224-229.

Optimal Parallel Construction of Hamiltonian Cycles and
Spanning Trees in Random Graphs

(Preliminary Version)

Philip D. MacKenzie1 Quentin F. Stout2

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract
We give tight bounds on the parallel complexity of some problems involving random graphs.

Speci�cally, we show that a Hamiltonian cycle, a breadth �rst spanning tree, and a maximal
matching can all be constructed in �(log� n) expected time using n= log� n processors on the
CRCW PRAM. This is a substantial improvement over the best previous algorithms, which re-
quired �((log log n)2) time and n log2 n processors. We then introduce a technique which allows
us to prove that constructing an edge cover of a random graph from its adjacency matrix requires

(log� n) expected time on a CRCW PRAM with O(n) processors. Constructing an edge cover
is implicit in constructing a spanning tree, a Hamiltonian cycle, and a maximal matching, so this
lower bound holds for all these problems, showing that our algorithms are optimal. This new lower
bound technique is one of the very few lower bound techniques known which apply to random-
ized CRCW PRAM algorithms, and it provides the �rst nontrivial parallel lower bounds for these
problems.

1 Introduction

By a random graph on n vertices, denoted Gn;p, we mean that each of the
�n
2

�
edges is included with

probability p, where p is a constant, 0 < p < 1. Random graphs have been extensively studied and
have very interesting properties. For instance, with high probability, in Gn;p a Hamiltonian cycle
exists; every breadth �rst spanning tree has height 2; and, for n even, there is a maximal matching
which includes all the vertices. In this paper, we study the parallel complexity of constructing a
Hamiltonian cycle, a breadth �rst spanning tree, and a maximal matching in Gn;p.

Perhaps the most surprising result in this paper is a nearly-constant time algorithm for con-
structing a Hamiltonian cycle in Gn;p. It is well known that the general problem of �nding a
Hamiltonian cycle in a graph is NP-complete. Because this is a very important problem with
many practical applications, researchers have studied under what conditions this problem becomes
tractable. Some of the most successful results of this type are for the class of random graphs. Bol-
lob�as, Fenner and Frieze [BFF87] give an algorithm which constructs a Hamiltonian cycle in Gn;p if
one exists. This algorithm runs in polynomial expected time for p � 1

2 . Gurevich and Shelah [GS87]
and Thomason [Tho89] independently improve on this result, giving algorithms which run in linear
expected time for any constant p. These algorithms are optimal, since linear time is needed just
to write the output. Frieze [Fri87] gives a parallel algorithm which constructs a Hamiltonian cycle

1Supported by an AT&T Fellowship and by NSF/DARPA grant CCR-9004727. Current address: Dept. of
Computer Sciences, Univ. of Texas, Austin, TX, 78712-1188

2Supported by NSF/DARPA grant CCR-9004727.

1



from Gn;p in O((log log n)2) expected time and uses n log2 n processors. In this paper we improve
on this result substantially, showing that one can �nd a Hamiltonian Cycle in �(log� n) expected
time while using only n= log� n processors. This achieves linear speedup, and is thus PT-optimal.

A slight modi�cation to the algorithm for constructing a Hamiltonian cycle allows us to construct
a maximal matching with the same time and processor bounds. Also, we give a fairly simple
algorithm for constructing a breadth �rst spanning tree, again with the same time and processor
bounds.

Implicit in each of the problems above is �nding an edge cover. We describe a new technique
which allows us to prove a lower bound on �nding an edge cover for Gn;p from its adjacency
matrix. Speci�cally, we show that �nding an edge cover requires 
(log� n) expected time using
O(n) processors in any parallel model of computation in which each processor can read at most
one entry in the adjacency matrix in a single time step. (The CRCW PRAM is one such model.)
Consequently, this implies that all the algorithms in this paper are optimal with respect to running
time for up to O(n) processors.

This new lower bound technique is one of the very few lower bound techniques known which
apply to randomized CRCW PRAM algorithms, and it provides the �rst nontrivial parallel lower
bounds for these problems. The technique is formulated in terms of a new model of parallel
computation, the parallel target shooting model. This model is conceptually similar to Valiant's
parallel comparison model, and can be used to analyze any problem which can be reduced to
processors probabilistically hitting targets. In our case the problem is to construct an edge cover,
and hitting a target implies locating an edge covering a speci�ed vertex. Finding other such
problems could be very helpful in proving more lower bounds for randomized parallel algorithms.

2 De�nitions

The algorithms presented here run on the Arbitrary Concurrent Read, Concurrent Write (CRCW)
Parallel Random Access Machine (PRAM). In this model, both concurrent reads and concurrent
writes are allowed, and if two or more processors write to any memory cell, an arbitrary processor
succeeds in writing its value to that cell.

We de�ne high probability as meaning probability � 1� n�� for any constant � > 1.
For any base z � 2, we de�ne log(1)z n as logz n and log(i)z n recursively as logz(log

(i�1)
z n). We

de�ne log�z n as the smallest integer i such that log(i)z n � 1. When z is omitted we assume base 2.
It is well known that log� n is an extremely slow growing function of n, and in fact log� n � 5 for
n � 265536. We can convert between bases using the following lemma.

Lemma 2.1 (MacKenzie [Mac92]) For z � 4, log� n � log�z n + log� z.

3 Hamiltonian Cycle

We present here a parallel algorithm for �nding a Hamiltonian cycle in Gn;p which will succeed with
high probability. If it does not succeed, we will simply revert to the linear expected time algorithm
of Gurevich and Shelah [GS87]. We will explain later how we guarantee that failure in the parallel
algorithm does not increase the expected time of the serial algorithm.

Our algorithm runs in three stages as follows:

Stage 1 Remove
p
n vertices, and �nd a Hamiltonian cycle through them in constant time.

Stage 2 Connect the remaining n � p
n vertices into at most log6 n simple disjoint paths in

O(log� n) time

2



Stage 3 In constant time, hook the O(log6 n) simple disjoint paths found in Stage 2 into the
Hamiltonian cycle found in Stage 1.

The next three subsections describe Stages 1, 2, and 3 respectively. We will need to use the
following lemma.

Lemma 3.1 (Frieze [Fri87]) The probability that a Hamiltonian cycle does not exist in a random
graph Gn;p is at most n2(1� p)n�1.

3.1 Hamiltonian cycle through
p
n vertices

We attempt to �nd a Hamiltonian cycle through the �rst
p
n vertices using n processors using the

following procedure:

Step 1 Assign
p
n processors to each vertex. Let s =

p
logn, and partition the vertices into

consecutive groups of size s. Then with the processors assigned to the vertices in each group
we can check all s! possible Hamiltonian cycles in each group in constant time, and choose
one, if one exists.

Step 2 Each vertex in a group without a Hamiltonian cycle uses log2 n processors to try to connect
to another group's Hamiltonian cycle. Each processor for a vertex v randomly picks a vertex
v0 from the set of

p
n vertices and checks to see if v0 both has not been chosen by another

processor, and is part of a Hamiltonian cycle. If this is so, then the processor checks to see if
v can be hooked into that cycle between v0 and next(v0) by checking if (v0; v) and (v;next(v0))
exist. A processor which has found a place to hook is then chosen for vertex v, if one exists,
and v is hooked into the chosen place.

Step 3 The lowest numbered vertex in each of the original groups with a Hamiltonian cycle breaks
its cycle by cutting its outgoing edge. Now we are left with Hamiltonian paths which we
must try to connect. Each group which originally contained a Hamiltonian path P1 usesp
n processors to �nd the next group which originally contained a Hamiltonian path P2 in

constant time. Then it can simply check for every vertex v in P2's original group whether P1

can be hooked into it, i.e. if v1 and v2 are the endpoints of P1, then the processor checks if
(v; v1) and (v2;next(v)) exist. A processor which has found a place to hook is chosen for P1,
if one exists.

Step 4 Find a set of log4 n consecutive groups which are all connected and disconnect it from the
rest by having the last group in this set remove its connection to the next group and close its
cycle using the outgoing edge from the �rst vertex which we removed in the last step. Now
partition the

p
n=s groups up into consecutive supergroups of log6 n groups. Now each path

with endpoints in a supergroup of log6 n groups uses log2 n processors to randomly try to
hook into a path at a vertex from the next supergroup of log6 n processors, except for paths
with endpoints in the last supergroup, which try to connect to the cycle of size log4 n which
we just formed.

Obviously, the procedure given takes constant time. The following lemmas prove that it works
correctly.

Lemma 3.2 After Step 1, the probability of a group not having a Hamiltonian cycle is O(log�7 n).

Proof: By lemma 3.1, the probability of a group of s =
p
log n vertices in a random graph not

containing a Hamiltonian cycle is � s2(1� p)s�1 which can be loosely bounded by O(log�7 n). 2

3



Lemma 3.3 After Step 2, all the vertices which were attempting to hook onto a Hamiltonian cycle
succeeded with high probability.

Proof: By lemma 3.2 and a Cherno� bound, we can show that with high probability, no more
than O(

p
n=s log7 n) groups failed in the �rst step, so there are O(

p
n= log7 n) vertices attempting

to hook in Step 2. Thus there will be O(
p
n= log5 n) processors randomly picking vertices. The

probability that a processor picks a vertex which is not part of a Hamiltonian cycle or picked by
another processor is obviously O(log�5 n). Also, the probability that a chosen vertex can not be
hooked into is � 1� p2. Then the probability that all log2 n processors assigned to one vertex fail
is � c� log2 n for some constant c, and thus with high probability, all vertices will succeed. 2

Lemma 3.4 After Step 3, each supergroup of log6 n consecutive groups will have at most O(logn)
endpoints of paths, with high probability.

Proof: The probability of not being able to hook the endpoints of a Hamiltonian path into another
Hamiltonian path of s vertices is � (1� p2)s�1 � log�7 n. Then using Cherno� bounds, the lemma
follows. 2

Lemma 3.5 After Step 3, there will be log4 n consecutive groups which are connected, with high
probability.

Proof: By lemma 3.2 and lemma 3.4, with high probability, there will be O(
p
n=s log5 n) groups

which did not succeed in steps 1 and 3. If we then partition the
p
n=s groups into consecutive sets

of size log4 n, we will have more sets than failed groups, and thus there will be a set for which all
the groups succeeded. 2

Lemma 3.6 After Step 4, we will have a Hamiltonian cycle, with high probability.

Proof: In each supergroup except the last, there will be O(log3 n) processors which randomly pick
from log6 n vertices, and there will be at most O(logn) vertices which are endpoints of Hamiltonian
paths. Thus the probability that a processor picks an endpoint or picks a vertex which is picked by
another processor is O(log�3 n). For the last supergroup, the only change is that the probability
that a processor picks a vertex which is picked by another processor is O(log�1 n), and it obviously
cannot pick an endpoint. The probability that the endpoints of a path can be hooked in at a chosen
vertex is � 1 � p2. Thus for some constant c, the probability that any path cannot be hooked is
� c� log2 n. Then with high probability, all paths are successfully hooked.

This obviously forms at least one cycle. To form more than one, some endpoints would have
to connect to their own path. But this cannot happend since endpoints only connect to paths at
higher numbered vertices, except for the last supergroup. The last supergroup only connects to the
cycle formed in Step 4, and thus could not connect to itself, since the cycle is disconnected from
the other paths. Thus exactly one cycle is formed through all the vertices. 2

3.2 Log-star paradigm

Let m = n � p
n. Here we show how to use the log-star pardigm of Gil, Matias, and Vishkin

[GMV91] to perform Stage 2 of our algorithm, connecting the vertices of a random graph Gm;p into
a small number of simple disjoint paths. Gil, Matias, and Vishkin [GMV91] consider the following
abstract problem.

4



Problem 3.1 Given an array of m active items and a constant 0 < p < 1, assume that in a single
round, a processor can be assigned to try to deactivate an active item, and if q processors are trying
to deactivate an active item, they succeed with probability 1� (1� p)q. The problem is to deactivate
all the items.

The log-star paradigm solves this problem using m processors in an average of log�m rounds.
The expected number of active items at the beginning of round i is at most m=qci , where fqig is a
sequence de�ned by qi+1 = 2qi ,q1; c > 0 are su�ciently large constants.

Round i consists of two steps:

Allocation Allocate to each active item a team of size qi. The allocation succeeds for all but
1
2m=qci+1 active items with high probability. Only allocated items participate in the deacti-
vation step.

Deactivation Deactivate each participating item. The deactivation succeeds for all but 1
2m=qci+1

participating items with high probability.

Matias and Vishkin [MV91] provide the allocation step, and thus only the deactivation step
needs to be implemented for any speci�c problem.

In our speci�c problem, an active element will be the highest numbered endpoint of a simple dis-
joint path, or the single endpoint of a path of length 0. Each active element will have a pointer to the
other endpoint of its path. Deactivation of an active element will consist of hooking the endpoints
of a path into another path to create a longer path. A path P1 = (v1; v2; : : : ; vk) can be hooked into
another path P2 = (w1; w2; : : : ; wl) to make a larger path P3 = (w1; : : : ; wj; v1; : : : ; vk; wj+1; : : : ; wl),
if the edges (wj; v1) and (vk; wj+1) exist, and no other path is also trying to hook between ver-
tices wj and wj+1. Note that in one time step, multiple paths could be hooked into a single path
(between di�erent vertices), and a path which is being hooked into can also hook into another path.

Let k and h be large enough constants such that the following analysis holds. Let q1 =
log(log

� n�h) n. Note that q1 is bounded by a constant (depending on h). For the �rst deacti-
vation step, we partition the vertices into consecutive groups of size kq1. These will be called the
initial groups. For each initial group, we try all (kq1)! permutations to see if a Hamiltonian cycle
through it exists. If so, then we will cut the edge out of the highest numbered vertex, and use the
remaining Hamiltonian path through this initial group as part of the full Hamiltonian cycle. We
let the highest numbered vertex (which is one of the endpoints of the Hamiltonian path through
the initial group) be an active element, and store the number of the other endpoint of the path
with this active element. If no Hamiltonian cycle through the initial group exists, then we consider
each vertex in the group to be an active element. To complete the �rst step, for all initial groups
with Hamiltonian paths, we use the kq1 processors assigned to the group to try to hook into the
next initial group in the ordering, if that group also has a Hamiltonian path.

For step i > 1, partition the vertices into groups of size q6i , and let Hi;j be the jth group.
Consider an active endpoint v1 in Hi;j, which we assume is not the last group. We try to deactivate
v1 by hooking its path P to a vertex in Hi;j+1 which is in the interior of a path. We allocate qi
processors to v1 using the allocation routine of Matias and Vishkin [MV91]. Each of these processors
will randomly choose k vertices in Hi;j+1. A processor checks to see if any chosen vertex v0 both
has not been chosen by another processor, and has a successor in its path. If this is so, then it
checks to see if P can be hooked into that path at this vertex, i.e. if v1 and v2 are the endpoints
of P , then it checks if (v0; v1) and (v2;next(v0)) exist. Then a processor which has found a place to
hook is chosen for P , if one exists.

We now show that this procedure connects all the vertices into at most log6 n simple disjoint
paths.

5



Lemma 3.7 After every step, and for every path, the endpoints of that path always belong to the
same initial group.

Proof: Through all the deactivation steps we are simply hooking paths into the interior of other
paths. Therefore the endpoints of any path are simply the endpoints of one of the paths of an
initial group. 2

Lemma 3.8 The active element of a path (which is an endpoint of the path) is the highest numbered
vertex in the path.

Proof: This is obviously true since we only connect endpoints to higher numbered vertices. 2

Lemma 3.9 After every step i, when the vertices are partitioned into consecutive groups of q6i+1

vertices, the probability that a group contains the endpoints of more than q3i+1 paths is � 2�q2
i+1 .

Proof: We show this by induction.
After step 1, by lemma 3.1, the probability that an initial group does not contain a Hamiltonian

cycle is � (kq1)2(1� p)kq1�1, which for su�ciently large k and q1 is less than 2�6q1 = q�6
2 . Using a

Cherno� bound, the probability of over 2q22 initial groups not containing a Hamiltonian cycle out
of q62=kq1 initial groups is � 2�2q2

2 .
For all the other initial groups which contain Hamiltonian cycles, and whose next neighbors

contain Hamiltonian cycles, the probability of not being able to connect to the next group is
� (1� p2)(kq1�1)=2, which for su�ciently large k and q1 is less than 2�6q1 = q�6

2 . Using a Cherno�
bound, the probability of over 2q22 groups out of q62=kq1 initial groups not being able to connect to
the next group is � 2�2q2

2 . In total, the probability of over 4q22 groups still containing unconnected
endpoints is � 2�2q2

2
+1 � 2�q2

2 . Since 4kq22q1 � q32 , this proves the base step of the induction.
Now assume the lemma is true through step i � 1. By induction the probability of any group

Hi;j of q
6
i vertices containing over q3i endpoints is � 2�q2

i � q�qi
i+1. Then by a Cherno� bound, the

probability that over 2q2i+1 groups Hi;j in a group Hi+1;j have over q3i unconnected endpoints is

� 2�2q2
i+1 . We also know at most 4q2i+1q

6
i � q3i+1=2 vertices come from these groups, and groups

which directly precede them.
For each j where Hi;j andHi;j+1 both contain at most q3i unconnected endpoints, the probability

of a processor assigned to an endpoint in Hi;j not �nding a vertex in Hi;j+1 to which it can hook
its endpoint is the sum of the probabilities that it chooses an endpoint, that another processor
chooses the same vertex, and that the two edges necessary for hooking do not exist. This sum is
� q�3

i + kq�2
i + (1� p2) � c for some constant c < 1. Thus the probability of a vertex in Hi;j not

�nding a place to hook is � ckqi � 2�6qi � q�6
i+1. Using a Cherno� bound, the probability that over

q3i+1=2 out of � q6i+1 vertices fail to hook is � 2�q3
i+1

=2 � 2�2q2
i+1 . Thus the probability that there

will be over q3i+1 endpoints in a group Hi+1;j will be � 2�2q2
i+1

+1 � 2�q2
i+1 . 2

Corollary 3.1 With high probability, after step r = log�m � h � 1, there will be at most log6 n
simple disjoint paths remaining.

Proof: By a simple calculation, qr = log n. After step r � 1, the probability that any group of q6r
vertices has over q3r unconnected endpoints is � 2�q2r � 2� log2 n. Then, from the analysis above,
the probability that any endpoint which is not located in the last group of q6r vertices does not

hook to a vertex in step r is � 2�q2
r � 2� log2 n. Thus with high probability, only vertices from the

last group will be active, and the last group is of size � q6r � log6 n. 2

6



3.3 Connecting the remaining paths

Each of the remaining O(log6 n) active elements (endpoints) can easily be assigned log2 n processors
to try to randomly hook into the cycle of

p
n vertices. The probability of a vertex failing is obviously

� c� log2 n for some constant c, so with high probability, they all will succeed.

3.4 In case of failure

It is possible that our parallel algorithm could fail, though this can only occur with very small
probability. If it does fail, we revert to the O(n) expected time serial algorithm of Gurevich and
Shelah [GS87]. Since the probability of failure will be less than 1=n, this will not add anything to
the expected time of the algorithm. Unfortunately, failure in our algorithm might imply failure in
the linear expected time algorithm. To solve this problem, we use a nice technique from Gurevich
and Shelah. Two coins will be ipped for each edge, one which decides if the edge is to be colored
red, the other if it is to be colored blue. (For instance, with probability 1

4 it will be colored both
red and blue.) Then the probability that there is a red edge between any pair of vertices is p=2
and the probability that there is a blue edge between a pair of vertices given that whether a red
edge exists is already known, will be at least p=4. We can then use the red edges in the parallel
algorithm using the probability p=2, and the blue edges in the serial algorithm using probability
p=4.

3.5 Reducing the number of processors

We can use the general technique for optimizing asynchronous geometric decaying algorithms in
Gil, Matias and Vishkin [GMV91] to reduce the number of processors to n= log� n.

We have thus proven the following theorem.

Theorem 3.1 For any constant 0 < p < 1, in a random graph Gn;p, if any Hamiltonian cycles
exist then one can be found, or it can be shown that none exist, in �(log� n) expected time on a
CRCW PRAM of n= log� n processors.

If n is even, we can slightly modify the algorithm given so that vertices along the Hamiltonian
cycle alternate between even and odd. It is fairly obvious that this algorithm will have the same
time and processor bounds. Then if remove all the edges from odd to even vertices, the remaining
edges will form a matching which includes all the vertices, which is therefore a maximal matching.
If n is odd, we can remove one vertex and perform the procedure just described to the remaining
vertices to form a matching which includes all but one vertex, which is also a maximal matching. If
we are unable to �nd a Hamiltonian cycle in �(log� n) time, then we revert to the polynomial time
algorithm in Lawler [Law76] to �nd a maximal matching. Similar modi�cations can be made to �nd
depth-�rst spanning forests, and to decide if a graph is connected, giving the following theorem.

Theorem 3.2 For any constant 0 < p < 1, for a random graph Gn;p, a maximal matching can be
found, a depth-�rst spanning forest can be found, and it can be decided if the graph is connected,
all in �(log� n) expected time on a CRCW PRAM of n= log� n processors.

4 Breadth First Spanning Forest

Here we give an algorithm for constructing a breadth �rst spanning forest in Gn;p. With high
probability Gn;p will be connected and this will actually be a breadth �rst spanning tree. First

7



assume we have n processors. Without loss of generality, let the �rst vertex be the root. Then
every vertex which is connected to the root marks itself as a node in the tree at level 1. We can
show that with high probability all the rest of the nodes are at level 2. We simply must �nd for
each of these vertices a vertex it is connected to at level 1.

We can use the log-star paradigm de�ned in the previous section to connect the rest of the
vertices to the level 1 vertices. We simply must implement the deactivation step. Here we consider
an active element to be a vertex which has not found a level 1 vertex to connect to.

In deactivation step i, we simply have each of the qi processors assigned to a vertex v choose
k random vertices and check whether they are level 1 vertices which connect to v. If one is found,
then it can be marked as vertex v's parent and vertex v can be deactivated. The probability of a
vertex failing to �nd a connection to a level 1 vertex in step i is (1� p2)kqi . Then for any constant
c, a su�ciently large k can be found so that this probability is less than 2�cqi=4. Using a Cherno�
bound, we can show that with high probability, at most twice the average number, or 1

2n=q
c
i+1, fail.

This shows that the deactivation step succeeds with high probability. If the log-star paradigm fails,
then we can simply perform a �(n2) time serial breadth-�rst spanning forest algorithm

We can use the general technique for optimizing asynchronous geometric decaying algorithms
in Gil, Matias and Vishkin [GMV91] to reduce the number of processors to n= log� n.

We have thus proven the following theorem.

Theorem 4.1 For any constant 0 < p < 1, a breadth �rst spanning forest in a random graph Gn;p

can be found in �(log� n) expected time using a CRCW PRAM of n= log� n processors

5 Parallel Target Shooting Model

Consider a model of computation based on the abstract deactivation problem given in Section 3.2.
In this model, the Parallel Target Shooting Model, there are n targets, n processors, a constant
integer m � 1, and a constant probability 0 < p < 1. In a single round, a processor can try to
shoot m active targets. With probability p it hits all of them, and with probability 1�p it hits none
of them. If q processors are trying to shoot an active target, then the target is hit with probability
1� (1� p)q, deactivating the target. It is assumed that at the start of each round, the processors
know all the results from previous rounds, and jointly decide how to allocate themselves to active
targets in the current round. Note that this is similar to Valiant's parallel comparison model, with
a probabilistic hitting operation substituted for a comparison operation.

We will show that the problem of hitting all n targets in this model requires 
(log� n) expected
time. We will then use this to show that constructing an edge cover of a random graph represented
by its adjacency matrix requires 
(log� n) expected time on any model of computation in which a
processor can read at most one entry in a single step. This includes the CRCW PRAM model.

We de�ne kt recursively as kt = (1� p)�3kt�1m and we let k0 be a large enough constant so our
analysis holds.

Lemma 5.1 After step t, with high probability at least n=kt targets will still be active.

Proof: We prove this by induction. Assume that the lemma holds up to step t� 1. Let k = kt�1.
At step t, each of n processors picks a group of m targets to attempt to hit. On average, each of
the n=k active targets is picked by at most km processors, and at least half of these targets are
picked by at most twice the average number of processors. Thus at least n=2k of the active targets
are picked by at most 2km processors each. Whether these targets are hit may not be independent,
however, so we must �nd an independent set of these items as follows.

8



Consider each target as a vertex, and each group of m targets picked by a processor as a clique
of m vertices. If we let v = n=2k and e = n

�m
2

� � nm2, then by Tur�an's theorem [Ber73], we can
�nd an independent set of these vertices (targets) of size at least v2=(v + 2e) = n=2k(4km2 + 1).
Each target has at least a (1 � p)2km independent chance of not being hit in this step. Thus on
average at least n(1� p)2km=2k(4km2+1) targets will remain active, and by Cherno�'s bound, for
large enough n and k � log logn, with high probability at least half of these targets will remain
active. For large enough k, (1� p)2km=2k(4km2 + 1) � (1� p)3km, proving the lemma. 2

Theorem 5.1 For any constant 0 < p < 1, hitting n targets with n processors in the parallel target
shooting model requires 
(log� n) expected time.

Proof: Using lemma 2.1, we see that for T = log� n � log�((1� p)�3m)� log� k0 � 3 = 
(log� n),
kT � log logn. Then by lemma 5.1, at step T , with high probability at least n= log logn targets
will be active. 2

6 Lower Bound on Constructing an Edge Cover

Here we show that constructing an edge cover in a random graph represented as an adjacency matrix
requires 
(log� n) expected time using n processors on any model in which a single processor can
only read one entry in the adjacency matrix in one step. Thus we can assume that every processor
knows every entry in the adjacency matrix which has been read, and at any step, the processors
jointly decide where to read based on all the entries read so far.

Theorem 6.1 For any constant 0 < p < 1, any problem which requires the construction of an edge
cover (with high probability) in a random graph Gn;p represented as an adjacency matrix requires

(log� n) expected time on any n processor parallel model of computation in which a single processor
can only read one entry in the adjacency matrix at each step.

Proof: We model this in the parallel target shooting model, where each vertex is a target, and
where a target is hit whenever an edge is found having the vertex as one of its endpoints. Reading
an entry in the adjacency matrix is simply a processor picking two targets and hitting them with
probability p. Finding an edge cover is simply hitting all the targets. Thus by theorem 5.1 �nding
an edge cover requires 
(log� n) expected time. 2

Theorem 6.2 For any constant 0 < p < 1, in a random graph Gn;p represented as an adjacency
matrix, constructing a Hamiltonian cycle, spanning tree, or maximal matching, or deciding if the
graph is connected, each require 
(log� n) expected time on any n processor parallel model of com-
putation in which a single processor can only read one entry in the adjacency matrix at each step.

Proof: With high probability a Hamiltonian cycle, a spanning tree, and a maximal matching exist
in Gn;p, and constructing any of these implies construction of an edge cover. Thus by theorem 6.1,
the stated lower bound holds. 2

A Probabilistic Tools

One technique we use is the Cherno� bound [Che52]. This can be used when we wish to bound
the distribution of a random variable Z which is the sum of n independent random variables. For
a binomial random varible Z � B(n; p), where Z is the sum of n independent Bernoulli trials with

9



probability of success p, Angluin and Valiant [AV79] show that for 0 < � < 1, one can obtain the
bounds

P (Z � (1 + �)np) � e��2np=3;

and

P (Z � (1� �)np) � e��2np=2:

From this we obtain the bound

P (Z � 2np) � 2�4np=9:

Also, for k � 6 we obtain the bound

P (Z � knp) � 2�knp:

References

[AV79] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and
matchings. J. Comput. System Sci., 18:155{193, 1979.

[Ber73] C. Berge. Graphs and Hypergraphs. North Holland, 1973.

[BFF87] B. Bollob�as, T. I. Fenner, and A. M. Frieze. An algorithm for �nding hamilton paths
and cycles in random graphs. Combinatorica, 7(4):327{341, 1987.

[Che52] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, 23:493{507, 1952.

[Fri87] A. M. Frieze. Parallel algorithms for �nding hamilton cycles in random graphs. Inform.
Process. Lett., 25:111{117, 1987.

[GMV91] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel
algorithms. In Proc. 32nd Symp. on Found. of Comp. Sci., pages 698{710, 1991.

[GS87] Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path problem.
SIAM J. Comput., 16(3):486{502, 1987.

[Law76] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, New York, 1976.

[Mac92] P. D. MacKenzie. Load balancing requires 
(log� n) expected time. In 3rd ACM-SIAM
Symp. on Disc. Alg., pages 94{99, 1992. submitted to SIAM Journal on Computing.

[MV91] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time { with
applications to parallel hashing. In Proc. 23rd ACM Symp. on Theory of Computing,
pages 307{316, 1991.

[Tho89] A. Thomason. A simple linear expected time algorithm for the hamilton cycle problem.
Discrete Math., 75:373{379, 1989.

10


