Algorithms Minimizing Peak Power on Mesh-Connected Systems

Quentin F. Stout

Computer Science and Engineering
University of Michigan

Correspondence:

Quentin F. Stout

Computer Science and Engineering
University of Michigan

2260 Hayward

Ann Arbor, Ml 48109-2121
gstout@umich.edu

734/763-1518 734/763-8094 (fax)

Abstract

There are many situations in parallel computing where riegupower consumption is an important
goal. We consider mesh-connected systems where each gootesonnected to its neighbors in a regular
grid, such as occurs in cellular automata, sensor netwarldsome supercomputers, focusing on systems
with myriad simple processors on a chip. Most algorithmsstah computers assume that all processors are
active at all times, an assumption which is often unrealistien power is supplied externally. This leads
one to develop algorithms minimizing the peak power. Opltonaear-optimal algorithms are developed for
basic problems involving images, such as labeling the compts and determining the distances between
them, and graphs, such as determining a minimal spanniegtfand deciding if a graph is biconnected.
These algorithms also minimize the total energy, and can ddiffrad to simultaneously reduce the total
power used by any processor, a consideration of consideiaiplortance in sensor networks.

Keywords. mesh-connected computer, low power, energy, parallel ctimg image processing, graph
algorithm, connected component, minimal spanning tree

1 Introduction

Systems connected in a grid fashion have occurred througiamallel computing history, from cellular au-
tomata to sensor networks (typically an irregular grid)rterconnection networks for high-performance
multicore chips [20] and supercomputers [3, 4, 10]. For ssydtems physical location and distance play
an important role, as opposed to PRAMSs or serial computemselvecently another physical consideration,
power consumption, has taken on importance. It is a concesystems such as cell phones, laptops, and
supercomputers. The last is different from the others it tie power is external and does not diminish
over time, but supplying the peak power required is a majocem. Removing the heat generated intro-
duces packing constraints which in turn affect commuricatime, and hence various tradeoffs need to be
made. For example, peak power considerations resulteceiBlireGene/L utilizing slow, but numerous,
processors [4].

This paper addresses the problem of minimizing the peak poggrired for parallel algorithms for
systems such as single chips with many tiny, simple processer example, there are image processing
chips which both detect images and do substantial proggssirthem. It is not realistic to assume that the
entire chip can have most of its circuits active at the same.ti(E.g., see [7] for an image processing chip
with processing capabilities and emphasis on energy eaffigie

We utilize the basianesh-connected computerodel: the system has processors arranged as an
vn x y/n grid, where each processor can communicate only with itsédiate neighbors (either the
4 neighbors sharing an edge, or the 8 sharing an edge or foffesimplify exposition we assume that
n is a power of 4, with modifications to the more general casedosiraightforward. Each processor can
store a fixed number of words of logarithmic length, and a#raions on these words, including sending
one to a neighbor, take constant time and energy. Each parcstrts with its coordinatds:, y), x,y €
[0,1,...4/n—1]. For purposes of timing analysis the system is SIMD, thougbtsynchronization can be
relaxed. Note that algorithms for such a basic system caimbdated on a variety of systems.

We say that a processorusing powelf it is calculating or communicating, and otherwise is nsing
power. While we say it is not using power it might actually ksng a greatly reduced amount in a wait
state, either counting to know when to awaken or to be wokethéwarrival of a message from a neighbor.
It will be seen that all of the algorithms have the propertgtth processor is only calculating in a fixed
period around a message transmission, and hence to detepmiver utilization it will suffice to merely
count messages.

Standard mesh-connected computer algorithms assumeedgsors are on all the time, and hence for
a mesh ofn processors peak energy@n) and total energy is the product of time and Many basic
algorithms taked(,/n) time [1, 2, 9, 12, 13, 19] an®(n>/2) total energy. Note that this time is a lower
bound for any nontrivial problem since it is the diameteria tcommunication network. As for total energy,
Q(n%/?) is a lower bound for operations such as sorting or matrix iplidation where®(n) values may
need to be transported distart@é,/n). These operations can in fact can be completédi(iyn) time using
this much energy on a standard mesh-connected computergi@®jthus, for them, reducing peak power
necessarily increases time. For many other problems, fewigwill be shown that far fewer messages can
be used while still finishing if®(/n) time. When the total data movementoi@:®/?) then there is the
possibility of a solution in this time bound using onlyn) peak energy.

Rather than directly indicating which processors are omgtgiven time, it is useful to think of trained
squirrels traversing the mesh, where the presence of a squirrel iedidhat the processor is on. The
squirrels have a memory of a finite number of words, they cap keack of their location, and they can
leave a finite number of words at any location. Admittedlyiggls are an unusual computing model, but

since many of the algorithms require taking something frara place and leaving it at another, and then
being able to go back and get it if needed, squirrels seemve thee requisite skills, though their ability
to be trained to cooperate with one another remains an opestiqn. A squirrel carrying information
from one location to another corresponds to a sequence ahcmication steps, where both the number of
steps (time) and total energy are proportional to the distdraveled, and the peak power is proportional
to the maximum number of squirrels active at any one time. irBfuwalgorithms have some similarities
with pebble algorithms for automata [5, 6, 14]. Pebbles aexiuto keep track of positional information,
and can be used to help traverse mazes and more general.gHgtesthe problem descriptions, such as
labeling components, require the ability to store word®ghtithmic size, rather than the fixed size inherent
in pebble algorithms, and hence the cellular automata nufgetbble algorithms is not quite suitable.

Peak energy is merely the number of squirrels, denstdebr any nontrivial problem for which every
position must be visited at some point the total energy mest(), and hence if time= ©(n/s) then the
speedup is optimal, which implies that the peak energy me tradeoff is optimal. Further, if this holds
for s = ©(y/n) and information must be passed from some processor to anmtieedistanced(y/n)
away then the time is the minimum possible no matter how muehgy is expended. While thinking in
terms of squirrels moving around simplifies the descrigion many algorithms, in some cases adjacent
squirrels may stay where they are and merely exchange iataym and occasionally algorithms can result
in two squirrels needing to occupy the same location at theesame. Note that in a valid algorithm for a
mesh-connected computer, the number of squirrels pendmceannot grow unboundedly with. We also
assume that a squirrel can determine which adjacent losatice occupied by squirrels. In most cases the
algorithm obviously guarantees that the time for a squtoe@hove from one location to another is equal to
the distance between them, but in some cases multiple styuimay have paths that depend on the data, and
the paths end up overlapping. Standard routing algorithemsbe used to ensure that the squirrels are still
able to complete their tasks in the time claimed.

It is trivially true that any algorithm taking time on an,/m x /m mesh can be stepwise simulated
in ©(tm/s) time and total energ® (tm) by 1 < s < m squirrels, where each squirrel is responsible for
stepwise simulation of /m/s x y/m/s submesh. This fact will be used in some of the algorithms in
which a small subproblem is solved via a standard (poweobk) mesh algorithm.

The algorithms are described fer= /n , and it is easy to see how to simulate them with fewer
squirrels with only linear slow-down. In general such siatign requires some care since in addition to
the operations being performed the simulating squirreltrmgve from the location of one squirrel being
simulated to the location of another, i.e., extra time iseatddContrast this with the result mentioned in
the previous paragraph, which corresponds to starting avithlgorithm ofm squirrels which never move
from their initial position, and then simulating them bkyquirrels which can just do simple scans of their
subsquare to move from simulating one of the original sglgrto the next. For the results in this paper,
however, the simulation tends to be simple and details veilbitted. Further, in the general case one
might need the simulating squirrel to have memory propoaidhe number of squirrels being simulated, or
spend extra time storing information at the sites, but atiehis not true here and the memory can be held
constant no matter what the valuesok in relation ton.

A single squirrel cannot in general use an algorithm for adaied serial computer without increasing the
time required since it is constrained by the physical dsiparof information, something normally ignored
in serial algorithms (unless cache behavior or paging isre@m). Squirrels also introduce a constraint in
that the pattern of activation in the parallel computerdal connected paths and does not jump around.
While we don’t make this assumption for the underlying pea@nstrained parallel computer model, we
don’t know of any problems for which this extra capabilitppides faster (in O-notation) algorithms, given

that a processor can only decide to turn on based on the iafamit has, not information only known far
away. There might be a way to exploit the fact that it didnttaige information, but that does not seem to
be a widely useful capability.

Throughout we assume the squirrels have a unique integer{d, ..., s—1} and that each squirrel
knowss andn. At each processor its (X,y) coordinates are stored. Offteptocessor’s z-order index will be
used. In z-ordering, the coordinates,zy_1 ... xo, Yryk—1 - - - yo) Yield the indexyrzryr_125—1 - - . yoxo-
Hilbert curve ordering would be equally useful.

2 ImageAlgorithms

For image data we assume thay/a x \/n image is stored one pixel per processor, where each pixel has
a color. By afigure we mean a connected component of pixels of the same colorewyetypically think

of figures representing objects on a white background. Weidentwo pixels to be adjacent if and only if
they share an edge, but this can trivially be expanded taidiectorner adjacency. Bgbeling figureswe
mean that each pixel is assigned a label, and that two pixels the same label if and only if they are in
the same figure. Initially each pixel starts with its labeingats processor’s z-index. The final label of the
figure will be the minimal initial label of any of its pixelsnd this position will be called the figurelsader.

A single squirrel can label the figures@(n) time. To do so, it uses a simple z-ordered scan to traverse
the image. When it encounters a pixel with label equal tonisail label then it has encountered a new
figure. It can then use a depth-first search to label the figutienie proportional to its size. Once the figure
is labeled the squirrel returns to figure’s leader and resuime scan. The scan tak®$n) time, and since
the time to label all pixels in a figure is proportional to theimber, the total labeling time 8(n), giving
©(n) time for the algorithm.

For multiple squirrels, however, we use a significantly eliféint approach. A single figure may have
©(n) pixels, and hence having only one squirrel work on it wouldl ingorove upon the time of a single
squirrel labeling the entire image. Instead, we use a walaln divide-and-conquer approach (see [12, p.30]
for a generic version of this approach). The algorithm io#lews: to solve the problem in a square, suppose
the problem has been solved for the 4 subsquares. Withiattperlsquare, the only figures where the pixels’
labels are inconsistent are those that cross the bordesedetsubsquares. The edges connecting the two
sides, the ones that contain the information needed to nhekiabels consistent, form the edges of a graph
in which vertices are the labels of pieces adjacent to thessikh this graph the connected components need
to be labeled (see Figure 1). To label this graph, move alhefedge information to the center and use an
edge-based algorithm to label the components, and then theweformation back to the edges. Ultimately
the highest level is reached, and then the final labels apageied by reversing the process.

When squares of sizer are being worked on the movement of the subsquares’ edgeriafion to
a submesh of sizev/4 involves ©(y/m) edges being moved a distance@(,/m), for a total energy of
©(m) per square. The edge-based component labeling involvdstzesin of sizé®(/m), and can be done
in ©(m!/*) time [17] and©(m?/*) total energy, and thus the movement to the center dominkagetine
and total energy. Since the movement to the center takegyepsasportional to the area, and the squirrels
are evenly distributed among the squares, each level ofgiecutakes the same tim&,(n/s). There are
log,(n) — log,(n/s) = log,(s) levels of parallel recursion, so we arrive at the followiry the energy
rangel < s <./n:

Theorem 1 Labeling the figures of an image of sizeean be performed i®((n log s)/s) time using peak
powers, for 1 < s < /n logn.

' AN
1% 4
8 7

2

1 3

|

11 6
10 9

label graph

image

Figure 1: Merging subsquares to label figures

Proof: To finish the theorem we need to consider the energergin < s < \/n logn. Partition the mesh
into subsquares of = (n/s)? pixels. There are/r such squares, so each can be assigngd = n/s
squirrels. Note that this ig/r, and hence by the above the subsquares can be labef#d/inlog r) time.
Now a single merge step is used, mergingrglt squares at once. The number of squirrels is linear in
the size of all of the boundaries of the squares, so the lafe@ination of all of the boundaries can be
simultaneously moved to the center and made consistet(\fr.) time. As long as,/r logr = Q(y/n),
the time for labeling the squares dominates the total tinmeceS /i log r = 2(n/s) log(n/s), the time is as
claimed fors < \/n logn O

This divide-and-conquer approach has recently been edilibr sensor network algorithms [16]. In
Section 4 it will be shown that the above algorithm can be stdjli to achieve the minimum total power
goals in [16] while retaining its peak power properties.

Since rodents are being used to perform the algorithmspttening seems appropriate:

Corallary 2 Given a black/white maze of sizewith start and stop sites, i@ ((n log s)/s) times squirrels,
1 < s < y/n logn, can decide if the maze has a path from start to stop.

Note that this does not say that they determine the shoréist merely that they can determine if there is a
path. The power/time tradeoff for shortest paths is an opestipn, even for a single squirrel.

The algorithm in Theorem 1 is within a logarithmic factor obrk-optimal parallelization, and it is an
open question whether this factor can be eliminated. Fyntfteens = \/n the time is also slower than the
optimal time by a logarithmic factor [13]. Once the figuresédnbeen labeled various properties of them can
be determined without the extra logarithmic factor, buttaniire care is needed. Tharge figures, those
having more thar/n pixels, are partitioned into pieces and the results on teegsi are combined to get the
final result. The pieces are of sizén , and a squirrel will work on a piece and take the result diyecta
location where the piecewise results are combined all asdnge time, rather than combining them in the
tree-like fashion used for labeling. A figure withn or fewer pixels will be calledmall

Within a figure, therank of a pixel is its position in the z-order numbering of the péxa the figure
(with the numbering starting at 0, i.e., the label's leaderaink 0). See Figure 2. A processor in a large
figure with rank a multiple of/n is abreakpoint We say that an image &rongly labeledif in addition
to being labeled, every processor contains the processurksin its figure and the number of pixels in the

5

26
20 25
15| 18| 19| 22| 23| 24
13| 14| 16| 17| 21

10(12

Figure 2: Rank ordering within a figure

figure. Each breakpoint also contains the location of the beeakpoint. It is straightforward to determine
ranks as the figures are being labeled, without increasieditie, using the property that when squares
are being merged they contain consecutive positions ingheesfilling curve ordering, and hence merely
knowing the number of processors in the subsquares alloasootetermine the starting rank of processors
in each subsquare.

For the processors that are breakpoints, once the ranksavenka simple bottom-up then top-down
pass can be used to determine the location of the next brisdlkposomewhat more complicated approach
can reduce the time @©(+/n). Itintroduces a technique that will be employed in more clexpperations.
Note that all of the large figures combined have at niggh. breakpoints since each corresponds to a
collection of /n pixels, except for the last breakpoint in a figure which mayrbe piece containing only
itself. Thus ifs = \/n we can assign each squirrel at most 2 breakpoints to be reippfor. However, a
given region may have many breakpoints. To assign breatgtrsquirrels, first have the squirrels, one per
row, move from right to left, counting the number of breakpsiencountered. Once these totals have been
deposited in the leftmost column, it's simple to have eaakireg] proceed bottom-up to determine which
row(s) contains its breakpoints, and then within the rowlgtermine which breakpoints it is assigned to.
Temporarily, for the purposes of locating the next breakpdhe pixel of highest rank within its figure is
also treated as a breakpoint, and hence there may be rigarly points involved, so each squirrel really
carries 3 points.

Once each squirrel has located a breakpoint, it createsoadreontaining the breakpoint’s label, rank,
and location, and then carries this to a centrdl* x n'/* subsquare. A simple mesh algorithm is used to
sort the records by label, and within each label by rank. éfgbrt is into alternating row major order (or
any other contiguous ordering) then for each breakpointeberd of the next breakpoint in its figure is in
an adjacent record. This information is added to the braakpaecord, and then the squirrels carry the
records back to the breakpoints and deposit the locationeofiéxt breakpoint, completing the operation.

By broadcast over figurewe mean that there is a value at the leader which is then copiedery pixel
in the figure. Byreduction over figuresve mean that there is a commutative semigroup operatiorer a
setS, and that each pixel has a value)(p) € S. At the end of the reduction operation, the leader of figure
F has the value{v(p) : p € F'}. We assume thatcan be computed in unit time. Broadcast and reduction
can easily be performed using the divide-and-conquer agjprim Theorem 1, taking the same time bounds.
Here, however, we remove the extra logarithmic factor.

Theorem 3 Given a strongly labeled image of sizgbroadcast and reduction over figures can be performed
in ©(n/s) time using peak powey, for1 < s < /n.

Proof: Note that by using depth-first search a single sduiene do broadcast and reduction over a figure in
time proportional to the size of the figure. This will be useddmall figures, and for pieces of large figures.

To do the operation for all of the small figures, first the salémove right to left, one per row, with each
counting the total size of all small figures with a leader i tbw. Each total is divided by/n and rounded
up, with the result deposited in the leftmost column. The&rtinimum number of squirrels required if each
visits no more thar/n pixels while labeling the small figures. For the entire im#ge could require nearly
2y/n squirrels. We therefore require each squirrel to do the wbik If, for example, the first row had a
total of 4.5/n , then it was converted into a 5, so the first 2 squirrels wiltkvgolely on that row, and the
third will work on that row and the next row with a nonzero w&luVithin a row the figure sizes may not
divide evenly by,/n , so the first squirrel does the first set of figures that add ap least 2/ , the second
squirrel takes the next figure through the set of figures ttdtup to at least ¢n , and the third squirrel
takes the remaining ones (it is possible that there are nemaining). No squirrel works on more than 1
small figure more than its share, and since no small figure irasore than,/n , no squirrel works on
more than 3/n pixels. Hence the total time to complete the operation osralll figures i (y/n).

For the large figures the reduction operation will be desctjlwith the broadcast being an approximate
reversal of this. As before we assign squirrels to breakppind the squirrel assigned to the breakpoint
of rankiy/n will do the reduction over all pixels of rank/n through(i+1)\/n —1, i.e., until the next
breakpoint. A slight difficulty, however, is that these pg&xmay not be contiguous. For example, even if the
entire image is a single figure, two pixels with consecutemeks can be quite far from each other because
of the jumps in the z-ordering (see Figure 2). However, éhsligodification can remedy this. Given two
pixels at position® andg, the set of pixels with z-orderings between theirs form asth@convex regions
C1, Cs that can easily be determined (see Figure 3).iff a breakpoint of some figur® andgq is the next
breakpoint ofF’, then all of the points inf” with ranks between the ranks pfandq lie in C = C; U Cs.
Further, ' N C forms a collection of subfigures, each of which touches thentary ofC. Therefore a
squirrel can start gb, follow the boundary ofC, and whenever a new pixel df is encountered start a
depth-first search of that subfigure. The boundarg'dfas lengthO(,/n), and the total number of pixels
examined in the depth-first searchds,/n , so the total time for the squirrel to determine the reductid
its piece is9(y/n). Then the squirrels can congregate in the middle to deterthia reductions over entire
figures and return the results to the leaders. Note that thdeuof pixels inC' may be far larger thag/n ,
so the squirrel could not simply traverse all@f |

There is a slight complication in the above, in that sevegairsels may have paths that overlap, and
only a fixed number are allowed to occupy a position at any one.t However, simple routing control
mechanisms can guarantee that all of the traversals camgleted inO(y/n) time.

Using reduction one can find the area and perimeter of eachefignd its bounding box, where the
(iso-oriented) bounding boaf F', denotedbox(F'), has x-extent equal to the x-extent of the pixelstin
(i.e., the smallest to largest x-coordinates of pixel$')nand its y-extent is the y-extent of the pixelsiih
A broadcast is used to move all of these values to all pixels.in

A figure F is contained infigure G if every path fromF' to the edge of the image contains a pixet’af
Whenever two pixels of different colors are adjacent oneesmonds to a figure containing the other (unless
both figures are adjacent to the boundary), but it cannot teFrdaned which is which without some global
information. Fortunately this is simple to determine siadgurefF’ is contained in an adjacent figutiff
box(F') is contained irbox(G). Note that if figures are not adjacent then it can be that ') C box(G)

Figure 3: All locations with z-ordering between those of Aldh

without G containing F'. For example, ifG is shaped like a U the# can be a dot inside it without
being properly contained. However, for adjacent figures ¢ainnot occur. Note that a figure has only one
containing figure that is adjacent to it. Thesting levebf a figure is the number of figures that contain it.

Proposition 4 Given a strongly labeled image of sizefor each figure one can determine if it is contained
in any others, obtain the label of the smallest contained determine its nesting level, i@(n/s) time
using peak energy, for 1 < s < y/n . Further, for black/white images, in the same time/energyriols
each figure can determine the smallest container of the saioe c

Proof: For each pixep on the boundary of a figure determine if an adjacent pixel @ fture of the
opposite color is part of a figure with a bounding box containi’s, and if so retain that figure's label,
while otherwise just retain an empty label. This label ig tifahe smallest container of a different color. To
find the smallest container of the same color in a black/wimige, now each boundary pixel Bfadjacent
to the containing figuré&s of the opposite color acquires the label@8 container, which is the smallest
containing figure ofF" of the same color. Note that for arbitrarily many colors thesest enclosing figure
of the same color may be many levels away.

To determine nesting level, a left-right scan can be usatingadne every time a transition is made from
a figure to one it contains, and subtracting one when the deposcurs. O

Given an image, suppose each pixel has a (possibly empsf) ladit necessarily a label of a figure. The
closest similar point problens to find, for every pixel with nonempty label a closest on¢hef same label;
theclosest black point probleiis to find, for every pixel, a closest black one; and thesest differing point
problemis to find a closest one with a different non-empty label.

Theorem 5 Using peak energy, 1 < s < y/n, in ©(n/s) time the closest black point problem, and the
closest differing point problem, can be solved for thend /., metrics.

Proof: For the closest black point problem using fhenetric, squirrels perform a right-left sweep in each
row, leaving, at each position, the location of the most mdgeencountered (hence closest) black pixel.
Then a similar left-right sweep is performed, where thealas the black pixels in either direction is left
at each pixel. Note that for any poipt either the closest black point is in the same column, or esarthe
points recorded in its column (including the points recdrdép itself). Now vertical sweeps are done in

8

each direction. Suppose an upward sweep is being done. Tireskgemembers the location of the closest
black pixel known so far. At each positian it compares the distance to the pixel it is carrying ver$ias t
distance to the black pixel's location storedgat the horizontal sweeps, and it keeps the location of the
closer of these two, proceeding upwards. At each step, vitemives at a pixel it is carrying the location
of the closest black pixel with vertical coordinate no lartfean the coordinate it is currently at. A similar
downward sweep is also done, at which time the correct valstored at each location. Modifications for
the /., metric are quite simple, and to modify for the closest diffgrpixel problem, note that the squirrel
merely needs to keep track of the closest labeled point,fendlosest one of a different label. O
The closest similar point problem is difficult in that ther@ndbe images wit/2 labels where each
occurs exactly twice, in which case the problem is esséntia¢ same as sorting, requirirfg(n3/ 2) total
energy. However, when the only labels are black or white thblpm becomes considerably easier.

Theorem 6 Using peak energy, 1 < s < y/n, in ©(n/s) time the closest similar point problem can be
solved for a black/white labeled image, where the metrig ,ig,, or £..

Proof: For the/; and/., metrics the problem was solved in Theorem 5. Forltheorm a somewhat more
complex algorithm is used, closely following that in [11]ig&re 4 helps illustrate the approach. Suppose
p is a black pixel within the dark subsquare, and suppose teest black point has been found within the
union of the subsquare and the horizontal and vertical béhddighter gray regions). The only way there
might be a closer black pixel is jfis closer to a corner than it is to any black pixel found so far, for in this
case there might be a black pixgin the white quadrant correspondingdthat is the closest one o Call

p aspecial pointif it satisfies this criterion. An important fact is that tkesire at most 2 points within the
square which are closer tathan to any point found so far. If there were 3 or more suchtppone would

be closer to another than to the corner (see [11]). Thus ah tioere are at most 8 special points for which
white regions need to be considered.

To start the process, each squirrel is assigned to a sulesqisizen /s. These are the black subsquares
in Figure 4. In linear time, for each black point it locates tiearest black, if any, in the square. (It can do
this by, say, simulating the recursive approach describethe entire image.) At this stage the only points
which are not guaranteed to have found the closest are thaats pvhich are the leftmost or rightmost
within a row, or highest or lowest in a column, of the subsqudihe only points within the banded regions
which might be closest to them are the leftmost ones in eastindhe banded region to the right of the
square, the rightmost ones in each row in the banded regitietteft of the square, and similarly for the
vertical banded region. Row- and column-wise sweeps as @ofEm 5 can be used to simultaneously
find the appropriate banded region points for all subsquamed finding the points within the subsquare is
similar. There are at mo$§i(,/n/s) points within the square that have to consider at sy/n/s) points
within the banded region, so simple comparisons of all ofitis&le points with all of the outside ones can
be done inB(n/s) time. Then the special points are located. A traversal athegow corresponding to
the top row of the square is performed, where at each colummliftance from the special point to the
lowest black pixel above that row is computed, and if thislagser than any point found so far then it is
kept. Similar operations are performed along the horidamtd vertical bounding lines in all directions.
The traversal take®(y/n) time, and when all of the traversals are completed the dddask neighbor of
each black pixel has been found. Then the same algorithnplgdgo the white pixels, locating the closest
white. O

Note that the above approach does not directly solve theesiellack point problem for thé metric
because there may be more than 8 special points. For exatingte,may be no black pixels in the square
or banded regions, and hence every pixel in the square isaspec

9

Figure 4: The closest pointto P is Q

3 Graph Problems

3.1 Adjacency Matrix Input

General matrix operations are not amenable to peak enedggtien without increasing the time. For ex-
ample, it appears that multiplyingn x /n matrices requires total energy(n*/2) on a mesh, despite
serial algorithms such as Strassen’s which reduce thd segagy too(n*/?). However, operations involv-
ing adjacency matrices are often simpler. For example, smrial and parallel graph algorithms involve
steps which compress the matrix, merging entries togetiereducing the size of the remaining problem.
Unfortunately, squirrels cannot compress the matrix withakingQ(n?/2/s) time — consider, for exam-
ple, compressing a matrix where every other row and colunsnbean eliminated. Thus energy efficient
algorithms must rely on extracting subsets of informatiod eoving them.

Theorem 7 Given they/n x y/n weighted adjacency matrix of an undirected graph, the cotatecom-
ponents and a minimal spanning forest can be determineéd({m logn)/s) time and peak energy, for
1<s<y/nlogn

Proof: Forl < s < /n a standard iterative method is used. At each stage, eaghpsé#tion starts with
the weight of the edge, if any, and the labels of the two vestidhen a horizontal sweep is used to discover,
for each vertex, the smallest edge in its row corresponding to a vertex withibal different fromo’s.
These/n edges are transported to a subsquare of gize where the minimal spanning forest of them is
constructed and the vertices labeled to reflect the conthectimponents. The squirrels do a vertical sweep
on each column, and a horizontal one on each row, to prop#uateew vertex labels and mark which edges
were used. Then the next stage begins.

Each stage reduces the number of components at least byoa éddtvo, so at mostlog, n| stages
are needed. The sweeps ta#hén/s) time, and the subsquare calculations téke*/*/s) time since the
problem can be solved i@(n1/4) time by a standard mesh computer of s{Ze [17]. Thus the time is as
claimed fors < /n .

While the above was described in a manner natural for aneifganatrix, note that a different approach
could have been taken, namely to subdivide the matrix intsguares, as was used in images, solve the
problem within each subsquare, and then recursively megdts. This approach will work because no

10

matter how a grapliy = (V, F) has its edges subdividefl, = FE; U...U E,,, a minimal spanning forest of

G can be formed from the union of the minimal spanning forefth®subgraphss; = (V, E;). For each

of the subsquares, the number of vertices present is lindheiedgelength, as was true for the image data,
so the data movement has the same order of magnitude. Fuhtbse observations show that the approach
in Theorem 1 can be used to extendfa < s < y/n logn. O

For a graph with E| edges one can use the same basic approach used initiallyoledtise problem
in no more thanE|/\/n iterations, by reassigning squirrels working on verticégere all the edges have
already been used. Thus graphs of bounded degree, or of éd@avedrage degree (such as planar graphs)
can be solved in time linear in the number of vertices by squirrels. For general graphs it is unknown if
the worst case can be improved to remove the logarithmiofactTheorem 7.

The basic approach used above consists of stages of aajjesttime information from the adjacency
matrix, moving it to a smaller region to solve a graph probisith edges as input, and then moving infor-
mation back to the adjacency matrix. This approach can be faseseveral other problems, such as taking
an arbitrary spanning tree and directing it, i.e., selgcémoot and having every vertex point to its parent.
Given a directed tree, one can define tree reduction opesasioch as having every vertex know the reduc-
tion of all values in its subtree, or in the path from the raoitt These reductions can be used to determine
sizes of subtrees, depth, height, position in a depth-first@adth-first ordering, etc. All can be done with
in ©(n/s) time using peak energy, 1 < s < /n, once a spanning forest has been found [1, 12, 18]. The
proofs are omitted as they closely follow those in theseresiees.

Theorem 8 Given an adjacency matrix of an unordered gra@twith \/n vertices, and a spanning forest
for G, then, using peak energy1 < s < y/n, in ©(n/s) time one can

¢ Decide ifG is bipartite.
e Determine the cyclic index @f.
¢ Determine all bridge edges @f (and hence decide @ is biconnected).

e Determine all articulation vertices df.

|

3.2 EdgelList Input

As has been noted above, there are many algorithms for edgevtich can be done i®(1/n) time, but
O(n) peak power an®(n?/2) total power, on a standard mesh-connected computer. Fuith@roblems
such as component labeling, it is easy to see that the totedpig a lower bound, no matter what time or
peak power is used. For example, there carzbg vertices andw/3 components of size 3 containing 2
edges, where each pair of edge®is,/n) apart. However, the situation can be improved if there arefe
vertices or components, much like thé: vertices inherent when an adjacency matrix is used.

Theorem 9 Given a graphG = (V, E) with n edges stored one per processor, the connected components
and a minimal spanning forest 6f can be determined in tim@(nv/V /s) using peak energy, 1 < s <

VIVin.

11

Proof: Within squares of sizg/| simulate a standard mesh algorithm, determining the mingpanning
forest using only the edges in the square. Note that somige®nnay have no edges in the square. Then
squares are merged together in a series of stages, eacltstagming 4 subsquares at a time. The merger
involves moving the< |V'| edges together into a subsquare and using a basic mesttratgatgorithm to
reduce down to the minimal spanning forest of these, resuiti no more thaml’| edges.

The first time squares are combined, at mb3tedges are moved a distance\dfV/], taking|V'|>/2 total
energy per square and,/[V]/s time sinces|V|/n squirrels are assigned to the square. At each subsequent
stage the distance the edges are moved increases by a fa2tawithout increasing the number of edges,
and the number of squirrels moving them increases by a fatthrso the total time decreases by a factor of
2. Thus the time is dominated by the first stage. The initest using a basic mesh algorithm in squares of
size|V|, can be completed witB (|V'|>/2) total energy an®(|V|*/2/s) time by1 < s < |V| squirrels [17].
Heres = r|V|/n, so the time i9(n./[V]/s), i.e., the energy and time are the same as the initial move to
combine squares. The total energy over all of the initiabsgs isO (n/[V]).]

One can apply the above technique to compute broadcastedudtions over components once they
have been labeled. If there afécomponents then smaller initial squares, of sizecan be used. The
time will be reduced t®(nv/C/s), and the total energy will be reduced ®&n+/C). These time and
energy bounds can similarly be obtained for the problemstioveed in Theorem 8. Further, it is easy to
see that this time and energy are optimal: suppose in eaddl sguare there is exactly one value for each
component. Since the components are independent, thditoeabnd energy to perform reductions over
all components i€’ times the value for a single component. The single compovednes can be viewed
as being in a square lattice of singC, where the distance between neighbors/iS. Thus to perform
reduction over any component requires energy proportitnaiCn/C = n/+/C, so forC components the
total is proportional tovv/C. Similarly, the time and power achieved in Theorem 9 is woaste optimal.

Note thatV’, and henceéV |, need not be known in advance. The algorithm can start asguansmall
value, and when results from subsquares are merged togiéthisrdiscovered that the guess was too small
because there are too many different vertex labels pretem, the squirrels in that square continue the
algorithm for the larger size. Other squirrels may end ugingifor such a group, at which point they too
will then proceed with the larger value. These cascades camr several times until the true vallig| is
learned; however, the resulting time is asymptoticallyghme as if it had been known in advance.

4 Minimizing Total Energy Used by Any Single Processor

In some applications, such as sensor networks, an imparntasideration is the maximum energy used by
any sensor. This is because the sensors are assumed to éavanth, limited, power, as opposed to the
externally supplied power which motivated this work.

Recall that the power used by a processor corresponds taithiear of times it was visited by a squirrel.
For the preceding algorithms, in most steps no processasited more ther® (% - (Total Power)) times,
i.e., no processor had power requirements more than thageieHowever, when data was collected and
moved to a subsquare for processing by a standard meshatedr@mputer algorithm then this was not
true, since processors in the subsquare were on contipuduishg this step, far more than their share. For
example, in the last stage of recursion in the image compaagorithm for Theorem 1, the processors
simulate a standard mesh algorithm také'/*) time, and hence exper(n'/*) energy, but the average
per processor for the entire algorithm is ofylog n).

However, these power-intensive steps can be modified saithaverage power per processor is still a

12

Numbers indicate when the processor is used to simulatéghdard mesh algorithm

Figure 5: Expanding the simulating mesh

constant. To do so, the'/* x n'/* submesh is expanded, as in Figure 5, so that the simulatoupgsors
aren!/4 apart. Then a fixed number of steps of the simulation are pegfd, where each step now takes
O(n!/*) time. After this, the location of the simulating processams moved diagonally 1 step, as indicated
in the figure, and then another fixed number of steps are siedyjland so forth. The number of steps is
chosen so that the simulated algorithm is finished by the tireliagonal movement would place simulating
processors on top of ones previously used.

It is easy to see that now no processor is used more than aaobmsimber of times during the simu-
lation, either for calculation or as part of a communicatoath. While the notion of grouping processors
together and having only a few be active at one time has beshinssensor networks (e.g., [8, 16]), it is
unusual to do this when it significantly increases the timiee fime has increased by a factorrgf*, but
this merely makes it equal to the time needed to move dateetsuhsquare. Thus it does not increase the
total time by more than a constant multiple. Similar charggesbe made concerning the use of the leftmost
column in Theorem 3.

Summarizing, we have the following

Theorem 10 Using the indicated changes, all of the preceding algorighman be modified so that the peak
power, total power, and time do not change by more than a eahshultiple, and simultaneously each

processor uses onky (% - (Total Power)) power. O

5 Final Remarks

This paper has been concerned with minimizing peak powegeubgt mesh-connected computers. The
algorithms herein were only given for 2-dimensional meskspecially since some of the data formats
are naturally 2-dimensional, but one can use similar agpres to develop power reducing algorithms for
higher dimensional meshes. However, as the dimensionagesethere is a smaller range in which to lower

13

peak power without increasing the time required. For examipla 3-dimensional mesh af processors,
summing values from each processor can be dor(irt/?) time, and any algorithm which achieves this
minimal time must have a peak power@fn?/?). In contrast, in 2 dimensions the minimal timedén'/2),
which can be achieved with a peak poweGif»!/2).

A more optimistic viewpoint is that for the same energy baititere are problems that a 3-d mesh
can solve faster than a 2-d one, just as 2-d meshes can beosupet-d meshes. Sorting is one such
example. For most of the problems in this paper, howevetrjsheot possible since the algorithms provided
work-optimal tradeoffs compared to serial algorithms. Bome problems it isn't clear what effect the
dimension has. For example, to find the median, the optimma-gnergy tradeoffs are unknown for arbitrary
dimensions.

In general, the more structured the input the easier it ietlnice the power. For example, adjacency
graphs yield faster algorithms than do unordered edges.oP#re explanation for this is that less global
rearrangement of the data is needed, an operation whichtémpwer-intensive. In some cases one might
need to do an initial power-intensive operation with restd peak power, in which case the time will
increase. However, there might be efficient algorithms fapprly organized data. For example, some
geometry problems on point data can be solved significaasyef if the points have been sorted by x-
coordinate. Thus if one is solving a sequence of such prablemay be useful to organize the data initially
and view the organizational time as being amortized ovesegient operations.

It is interesting to note that several of the algorithms ugen pattern of energy use, i.e., the time at
which a processor is active is independent of the data. Tresages passed, of course, do depend on the
data. One exception was the depth-first search used bydudivsquirrels to label figures in a subsquare at
the start of the algorithm in Theorem 1. They could have uBediked activation pattern employed by the
subsequent stages of the labeling process, but an extrdthoga factor would have been introduced. Itis
unclear what the optimal time for a single squirrel is if itgtern of motion must be independent of the data.

References

[1] Atallah, M.J. and Hambrusch, S.E., “Solving tree proldeon a mesh-connected processor array”,
Infor. and Control69 (1986), 168—187.

[2] Atallah, M.J. and Kosaraju, S.R., “Graph problems on ameonnected processor array’ ACM 31
(1984), 649-667.

[3] Batcher, K.E., “The design of the Massively Parallel &gssor” IEEE Trans. Computer€29 (1980),
836-840.

[4] BlueGene/L: http://www.research.ibm.com/bluegene/

[5] Blum, M. and Hewitt, C., “Automata on a 2-dimensional ¢&pProc. 8th IEEE Conf. SWA[1967),
155-160.

[6] Blum, M. and Sakoda, W.J., “On the capability of finite auiata in 2 and 3 dimensional spacBtpc.
18th Symp. Foundations of Computer Scied&¥7, 147-161.

[7] Brown, C., “Algorithm yields ultra-low-power image sgor”, EE TimesDecember 12, 2005.
[8] Chen, B., Jamieson, K., Balakrishnan, Morris, R., “SpAn energy-efficient coordination algorithm

for topology maintenance in ad hoc wireless networks”, 7(@BICOM, 2001.

14

[9] Leighton, F.T.,Introduction to Parallel Algorithms and Architectures: rys, Trees, Hypercubgs
1992, Morgan Kaufmann.

[10] Mattson, T. and Henry, G., “An overview of the Intel TFES supercomputerintel Tech. J2 (1968).

[11] Miller, R. and Stout, Q.F., “Mesh computer algorithn@ tomputational geometrylEEE Trans.
Computers38 (1989), 321-340.

[12] Miller, R. and Stout, Q.FRarallel Algorithms for Regular Architectures: Meshes adamids 1996,
MIT Press.

[13] Nassimi, D. and Sahni, S., “Finding connected comptand connected ones on a mesh-connected
parallel computer’SIAM J. Computin® (1980), 744-757.

[14] Rabin, M., “Maze threading automata”, unpublisheduee, 1967.
[15] Shah, A.N., “Pebble automata on arraySgmp. Graphics and Image Prot974, 236—-246.

[16] Singh, M., Bakshi, A., and Prasanna, V.K., “Constmgtitopographical maps in networked sensor
systems” Proc. ASWAN 2004

[17] Stout, Q.F., “Optimal component labeling algorithnas Mmesh-connected computers and VL3h-
stracts AMS (1984), 148.

[18] Stout, Q.F. “Tree-based graph algorithms for somelfgu@mputers” Proc. 1985 Int’l. Conf. Parallel
Proc. (1985), 727-730.

[19] Thompson, C.D. and Kung, H.T., “Sorting on a mesh-cate parallel computerComm. ACM20
(1977), 263-271.

[20] Tilera Corporation, “TILE64 Processor Produce Bri€2007),
www.tilera.com/pdf/ProBriefTile64_Web. pdf

[21] Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendélson, B., and Catalyurek, U., “A scalable
distributed parallel breadth-first search algorithm one@ene/L’, Proc. SC—05Supercomputing
2005).

15

