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Abstract

One of the ways that the Sun interacts with the Earth is through the solar wind, which is an ionized multi-
component fluid that emanates from the Sun and travels radially outward at hundreds of kilometers per
second. Solar-wind transients, such as Coronal Mass Ejections (CME’s), can be particularly important. In
rare cases, CME’s have affected the lower atmosphere of the Earth, causing regional power-grid failures.
More regularly, CME’s pose threats to satellites andcggraft. Due to the extreme range of temporal and
spatial scales involved in solar-wind phenomena, it had previously been impossible to predict CME propa-
gation to Earth with faster-than-real-time, well-resolved calculations. Our team has now developed a highly
scalable solution-adaptive scheme for predicting CME propagation. The solution-adaptive technique is an
adaptive mesh refinement (AMR) scheme for magneto-hydrodynamic (MHD) calculations. The physical
domain is decomposed into three-dimensional blocks, where each block forms a regular grid. In regions
of relatively high gradients, blocks are successively refined. Blocks are distributed to processors, with
communication between neighboring blocks is handled by asynchronous message passing. The benchmark
calculation achieved 212 Gflops on a 1024-processor Cray T3E-1200, with the grid adapting over the course
of the calculation from 2048 blocks to 11,729 blocks, where each block was composed of 10x10x10 cells.
On a 512-processor Cray T3E-600, our benchmark simulations were performed 16 times faster than real
time.
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1 Introduction

Just above the visible Sun is the Sun’s corona, where the solar wind originates. The solar wind, composed of
ionized gases with speeds of several hundred kilometers per second, flows out radially into the solar system,
interacting with the planets. The structure of the solar wind is complicated, governed by hydrodynamic and
electromagnetic physics, and exhibits temporal scales that range over at least five orders of magnitude and
spatial scales that range over at least eight orders of magnitude. Transients in the solar windCsumhads

Mass Ejection§CME'’s), evolve and propagate to the Earth, directly affecting the conditions in our upper
atmosphere. The interaction of a CME with the Earth’s magnetosphere can cause a storm with significant
magnetic turbulence and an abundance of highly energetic “killer electron”. These storms can adversely



affect satellites orbiting Earth, such as the $200 million AT&T satellite that suffered a failure on 10 January
1997 due to the effects of a CME. They can also have effects in the lower atmosphere of the earth, adversely
affecting surface power grids because the transmission lines behave like giant antennas.

It is important to be able to predict the behavior of a CME so that appropriate measures can be taken
to minimize its impact, much as hurricane and tornado predictions can save lives and money. Besides
having appropriate observational capability for early detection of a CME, it is important that one be able
to accurately simulate its evolution faster than real time. Due to the complicated physics of the solar wind,
the range of temporal and spatial scales, and the speed at which a CME travels, such predictive capability
has been out of reach until very recently. This paper describes a parallel, solution-adaptive code that can
simulate CME propagation and evolution faster than real time, at a useful resolution.

Our code, which we calBATS-R-US (Block AdaptiveT ree Solar-wind Roe-typeUpwind Scheme),
has been developed by a team which has worked together for a few years. The code’s performance is a
combination of many factors, which include use of powerful highly parallel machines, new numerical ap-
proaches to magneto-hydrodynamics (MHD), and a parallel implementation which achieves high efficiency
and scalability though at least a thousand processors. The parallel computers used were Cray T3Es. Most
of our work was done a 512 processor Cray T3E-600, provided by NASA to support National Grand Chal-
lenge projects such as ours. In May 1998 SGI/Cray also ran our code on a 1024 processor Cray T3E-1200,
to demonstrate the power of this new machine.

We first describe the solution-adaptive numerical analysis scheme used (Section 2), and then describe
the parallel implementation (Section 3). Then we explain how the CME was simulated (Section 4), and
show the achieved performance (Section 5). We finish with some concluding remarks (Section 6).

2 A Solution-Adaptive Scheme for Solving the Governing Equations

The BATS-R-US code solves the three-dimensional form of the ideal magneto-hydrodynamic (MHD) equa-
tions. For solar wind and heliospheric calculations the basic MHD equations are supplemented with addi-
tional source terms, which represent the effects of the solar gravitational force on the plasma and a volu-
metric heating term. The latter is a somewhat empirical term that has been incorporated in an attempt to
model micro-physical processes not represented by an ideal MHD description of the plasma such as coronal
heating processes and heat and radiation transfer effects. The volumetric heating term is required for a more
realistic model of the solar wind based on the ideal MHD equations.

Before the advent of modern high-resolution upwind schemes, researchers solving hyperbolic systems
of conservation laws had a choice between extremely dissipative first-order schemes, such as Lax-Friedrichs
and Rusanov methods, or second-order centered-differenced based schemes, such as the Lax-Wendroff
method, which were much less dissipative but could not treat even weakly discontinuous solutions (e.g.,
shock waves) without introducing non-physical and potentially destabilizing oscillations in the approximate
solutions. In the last 10-15 years, research into upwind finite-volume schemes and approximate Riemman
solvers have led to more robust and lower dissipation schemes. These algorithmic advances yielded first-
order methods with the minimum dissipation necessary to provide numericiitgtdine upwind schemes
provided robustness nearly equal to that of the early excessively dissipative first-order schemes combined
with solution accuracy nearing that of the early second-order schemes. At the same time, other research
into higher-order limited reconstruction techniques provided a way to extend the accuracy of the new up-
wind schemes to second order or higher, while avoiding the deleterious oscillations associated with earlier
higher-order methods.



The BATS-R-US code was designed to take advantage of these advances in upwind methods, approx-
imate Riemann solvers, and limited solution reconstruction. In the MHD model, a cell-centered upwind
finite-volume formulation is adopted to solve the governing equations of ideal MHD in divergence form.
The limited solution reconstruction of van Leer [5], is used to ensure second-order accuracy away from dis-
continuities, while simultaneously providing the stability required for monotonic non-oscillatory solutions.

In addition, two of the more popular approximate Riemann solvers: the linearized approximate Riemann
solver of Roe and a modified version of the HLLE method of Harten, Lax, Van Leer, and Einfeldt recently
proposed by Linde, are employed in the evaluation of the numerical flux function. These flux functions were
originally designed for gasdynamics. They have been extended and re-derived for ideal MHD as part of the
development of the BATS-R-US algorithm. In the process, a number of other very challenging algorithmic
issues were solved which limited earlier upwind MHD schemes.

Finally, a multi-stage method of lines approach with implicit treatment of source terms is used to in-
tegrate the ordinary differential equations that result from this upwind spatial discretization of the MHD
equations. The resulting finite-volume scheme solves for the hydrodynamic and electromagnetic effects in
a tightly coupled manner, provides accurate resolution of discontinuous solutions and complicated wave
structures, and works equally well across a range of several orders of magnitude in plasma beta.

Further details can be found in [3] and [7], and in the milestone release documentation for BATS-R-US,

[1].

2.1 Solution Adaptation

Computational grids that automatically adapt to the solution of the governing partial differential equations
are very effective in treating problems with disparate length scales, saving orders of magnitude in computing
resources for many problemadaptive mesh refinemefAMR) techniques avoid under-resolving the so-

lution in high-gradient regions and, conversely, avoid over-resolving the solution in low-gradient regions at
the expense of the more critical regions. For space plasma flow problems, length scales can range from a few
kilometers in the near Earth region to the Earth-Sun distance and time scales can range from a few seconds
near the Sun to the expansion time of the solar wind from the Sun to the Earth. For problems with disparate
spatial and temporal scales such as these, the use of AMR is extremely beneficial and is almost a virtual
necessity — simple structured grids would grossly under-resolve much of the problem, while over-resolving
relatively uninteresting regions.

3 Algorithms and Parallel Implementation

The approach to adaptation taken in the BATS-R-US code is one of self-similar adaptive blocks. This
approach was designed, from the ground up, with performance on massively parallel machines in mind.
The basic unit of data is a three-dimensioadhptive blockof grid cells. For a given run, all blocks

have the same size; a typical run might use blocks of size @ x 10 cells. The size of the blocks is
machine- and problem-dependent, based on factors such as the computational efficiency of each block, the
communication/calculation ratios for cells, the number of blocks needed, etc.

An initial grid is composed of a number of blocks, all at the same level of refinement. Then, in regions
that appear under-resolved (as defined by a physical or numerical error adaptation criteria), a block is refined
with each of its eight octants becoming a block with the same number of cells as the original block, i.e.,
self-similar blocks. In regions that appear over-resolved eight blocks can be coalesced (coarsened) back to
one. Typical simulations have 10-15 levels of refinement; some calculations have more than 20 levels of
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Figure 1: Initial Grid and Final Adapted Grid




refinement In the case of 20 levels of refinement, the finest cells on the mesh are approximately one million
times smaller in linear dimension, and's times smaller in volume, than the coarsest cells on the mesh.
Further discussion of adaptive blocks appears in [8].

Figure 1 shows a comparison of the initial grid and the final adapted grid. The black lines show the
blocks while the cyan lines show individual cells. Strong gradients in magnetic field strength were used to
determine which cells should be refined.

BATS-R-US is written in Fortran 90, with MPI used to handle all communication. Thus it is portable to
a wide range of machines, and it has been run on Cray T3D and T3E, IBM SP2 and SGI Powerchallenge
parallel systems, as well as Sun and SGI workstations.

4 Simulating a CME

In our initial studies of the formation and evolution of CMEs in the heliosphere, we simulated the initiation

of a CME by local pressure and density enhancements. This was primarily for the sake of numerical conve-
nience and not because it is thought that pressure enhancement is the most likely mechanism for triggering
the onset of CMEs. The goal of these first studies was more to test the ability of the MHD model to simulate
solar wind disturbances than to better understand CMEs.

The pressure enhancement was allowed to build up gradually to a maximum of 40:1 pressure increase
and then to gradually decay over a period of 16 hrs. The width of the region of enhancement was about
0.06 R;. The pressure pulse first “fills” the closed magnetic field line region with additional plasma. After
a period of time the closed field magnetic configuration is unable to contain this additional plasma and the
disturbance “pierces” the closed field lines. The resulting CME moves rapidly through the inner corona
and propagates outward into interplanetary space, disrupting the heliospheric current sheet as it moves.
A magnetic cavity propagates with the disturbance, which moves at velocities ranging from about 300-
450 km/s. At 17-19 hrs into the simulation the pressure enhancements disappear and the CME field lines
disconnect from the solar surface and the current sheet begins to reform.

In Figures 2 and 3, colors represent the log of the magnetic field magnitude. One can see that the grid
adapts to the flow, and evolves over time.

5 Performance

The BATS-R-US code was designed from the ground up with parallelism in mind. The underlying basic
algorithm that was chosen is highly local in nature, leading to minimal communication overhead. The
data structures on which the code was built allow a natural partitioning of the data, and greatly facilitate
load-balancing, a crucial element of truly scalable computing. Basically, balancing the number of blocks
per processor balances the load. Because blocks have a high ratio of calculation to communication, the
specifics of which blocks are mapped to which processors have negligible effects on the run time, which
greatly simplifies block distribution. This is true even though each block must communicate with all of its
neighbors in every time step.

Many performance gains were a consequence of the self-similarity of the blocks. Users of MPI Cartesian
communicator (equal) grids and other parallel methods where each processor has an equal slice of a single
regular grid enjoy the benefits of speed-up due to optimization of a single set of code duplicated on all grids
on all processors. We achieve similar speed-ups for grids that are of unequal physical size, because of the



Figure 2: A 2D slice of the 3D solution for a CME at 8 hours after initialization.
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Figure 3: A 2D slice of the 3D solution for a CME at 20 hours after initialization.
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Figure 4: Performance results for benchmark calculations

self-similar properties of the blocks. Indeed each processor sees all blocks as exactly the same in the BATS-
R-US model, where only the data distinguishes blocks as having different physical size and resolution.
Stripping for cache in the most expensive part of the Roe solver benefited all blocks, as did improvements
in the asynchronous message passing harness. The size of the optimal cache-line stripping varies with the
CPU, as expected, but we found additional speed-ups by letting it vary with the direction of the Roe solver.
The stripping size was also shortened for use with Cray streams.

We have developed a code that partially automates the determination of the best cache strip size for a
machine/model pair. The script also helps us make choices of a few limited settings for the message passing
harness as well (in particular the data size and setting of wait states). Such a script is ecafiselthe
BATS-R-US code is being used for a wide range of simulations (see [2,4,6]), and optimizations for one may
not be appropriate for others.

5.1 Scaling

Figure 4 shows performance scaling results for two types of runs which simulate CME evolution and propa-
gation. In the first, timings are shown for a problem that has a fixed size per processor; in the second, timings
are shown for a problem that has a fixed total size. Both of these runs were carried out on a T3E-600 and
a T3E-1200. As expected, the fixed size problem is somewhat less scalable, since as it is distributed across
more and more processors the ratio of communications overhead to computing cost rises. However, unlike
most other codes, this effect is minimal here. As can be seen from Figure 4, for both problems, the scaling
to 1024 processors is nearly perfect.



We note that this calculation of the pressure-driven CME covered a period of 24 hours of simulated
time. The calculation took about 1.5 hours to perform on a 512-node Cray T3E-600, indicating that the
BATS-R-US code was running faster than real time by a factor of 16 for this particular simulation. This
is important to note because a predictive model of space weather must be capable of running substantially
faster than real time to be useful for forecasting purposes.

6 Concluding Remarks

Useful forecasts of Coronal Mass Ejections can be obtained by using a high-performance MPP to run the
solution-adaptive parallel scheme developed by the authors for solving MHD problems. The solution-
adaptive scheme helps resolve the vastly disparate scales in the problem, and the excellent parallel efficiency
of the code allows runs with millions of degrees of freedom to be run faster than real time.

One area of future interest is the ability to couple the current code to other codes that model portions
of the Sun-Earth connection, for example a model of the physics in the Earth’s ionosphere, or sub-coronal
solar physics. BATS-R-US is designed to bgomd neighboin running with other models. The self-similar
block has naturally simplified load-balancing, but it is also adaptive in that it can fill whatever portion of the
machine’s memory and processors are allotted to it. For example, carrying out a BATS-R-US simulation of
the Heliosphere simultaneously with a BATS-R-US simulation of the Earth’s magnetosphere, the two could
coexist (and in the future could coordinate resources). Depending on relative importance, the slice of the
machine for each could be chosen with corresponding choices in potential resolution.itietheldta for
CME’s, which comes from observations of the sun, have relatively large error bars, so multiple BATS-R-US
simulations could be run in parallel to explore possible outcomes of initial errors/uncertainties. The results
would be a “percentage” forecast that brackets the error fraaliconditions at the Sun.

Finally, we note that versions of BATS-R-US are publicly available: consult[1] for relevant information.
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