
In Adaptive Designs: IMS Lecture Notes{Monograph Series 25, 1995, pp. 223-237.

Copyright c1995, Institute of Mathematical Statistics

Exact Computational Analyses for
Adaptive Designs

Janis P. Hardwick1 Quentin F. Stout2

Statistics Department EECS Department

University of Michigan, Ann Arbor, MI 48109

Abstract We show how to compute optimal designs and exact analyses of allocation
rules for various sequential allocation problems. The problems we have solved include
parameter estimation in an industrial scenario, and testing in a clinical trial. Our
computational approach incorporates backward induction, dynamic programming,
and a new technique of forward induction. By utilizing e�cient algorithms and care-
ful implementation, we are able to determine exact solutions to practical problems
previously approached only through simulation or approximation.

Keywords: constrained dynamic programming, forward induction, backward induc-
tion, bayesian design, multiple criteria, clinical trials

1 Introduction

We discuss the exact analyses of sequential allocation rules for a variety of appli-
cations. Our interests include both estimation and testing problems, and we have
examined allocation rules for selected applications in medicine and industry. In the
former, we study the design and evaluation of optimal allocation rules for clinical
trials with ethical costs [7, 8, 10]. In the latter, we consider the problem of estimating
the failure probability of a product composed of two subparts [9]. Generally speak-
ing, our goal is to show that, rather than relying on asymptotic approximations or
simulations as complete solutions to such problems, one can analyze them exactly.
Asymptotic approximations are important, and nicely compliment our work, but they
often su�er from having error bounds that are excessive or unknown for sample sizes
of practical interest. Simulations are a useful approach whenever exact calculations
are infeasible, but there does not seem to be widespread awareness of the extent to

1Research supported in part by National Science Foundation under grants DMS-8914328 and
DMS-9157715.

2Research supported in part by National Science Foundation/DARPA under grant CCR-9004727.

1

which sequential problems now admit of exact calculations. The increasing feasibil-
ity of exact computational analyses comes about from a combination of perpetually
increasing computing power and improved algorithms.

To make descriptions more concrete, we utilize the terminology of clinical trials,
observing patients on treatments T1 and T2. Responses to treatments are dichoto-
mous, either success or failure, where, for each patient, the probability of success on
treatment Ti is pi; i = 1; 2, with all patient responses being independent. For most
of our work we assume that there is prior information available concerning p1 and p2.
This information is modeled in the form of a joint distribution function � on (p1; p2),
taken to be the product of two independent beta random variables. We assume that
response to treatment is rapid, so that the outcome of each patient is known before
the next patient arrives.

We need to use a bit of computer science notation in our analyses. Given positive
functions f and g de�ned on the natural numbers, we say f(n) = �(g(n)) if there are
positive constants c, d, N such that c � g(n) � f(n) � d � g(n) for all n � N . We say
f(n) = !(g(n)) if limn!1 f(n)=g(n) =1.

1.1 States

Let n denote the horizon of the study, i.e., the largest possible sample size, and
let m denote the number of patients observed so far. A crucial step in making
the calculations practical is the use of states, where a state � = (s1; f1; s2; f2) is
a collection of su�cient statistics

s1 = # patients succeeding on treatment T1,
f1 = # patients failing on treatment T1,
s2 = # patients succeeding on treatment T2, and
f2 = # patients failing on treatment T2.

Note that m = s1 + f1 + s2 + f2.
The use of states greatly reduces the number of essentially di�erent allocation

rules, where an allocation rule is an algorithm which decides, for each patient, which
treatment the patient is assigned to. At any patientm, the allocation rule may depend
only on the prior distribution and the full history of treatment assignments and
patient outcomes observed up to this point. Thus, for a given prior distribution and
�xed sample size n, there are 22

n�1 di�erent deterministic allocation rules. However,
since the sequence of observations gives no more information than is contained in the
su�cient statistics, it su�ces to restrict attention to allocation rules that depend only
on the prior and the su�cient statistics. There are only �(n4) states, which reduces
the number of distinct deterministic allocation rules to 2�(n

4). This is still large but
is nonetheless a signi�cant improvement.

2

1.2 Criteria

Our research is typically comprised of two parts: the design of allocation rules, op-
timized with respect to a speci�c criterion; and the evaluation of these and other,
possibly ad hoc, rules according to multiple criteria. For clinical trials, criteria of
interest include

� number of failures

� number of expected successes lost [1]

� number of patients assigned to the inferior treatment

� sample size

� cost

� probability of correct selection, P(CS)

� robustness.

These criteria have multiple variants. For example, `probability of correct selection'
may refer to the evaluation of the function P(CSjp1; p2) for all treatment probabilities
(p1; p2) in a speci�ed region of the parameter space. On the other hand, it may refer
to the same concept, but evaluated from a Bayesian viewpoint in which P(CSjp1; p2)
is integrated with respect to a prior distribution on (p1; p2). A third possibility, often
encountered in the ranking and selection literature [2], is to consider a minimax-like
de�nition where there is an indi�erence region jp2 � p1j < �, and one is concerned
with the smallest value of P(CSjp1; p2) outside this region. That is, the measure of
interest is

min
jp2�p1j��

P(CSjp1; p2) :

It is to this version of the P(CS) criterion that we refer later on in this paper.
For other applications there may be di�erent sets of criteria of interest or variations

of the same criteria. For example, in the fault tolerance problem studied in [9, 14, 16],
the goal was to minimize the mean squared error of the estimate of the fault tolerance.
In industrial applications some of the \ethical" criteria, such as number of uses of
the inferior choice, may be far less important, while time or cost criteria may become
more important and/or complex. As an example, the cost may include a component
that represents the setup costs of switching from one alternative to another. While
we emphasize clinical terminology and criteria in this paper, many industrial criteria
can be accommodated by the same techniques.

3

2 Backward Induction and Dynamic Programming

The phrases \backward induction" and \dynamic programming" are often used in a
somewhat confusing, overlapping manner. Here we use dynamic programming only
for the process of optimization. We use backward induction for the process of evalua-
tion. This seems to be the accepted usage for dynamic programming, but \backward
induction" often seems to be used in both contexts.

To illustrate these terms, consider the following setup: suppose we are interested
in some criterion C, such as number of failures incurred during the trial, and suppose
 is an allocation rule that we wish to evaluate with respect to C. We use C(�) to
denote the expected value of C, conditional on the experiment reaching � given the
prior � and using rule . We assume that we can evaluate C(�) whenever � is a
terminal state, and our goal is to evaluate C(0; 0; 0; 0).

In general, for a nonterminal state � = (s1; f1; s2; f2), if were to assign the next
patient to T1 then we would have the recursive equation

C(s1; f1; s2; f2) = Em(p1) � C(s1 + 1; f1; s2; f2) + (1)

(1�Em(p1)) � C(s1; f1 + 1; s2; f2)

whereEm(p1) is the posterior expected value of p1, given prior � and data �. Similarly,
if were to assign the next patient to T2 then we would have the recursive equation

C(s1; f1; s2; f2) = Em(p2) � C(s1; f1; s2 + 1; f2) + (2)

(1�Em(p2)) � C(s1; f1; s2; f2 + 1) :

Equations 1 and 2 are the fundamental equations of backward induction, showing
that one can evaluate C(s1; f1; s2; f2) if one knows the values on the right-hand sides
and which treatment would allocate. By starting with terminal states and working
backwards, one is ultimately able to evaluate the initial state C(0; 0; 0; 0). With
obvious modi�cations, this also applies if randomly allocates patients to treatments
using probabilities depending on � and/or �.

The primary di�erence between general backward induction and dynamic program-

ming is that dynamic programming determines the allocation rule that optimizes
C: This means that, at �, should choose the treatment that optimizes the value
obtained in equations 1 and 2. One implication of this di�erence is that, at any state
�, dynamic programming does roughly twice as many computations as does back-
ward induction, since dynamic programming evaluates both equations and backward
induction evaluates only one.

Dynamic programming, and to a lesser extent backward induction, is well-known
to statisticians, especially in the area of adaptive designs. For example, for quite some
time it has been known that dynamic programming can be used to solve the �nite

4

horizon uniform bandit problem, which is the problem of maximizing the expected
number of successes [4]. In practice, however, dynamic programming and backward
induction are often viewed as being too computationally slow or memory intensive, so
they are often dismissed as being infeasible for interesting problems. One of the ongo-
ing goals of our work is to show that this is not always true, and that computational
advances make advanced sequential methods more practical.

2.1 Mixed Evaluations

As dynamic programming is designing an allocation rule, it is also evaluating it with
respect to the criterion being optimized. Backward induction, however, has no such
restriction, and thus can be used to evaluate rules on arbitrary criteria. For example,
in [9], dynamic programming was used to �nd optimal allocation rules for the product
of means problem mentioned in the introduction. Given a prior distribution � on the
reliability parameters of the individual parts, dynamic programming was used to
create an optimal rule �. To evaluate the robustness of the design with respect to
departures from �; the procedure � was also evaluated utilizing di�erent priors �0,
using backward induction for the evaluation.

Another example of mixed evaluations occurs when dynamic programming, cou-
pled with a prior distribution, is used in a Bayesian design to create an allocation
rule with the minimal expected number of failures, and the rule is then evaluated
with respect to a maximin criterion like P(CS), described in Section 1.2. Similarly,
one can evaluate ad hoc rules, such as play-the-winner/switch-on-loser(PW/SL) [15]
or alternating allocation, on any of the criteria listed in Section 1.2.

While the notion of using backward induction for arbitrary evaluation of allocation
rules is not new, nor profound, it has rarely been used. Two of the few works with
which we are familiar that apply this to sequential allocation are [5, 13].

2.2 Wavefront Ordering

Equations 1 and 2 show that C(s1; f1; s2; f2) can be evaluated once C(s1+1; f1; s2; f2),
C(s1; f1+1; s2; f2), C(s1; f1; s2+1; f2), and C(s1; f1; s2; f2+1) have been evaluated.
Such dependencies are quite common in computational problems, and are known as
wavefront dependencies. Any evaluation ordering is possible as long as these wave-
front dependencies are satis�ed, but typically one evaluates all states with m + 1
patients before evaluating any states with m patients.

If m is �xed, then one of the components of the state can be eliminated. If f2
is chosen, then we can denote C(s1; f1; s2; f2) by Cm

 (s1; f1; s2), and the wavefront
dependencies reduce to the fact that Cm

 (s1; f1; s2) must be evaluated after Cm+1
 (s1+

1; f1; s2), Cm+1
 (s1; f1+1; s2), Cm+1

 (s1; f1; s2+1), and Cm+1
 (s1; f1; s2). We can reuse

5

the array holding Cm+1
 to hold Cm

 , as long as we obey these dependencies. They are
just wavefront dependencies on fewer variables, coupled with the fact that the new
value at (s1; f1; s2) depends on the previous value at the same location.

Since there are many legal evaluation orderings, one can optimize to satisfy other
computational goals. Usually, the most important of these is the fact that computer
memory is organized hierarchically, with registers, cache, main memory, and disks. As
data is used it is moved from larger, slower memory to smaller, faster memory in this
hierarchy, and, except when moving to registers, it is moved in blocks of contiguous
memory addresses. Therefore it is best to utilize contiguous blocks, and this fact
becomes increasingly important as processor speeds continue to develop faster than
memory speeds.

Fortran and S store an array A[0:i,0:j,0:k] as A[0,0,0], A[1,0,0], . . . , A[i,0,0],
A[0,1,0], A[1,1,0], . . . , A[i,1,0], . . . , A[i,j,0], A[0,0,1], . . . , A[i,j,k]. Thus, for Fortran
or S, an optimal evaluation ordering is

do 100 m=n,0,-1

do 100 s2=0,m

do 100 f1=0,m-s2

do 100 s1=0,m-s2-f1

C(s1,f1,s2) = ...

Several other languages, such as C and Pascal, store matrices so that later indices
vary faster, so for them it is best to reverse the ordering of the inner 3 loops, making
s2 the variable of the innermost loop. For large arrays, an improper ordering can
increase the running time by an order of magnitude.

2.3 Time/Space Analysis

Since the number of states is �(n4) and it takes only a constant amount of compute
time per state in either backward induction or dynamic programming, the total time
required is �(n4). By reusing space as outlined in the previous section, the total
memory requirements are �(n3). This analysis assumes that the posterior distribu-
tion can be computed in constant time. While this is not necessarily true, in the
independent case at least, the prior, and hence posterior, distribution is a product of
distributions on the individual treatments, so that only �(n2) posterior means need
to be computed for each treatment. Thus, while the computation of posterior means
may be nontrivial, they do not dominate the computation time.

The previous paragraph is a worst-case analysis in which it is assumed that all
states need to be evaluated. However, in many situations this is not true. For
example, in evaluating PW/SL, one �nds that only �(n3) states are reachable since
they must satisfy jf1 � f2j � 1. Because of this, the time can be reduced to �(n3),

6

and space can be reduced to �(n2). The simple nature of PW/SL can be exploited
even further to get analytic evaluations without requiring backward induction, but
the point is that often, special knowledge of the behavior of an allocation rule can be
exploited to reduce the time and space needed to evaluate the rule.

Several researchers, including Berry [5, 6], have noted that space can be reduced
in the �xed horizon, nonstopping rule problem by utilizing the constraint that s1 +
f1 + s2 + f2 � n. This implies that only about 1/6 of the entries in the array are
accessed. While this is a common situation, standard computer languages do not
provide a mechanism for allocating only the appropriate corner of the array. Hence
to utilize this information a programmer must declare a 1-dimensional array of size
approximately n3=6, and then explicitly determine where each state is stored. While
not di�cult, this either decreases program readability and ease of modi�cation, or
increases compute time. Further, the increased use of virtual memory diminishes the
importance of this space reduction, since only the utilized memory locations will be
moved into main memory (or cache). On personal computers, however, this may still
be useful since PC's typically lack virtual memory capabilities and have less memory.

One interesting computer science question is whether dynamic programming is
an optimal algorithm for minimizing expected failures. That is, we know that dy-
namic programming produces optimal allocation rules for minimizing failures, but a
computational complexity question arises, namely,

Is dynamic programming the fastest way to produce an allocation rule
minimizing expected failures?

Thus far, no faster algorithm has been determined, but there is no proof that one
does not exist. Experimental observations, reported in [8], found that the allocation
rule that minimizes failures actually reaches �(n4) states. Still, even a proof that
there are �(n4) reachable states does not demonstrate that �(n4) time is needed to
determine the minimum possible expected number of failures. Unfortunately, despite
the widespread use of dynamic programming in many di�erent �elds, there are few
problems for which it is known that dynamic programming provides the optimal
solution in the fastest possible time.

3 Constrained Dynamic Programming

A useful variation of dynamic programming is to constrain the choices available at
each stage, in order to achieve some secondary goal in addition to the goal of opti-
mizing a primary criterion. For example, one may be concerned about a drift in the
treatment probabilities over time, desiring that no treatment be used more than k
times in a row before using the other treatment. In this scenario, there are situations

7

in which only one treatment is allowable, so the choices available for dynamic pro-
gramming are constrained. The notion of a `state' becomes more complicated since
it must now include an indication of the most recent treatment and the number of
consecutive times it has been used.

A di�erent form of constraint was considered in [3, 10], where a class of optimal
equal allocation rules were considered. For a �xed sample size, one can show that
the P(CS) is maximized by allocating equally to the two treatments. Often \equal
allocation" is implemented as \alternating allocation", but all ways of allocating
equally have the same probability of correct selection, and there are 2�(n

4) di�erent
deterministic equal allocation rules. A natural question arises, namely,

Are some equal allocation rules better than others with respect to a second
criterion, and if so how do we determine an optimal rule?

In many cases, an equal allocation rule that is optimal for a second criterion is one that
has, in some way, been terminated early. One important form of early termination
is curtailment, where an allocation rule can be curtailed (stopped with no change
in decision) at a state � if all terminal states that can reach from � will yield the
same decision.

For example, suppose equal allocation is being used with a horizon of n (even),
where the terminal decision rule is dichotomous, deciding in favor of T1 if s1 > s2,
in favor of T2 if s2 > s1, and randomly declaring a winner if s1 = s2. Then one may
stop and declare T1 the winner at any state � where s1 > n=2 � f2, since any state
reachable from � by equal allocation will have no more than n=2�f2 successes on T2.
Notice that, by de�nition, P(CS) is not changed by curtailment. One can be more
opportunistic and also declare T1 the winner whenever s1 = n=2 � f2 and m < n.
Strictly speaking this is not standard curtailment since one reachable terminal state
is a tie with T2 being declared the winner with probability 0.5; however, for equal
allocation rules, it can easily be shown that this more aggressive curtailment does not
a�ect the P(CS) no matter what the treatment probabilities are. This has apparently
been noted by several researchers, and follows from a more general result in [12].

One can use dynamic programming to determine the optimum n-horizon equal
allocation rule for criteria such as earliest expected curtailment (smallest expected
sample size), fewest expected losses, least cost, etc. For each state, one �rst determines
if the state is terminal, either because m = n or because curtailment is possible. If
it is terminal then the criterion is evaluated, while otherwise equations 1 and 2 are
evaluated for each legal treatment, and the optimum is chosen. A treatment is legal
at a state if and only if it has not already been used n=2 times, since any more uses
cannot result in an equal allocation.

Curtailment can be viewed as a pruning operation, reducing the number of states
that will be reached (or, for some states, reducing the number of paths that reach

8

Only p1 � p2 shown, n = 200, both treatment priors are Be(1,1)

Figure 1: Expected failures, EA�F � �F

them). This can be coupled with a grafting operation, where, once a state is reached
where the terminal decision is known, then the experimenter is free to choose treat-
ments arbitrarily for the remainder of the study (presumably choosing the winner).
The use of grafting allows one to compare allocation rules fairly by extending them to
a common horizon. For example, Figure 1 shows the di�erence between expected fail-
ures for the pruned-and-grafted equal allocation of minimal failures (denoted EA�F),
and the expected failures of the allocation rule solely designed to minimize failures
(the classical uniform horizon two-armed bandit, denoted �F), both with a horizon
of 200.

An interesting open problem is to examine the optimal tradeo� curve of failures
versus P(CS) for a given horizon. It is easy to show that this curve is convex, and
that the �F rule gives the optimal tradeo� at one end. (Technically, �F is not quite
unique, since in a few states the evaluations of expected failures for both treatments
are the same, even though the treatments are not equivalent. The di�erent choices in
such a situation will yield slightly di�erent P(CS), but the total variation is minuscule
and one can determine the solution with maximal P(CS).) We conjecture that EA�F
is the point at the other end, but we have yet to complete a proof of this. Beyond this
we know of no feasible procedure for producing other points along the curve, although
certain ad hoc allocation rules, such as those described in [7], give extremely good
tradeo�s, nearly equal to EA�F in probability of correct selection and nearly equal
to �F in expected failures.

9

4 Forward Induction

Often it is useful to evaluate an allocation rule and criterion for multiple (p1; p2) pairs.
For example, suppose we wish to determine the P(CS) (as de�ned in Section 1.2) for
a given indi�erence region jp1 � p2j < �. For an arbitrary allocation rule it is not
known which pair of treatment probabilities (p1; p2) yields the smallest P(CSjp1; p2),
although it is known that the minimum occurs along the line jp1� p2j = �, and thus
multiple evaluations are needed to locate the minimum. Multiple evaluations are also
needed if we want to produce the data for plots such as those in Figure 1. In such
cases, a signi�cant time reduction can be obtained by a path-counting technique we
call forward induction.

4.1 Forward Induction Equations

To explain forward induction, let be any allocation rule, and let P(�) denote the
number of di�erent paths by which can reach state �. Then P(0; 0; 0; 0) = 1, and
for any state � that is not reachable by ; P(�) = 0. For each state (s1; f1; s2; f2),

P(s1; f1; s2; f2) = P 0
(s1 � 1; f1; s2; f2) + P 0

(s1; f1 � 1; s2; f2) (3)

+P 00
 (s1; f1; s2 � 1; f2) + P 00

 (s1; f1; s2; f2 � 1) ;

where the 0 indicates that the term is included only if , being in that state, would
choose treatment T1, and the 00 indicates that the term is included only if , being in
that state, would choose treatment T2. For example, let be the PW/SL allocation
rule starting with treatment T1. Then we have P(1; 0; 0; 0) = 1, P(0; 1; 2; 0) =
P 00
 (0; 1; 1; 0) = 1, and P(2; 1; 0; 1) = P 0

(1; 1; 0; 1) + P 00
 (2; 1; 0; 0) = 3.

To utilize the P values, notice that, given and (p1; p2), each sequence of out-
comes along any path arriving at state � = (s1; f1; s2; f2) is equally likely, occurring
with probability p(�; p1; p2) which is given by

p(�; p1; p2) = ps11 � (1 � p1)
f1 � ps22 � (1� p2)

f2 :

Thus, the probability that will reach � if the treatment probabilities are (p1; p2),
is P(�) p(�; p1; p2). For a given criterion C and treatment probabilities (p1; p2), the
expected value of C given the procedure is

X

� terminal

C(�)P(�) p(�; p1; p2) : (4)

The same approach can be used to evaluate C given for a speci�c prior � - just
replace p(�; p1; p2) with

R
p(�; p1; p2) d� .

10

With simple modi�cations, one can also handle the case where is not a determin-
istic function of the state and prior. In this case, each term on the right-hand side of
equation 3 is multiplied by the probability that , being in the indicated state, would
choose the relevant treatment. One example of such an allocation rule is randomized
play the winner (RPW), introduced in [17].

4.2 Time/Space Analysis

Equation 3 shows that P obeys wavefront dependencies which are the reverse of
the ones observed for backward induction. By reversing the order of evaluation in
Section 2.2, one can evaluate P for arbitrary in �(n3) space and �(n4) time. As is
the case with dynamic programming and backward induction, certain allocation rules
such as RPW actually reach �(n4) states, but others such as PW/SL and alternating
allocation reach only �(n3) states, permitting a reduction in time and space.

The advantage of forward induction over backward induction occurs when an allo-
cation rule is being evaluated multiple times. This may arise because a single criterion
is being evaluated for multiple (p1; p2) pairs or for multiple priors, or because several
di�erent criteria are being evaluated. If the rule is being evaluated k times, then
repeated use of backward induction takes �(kn4) time. Forward induction takes only
�(n4+ kn3) time, since P is computed once and repeated evaluations are performed
only at terminal states, as shown in equation 4. This explicitly assumes that the
number of terminal states is �(n3), which is true if a �xed sample size is used. If
a stopping rule is used then the time may be even further reduced, though there
exist bizarre stopping rules that increase the number of terminal states to �(n4). For
example, stopping whenever s1 and s2 are even will have such an e�ect. However,
for problems such as those examined here, we know of no stopping rule of statistical
interest that has !(n3) terminal states, so it is fair to say that forward induction repre-
sents a signi�cant practical improvement over backward induction whenever multiple
evaluations are needed.

Additional time savings can be achieved by forward induction when multiple hori-
zons are being examined (a commonproblem when one is searching through parameter
spaces to �nd an appropriate rule). If the allocation rule is independent of the hori-
zon, then calculations of P for small horizons can be continued for larger horizons,
so one need not start over for each new horizon. This computational approach was
used to help determine the parameters of the allocation rules presented in [7]. The
advantages of this approach, and various implementation details of forward induction,
are discussed in [11].

11

5 Extensions and Conclusions

This work, and that of others such as in [5, 13], shows that exact computational design
and analysis is possible for some practical sequential allocation problems. This ability
allows one to create better, more exible designs, optimized and analyzed for speci�c
situations. Since sequential designs often o�er signi�cant cost or ethical advantages
over their nonadaptive counterparts, but are often perceived as being too complex
and di�cult to design, making them computationally tractable is an important step
towards their more widespread adoption. This approach is also pursued in [7], where
the results were obtained using the computational techniques described in this paper.

The work described here has concentrated on an important, but relatively simple,
scenario in which response is dichotomous and immediate, and only two treatments
are being evaluated. Computationally acceptable extensions may be developed to
handle some variations, such as grouped sequential designs or situations with more
than a binary terminal decision (such as adding a \No di�erence" outcome). Other
variations increase the computational requirements more rapidly, and their exact
solution requires signi�cant advances in algorithm e�ciency and/or computational
power. Important examples of such variations are delayed responses, polychotomous
responses, and the evaluation of more than two treatments. For example, if there are
t treatments being evaluated, with r responses, and a delay of d between treatment
and response, then dynamic programming, backward induction, or forward induction
will take �(tdntr) time and �(tdntr�1) space.

To handle such computationally intensive variations, we are currently developing
algorithms for parallel computers, on which hundreds or thousands of operations can
be performed concurrently. Parallel programming is more complicated than serial
programming, so usually it is utilized only when the problem is important and serial
computers are inadequate. For adaptive design calculations, e�cient parallel pro-
grams have to take the wavefront dependencies into account to maximize the number
of concurrent operations while minimizing data movement among processors.

References

[1] Bather, J.A. (1985), \On the allocation of treatments in sequential medical trials"
Int.'l Stat. Review 53, pp. 1-13.

[2] Bechhofer, R.E., Kiefer, J., and Sobel, M. (1968), Sequential Identi�cation and

Ranking Procedures, Univ. Chicago Press.

[3] Bechhofer, R.E. and Kulkarni, R.V. (1982), \Closed adaptive sequential proce-
dures for selecting the best of k � 2 Bernoulli populations", in Proc. 3rd Purdue

12

Symp. Stat. Decision Theory and Related Topics I (ed. S.S. Gupta and J. Berger),
Academic Press, pp. 61-108.

[4] Bellman, R. (1957), Dynamic Programming, Princeton University Press.

[5] Berry, D.A. and Eick, S.G. (1987), \Decision analysis of randomized clinical
trials: comparison with adaptive procedures" (unpublished manuscript).

[6] Berry. D.A. and Fristedt, B. (1986), Bandit Problems: Sequential Allocation of

Experiments, Chapman and Hall.

[7] Hardwick, J. (1994), \A modi�ed bandit as an approach to ethical allocation in
clinical trials", this volume.

[8] Hardwick, J. and Stout, Q.F. (1991), \Bandit strategies for ethical sequential
allocation", Computing Science and Statistics 23, pp. 421-424.

[9] Hardwick, J. and Stout, Q.F. (1993a), \Optimal allocation for estimating the
product of two means", Computing Science and Statistics 24, pp. 592-596.

[10] Hardwick, J. and Stout, Q.F. (1993b), \Optimal adaptive equal allocation rules",
Computing Science and Statistics 24, pp. 597-601.

[11] Hardwick, J. and Stout, Q.F. (1993c), \Exact computational analyses for se-
quential allocation problems", to appear.

[12] Jennison, C. (1983), \Equal probability of correct selection for Bernoulli selection
procedures", Commun. Stat. Theor. Meth. A 12, pp. 2887-2896.

[13] Jones, P.W. (1992), \Multiobjective Bayesian bandits", Bayesian Statistics 4,
pp. 689-695.

[14] Page, C. (1993), \Adaptive allocation for estimation", to appear.

[15] Robbins, H. (1952), \Some aspects of sequential design of experiments", Bull.
Amer. Math. Soc. 58, pp. 527-536.

[16] Shapiro, C. Page (1985), \Allocation schemes for estimating the product of pos-
itive parameters", J. Amer. Statist. Assoc. 80, pp. 449-454

[17] Wei, L.J. and Durham, S. (1978), \The randomized play the winner rule in
medical trials", J. Amer. Stat. Assoc. 73, pp. 840-843.

13

