
To appear in Mathematical and Computational Modelling

Shift-Product Networks

Marilynn Livingston Quentin F. Stout�

Computer & Information Science Elec. Eng. and Comp. Sci.

University of Oregon University of Michigan
Eugene, OR 97403-1202 Ann Arbor, MI 48109-2122

Abstract

Economics is the principle driver of current trends to use commodity components in the

construction of parallel systems for a range of sizes. One objective is to enable the user to

purchase a small system initially, and then extend it through a range of sizes as needs dictate.

A desirable feature is to have good system performance through the range of sizes; an undesirable

feature is to require the user to purchase excess hardware that will not be used until the system is

grown to its maximumallowable size. In this paper, we give a new construction which reconciles

these two conicting factors by introducing a way to interconnect several components of a given

small network using only the routers for the small network, with one additional port per router.

This construction, which we call shift-product, does not unduly raise the communicationdiameter

of the resulting large network.

Key Words: interconnection networks, scalable networks, shu�e-exchange networks, Cayley

graphs, product graphs, de Bruijn network.

1 Introduction

Designers of interconnection networks for parallel computers must face the economic fact that the
vast majority of systems sold will be quite small, and that the users of such systems do not want to
pay for over-designed systems. However, some users are interested in having systems that can scale
to larger sizes, with reasonably good performance throughout the range of sizes. Many di�erent
approaches to this have been investigated, and several have been used to construct real machines.
For example, the SGI Origin components are used to construct the Cray Origin, Hewlett Packard
SMPs are used to make Convex machines, and IBM SMPs will soon be available as nodes in the
IBM SP series. In these examples, a component involves approximately 4{8 processors along with
memory and I/O devices.

The problem that we consider here is:

How can one use a commodity small system as a building block, plus small additional
cost, to produce a parallel computer with good performance for a range of system sizes?

\Good performance" is a complex criterion, incorporating characteristics of the interconnection
network such as diameter, bisection bandwidth, fault tolerance, ease of routing, and so forth.
\Small additional cost" is often measured by factors such as the extra hardware to enable system
growth, number of extra communication links per node, design cost, etc. In theory, the \range of
system sizes" should be in�nite, but in practice, it may be most important to focus on systems
which can be grown to at most an order or two of magnitude bigger than the component system.

In this paper, we describe a method of construction which uses as building block a �xed, but
arbitrary, component system. With one unused input and output port per processor, it intercon-
nects the component systems to yield a large system with relatively small diameter, and maintains
the attractive properties of the original network. Our construction is called a shift-product.

�Partially supported by NSF grant DMS-9504980.



In Section 2 we survey some previously examined methods for constructing large systems from
small ones. In Section 3 we de�ne the shift-product construction, and examine some of its prop-
erties. In Section 4 we compare the shift-product to some related constructions, and show how to
modify the shift-product to produce some intermediate-sized networks. In Section 5 we provide
some conclusions.

2 Some Methods of Construction

There are many di�erent approaches to network design, the common goal being to produce a
network with provably good performance. Because of the many conicting factors which a�ect
performance, such as small diameter and low node degree, simplicity of routing protocols and fast
routing, high bandwidth and low cost, various tradeo�s must be studied and evaluated. When the
network design has a formal description, its properties can be more readily established. Moreover,
formal methods of construction can often be guided by a speci�cation of the network properties
desired. We will note several examples of this in this and the next section.

A most basic composition of networks is that of the direct product. Speci�cally, in composing
networks, one would like to maintain desirable network properties such as symmetry, low degree,
diameter, scalability, and e�cient mappings of algorithms and embeddings of certain classes of
networks. The behavior of several of these properties under the direct product composition was
studied in [2].

2.1 Direct Product

Let G and H denote two graphs. The direct product of G by H , denoted by G� H , is the graph
whose set of nodes is the Cartesian product of the set of nodes of G by the set of nodes of H , and
whose edges are determined as follows: if n1 = (g1; h1) and n2 = (g2; h2) are two nodes in G�H ,
then (n1; n2) is an edge provided that either

(i) h1 = h2 and (g1; g2) is an edge in G, or

(ii) g1 = g2 and (h1; h2) is an edge in H .

It is easy to check that the degree of a node (n1; n2) is the sum of the degrees of n1 and n2 and
the diameter of G�H is the sum of the diameters of G and H . The product construction extends
naturally to more than two factors.

Many of the networks actually used in parallel computers can be expressed as the direct product
of simpler networks. For example, the k-dimensional mesh is a direct product of k paths, the k-
dimensional hypercube is the direct product of k paths of length two, and the k-dimensional torus
is a direct product of k cycles.

Routing in a direct product of networks often makes use of the existing routing procedures
in each of the factor networks, in some hierarchical order. For example, routing from (x1; x2) to
(y1; y2) may use the routing of the �rst factor network to move to (y1; x2) and then the routing of
the second factor to move to (y1; y2).

To use the direct product construction as a means of upgrading a commodity system S through
systems S, S � S, S � S � S; : : : would result in increasing the system by a factor of jSj at each
upgrade while increasing the node degree by one at each stage. The growth of node degree is a
major disadvantage of this particular approach.

Choosing a cycle (ring) topology for one of the factors helps to maintain a low degree as upgrades
are constructed, independent of the size of the system. For example, upgrades would be of the form
S � Cn1 , S � Cn2 ; : : : ; S � Cnt

, where Cni
is a cycle with ni nodes, and n1 < n2 < : : : < nt. This

type of interconnection network is used in the Convex Exemplar and in the Cray Origin. The
construction used in the Convex 2000 series can be characterized as the direct product of S and T ,
where S is a complete graph and T is a two-dimensional torus of degree 4.

The hypercube topology, which is a direct product construction, has many attractive features,
but su�ers from the drawback of high node degree since the degree grows with each new factor.



In several proposed networks, the hypercube topology is introduced with some variation to control
the node degree. An example of this approach is the cube-connected cycles (CCC) [7]. We will
discuss several of these networks in Section 2.2.

2.2 A Hierarchical Product

Many recent network constructions can be viewed as a hierarchical structure in which a copy of a
�xed graph is embedded at each node of a host network [1, 4, 5, 7]. We o�er a formal description
of this method of composition and call it a hierarchical product. Start with a graph G of g vertices,
and a graph H where each of its nodes has indegree and outdegree no more than g. Assume that
the edges of H are labeled with a vertex in G, so that at each vertex of H , no two incoming edges
have the same label, and no two outgoing edges have the same label. The hierarchical product of
G and H , denoted G4H , has vertices (u; v) for all u 2 G and v 2 H . In G4H , there is an edge
from (u1; v1) to (u2; v2) if and only if

(i) v1 = v2 and (u1; u2) is an edge in G, or

(ii) u1 = u2 and (v1; v2) is an edge in H which is labeled u1.

Strictly speaking, we should have the labeling, �, of the edges of H appear in the notation for
hierarchical product. In cases where the labeling needs to be explicit we will use the more precise
notation G4� H . As in the case of direct product, there is a natural extension of the hierarchical
product to more than two factors.

Note that in G4H , nodes of the form (�; v), for v 2 H , form a subgraph which is a copy of
G. These subgraphs are called supernodes. Furthermore, in the case of G a single node, (or, if we
\shrink" G down to a single node) we recognize G4H as a copy of H .

We can view the CCC network as a hierarchical product. In the CCC of dimension n, G is a cycle
of n processors and H is an n-dimensional hypercube. The vertices of G are labeled 0 : : :g � 1 in
circular fashion, and the label on an edge in H is the dimension that it traverses. Another example
based on hypercubes is the cube-connected cubes network, which is the hierarchical product of two
hypercubes G = Qd and H = Qn, where 2d = n. Again, label the edges of H by the dimension
they traverse, and the vertices of G are labelled in the standard hypercube fashion.

Historically, CCCs were promoted as a solution to the \commodity" problem because the nodes
have �xed degree 3, i.e., the same node can be used in all CCCs, no matter how large, and yet
the CCC is nearly as useful as the hypercube which has a degree which grows logarithmically
with the system size. However, the commodity here was too small, being merely a single node
(processor). In cube-connected cubes, the commodity is the supernode G, rather than a commodity
node. Moving up to larger commodities, such as boards or cabinets, provides signi�cantly greater
economic bene�ts over commodity processors.

In both the CCC and the cube-connected cube examples, for each vertex of H , every vertex of
G appears as an edge label. In Section 4, we will give examples where not all vertices of G appear
as edge labels of H .

In the next section we will introduce the shift-product, which is a particular hierarchical product
in which the de Bruijn network [3, 6, 8] is a factor.

3 Shift-Products

Let S be an arbitrary connected graph and let k be an integer > 1. The k-th shift product of S,
denoted by ./ Sk, is a graph whose nodes consist of k-tuples of nodes of S, and there is an edge
from node a = a1a2 : : : ak to node b = b1b2 : : : bk provided:

(i) ai = bi for 2 � i � k and there is an edge in S from a1 to b1 (edge of type S), or

(ii) bi = ai+1 for 1 � i � k � 1 and bk = a1 (a shift arc)



S S SS

1

2

3

4

1 2 3 4

1 2

3

1 2

3

1 2

3

1 2 3

1
2

3

Figure 1: Shift-products: ./ (P4)
2 and ./ (C3)

3

The type S edges gives us jSjk�1 copies of the graph S, namely all subgraphs of the form
�a2 : : : ak. The edges between these supernodes are provided by the \shift" arcs. Figure 3 shows
the construction of ./ S2 when S is a path of length 4, and the construction of ./ S3 when S is a
cycle of length 3. The 2-dimensional shift-product might well be called a transpose network, since
nodes ab and ba are connected. The shift arcs in a 2-dimensional shift-product are bidirectional,
but in general are only unidirectional for all higher dimensions.

From the de�nition, one can immediately conclude that ./ Sk has jSjk nodes, and that a node
a1a2 : : : ak in ./ Sk has incoming degree and outgoing degree one more than the corresponding
degree of node a1 in S. By comparison, the k-fold direct product of S also has jSjk nodes, but the
maximum incoming or outgoing degree of a node is k times the maximum degree of a node in S.

To route in ./ Sk from node a1a2 : : : ak to node b1b2 : : : bk:

(i) use the S routing to go from a1a2 : : : ak to a[2] = b2a2 : : : ak

(ii) use a shift arc to move to a[3] = a2 : : : akb2

(iii) use the S routing to move to a[4] = b3a3 : : : akb2

(iv) use a shift arc to move to a[5] = a3 : : : akb2b3

(v) continue, alternating a move in S followed by a shift arc to reach a[2k�1] = akb2b3 : : : bk

(vi) use the S routing to move to b1b2b3 : : : bk.

We see that at most k moves along S-edges and at most k�1 moves along shift arcs will be needed,
yielding a diameter of no more than dk + k � 1, where d is the diameter of S. To see that the
diameter is no smaller than this, let x and y be two nodes in S at distance d. Straightforward
analysis shows that the node x1x2 : : : xk, where xi = x, is at distance dk+k�1 from node y1y2 : : : yk,
where yi = y. In contrast, the diameter of the k-fold direct product is dk. Thus the shift-product
has similar diameter to the k-fold direct product, but has a signi�cantly smaller degree which does
not grow with k.

In addition to good performance through a wide range of system sizes, it is (commercially)
desirable to have several intermediate sizes available in the upgrade process. Composition of net-
works using factor networks limits the intermediate sizes available for most choices of the factor
networks. In a direct product where all factors are a commodity system S, the system sizes must
grow by a factor of jSj. With the hybrid ring product S � Cn, things look more attractive be-
cause the system can increase by the additive amount jSj. Unfortunately the diameter of such a
system grows linearly with the number of supernodes. Product networks that involve a mesh or a
hypercube can only increase by very speci�c quantities: some multiple of a linear dimension of the
mesh, doubling the size of the hypercubes in the cube-connected cubes, for example, are our only
alternatives unless we want to lose the symmetry and change the routing. This would involve the
use of \faulty" or \incomplete" systems. There have many numerous studies for both the mesh and
the hypercube networks from this point of view. A more recent study involved using small meshes
as basic building blocks to form larger incomplete meshes [10]. Such systems require signi�cant
changes to the basic building block and routing networks, in general.

The nature of the shift-product will allow us to realize many more intermediate system sizes,
as we show in the next section.



4 Modi�ed Shift-Products

The shift-product ./ Sk can be viewed as a hierarchical product of S and a (k � 1)-dimensional
de Bruijn graph over the alphabet of the nodes of S. A j-dimensional de Bruijn graph over the
alphabet A has jAjj nodes, where the index of each node is of the form a1a2 : : :aj , where each ai
is in A. Node a1a2 : : : aj has an edge to all nodes of the form a2a3 : : : ajb, for all b 2 A.

Viewed in this manner, there is a natural way to create smaller k-dimensional shift-products.
Namely, let A be any subset of nodes of S, and utilize only supernodes which form a (k � 1)-
dimensional de Bruijn network over A. That is, supernodes of the form �a2a3 : : : ak, for ai 2 A.
The number of nodes in this modi�ed shift-product is jSj � jAjk�1. It is easy to verify that the
normal routing algorithm performs perfectly in this subgraph, in that no attempt is ever made to
route to a supernode not in the subgraph. In each supernode, there will be some nodes which have
no connections outside of the supernode.

Yet a further modi�cation can be had by noticing that in the j-dimensional de Bruijn network
over A, nodes of the form aa : : :a need never arise as intermediate nodes, as any subset of such
nodes can be removed without increasing the diameter. However, to exploit this, a slight change
needs to be made to the routing previously described. For example, in ./ f0; 1g3, to route from 010
to 001 would follow the steps

010
S
�! 010

shift
�! 100

S
�! 100

shift
�! 001;

where the label above the arrow indicates the type of edge used. Note that for completeness we
have included self-loops. In this path, an intermediate node of the form *00 is used, so had this
supernode been removed, the routing would have failed. However, it was not necessary to utilize
this as an intermediate node, since the path

010
S
�! 110

shift
�! 101

S
�! 001;

avoids any intermediate node of the form �aa.
One way to remove all such nodes as intermediate stages in the routing is to notice that whenever

the standard routing would create

a�a : : : a
shift
�! �a : : :a

S
�! ba : : :a

shift
�! a : : :ab;

it can replaced by

a�a : : : a
S
�! b�a : : : a

shift
�! �a : : :ab:

This maintains proper routing, and does not increase the diameter.
To illustrate how much these constructions expand the number of systems available, suppose

that the component system S has 8 nodes. Then ./ S2 has 8 supernodes (64 nodes), and ./ S3 has
64 supernodes (256 nodes). These are the only systems available with 64 or fewer supernodes, if
the standard shift-product (or the standard direct product) construction is used. However, using
the above subgraph constructions, one can create subgraphs of ./ S2 which have any number of
supernodes from 1 to 8, and subgraphs of ./ S3 which have 1, 2 (= 22� 2), 3 (= 22 � 1), 4 (= 22),
6 (= 32 � 3), 7 (= 32 � 2), 8 (= 32 � 1), 9 (= 32), 12 (= 42 � 4), . . . 16, 20, . . . , 25, 30, . . . , 36,
42, . . . 49, 56, . . . 64 supernodes. This gives one signi�cant exibility in building a system of the
correct size.

5 Conclusion

We have introduced the \hierarchical product" of networks, and highlighted a special case of it,
namely the shift-product. The shift-product construction, together with its modi�cations, illus-
trates a practical method of constructing parallel systems from commodity small components.
Earlier e�orts along this line tended to emphasize commodity nodes (processors), as opposed to
our use of commodity supernodes (systems). Our construction requires only one extra input and



output port per node. Upgrading is easy, requiring only small changes in the operating system to
update the hardware additions.

The systems so constructed are scalable, of �xed degree and low diameter, through a wide range
of sizes. Furthermore, as long as the commodity components are balanced with respect to compute
power, memory, and I/O, the upgraded system will be balanced, too.

References

[1] G. E. Carlsson, J. E. Cruthirds, H. B. Sexton, and C. G. Wright, \Interconnection networks
based on a generalization of cube-connected cycles", IEEE Trans. Computers, Vol. C-34, No.
8, (1985) 769{772.

[2] K. Day and A.-E. Al-Ayyoub, \The cross product of interconnection networks", IEEE Trans.

Parallel and Distrib. Systems, Vol. 8, No. 2, (1997) 109{118.

[3] N. G. de Bruijn, \A combinatorial problem", Nederl. Akad. Wetensch. Proc. Ser. A 49 (1946)
758{764.

[4] G.-H. Chen and H.-L. Huang, \Cube-connected modules: a family of cubic networks", Int.
Symp. Par. Architectures, Algorithms and Networks (1994) 57{64.

[5] K. Ghose and K. R. Desai, \Hierarchical cubic networks", IEEE Trans. Parallel and Distrib.

Systems, Vol. 6, No. 4 (1995) 427{435.

[6] D. F. Hsu and D. S. L. Wei, \Permutation routing and sorting on directed de Bruijn networks",
Int. Conf. on Parallel Processing, I, (1995) 96{100.

[7] F. P. Preparata and J. E. Vuillemin, \The cube-connected cycles: a versatile network for
parallel computation", Comm. ACM, Vol. 24 (1981) 300{309.

[8] M. R. Samatham and D. K. Pradhan, \The deBruijn multiprocessor network: a versatile paral-
lel processing and sorting network for VLSI", Interconnection Networks for High-Performance

Parallel Computers, IEEE Computer Society Press (1994) 153-167.

[9] S. T. Schibell and R. M. Sta�ord, \Processor interconnection networks from Cayley graphs",
Discrete Applied Math., Vol. 40 (1992) 333{357.

[10] M. Yang and L. M. Ni, \Incremental design of scalable interconnection networks using basic
building blocks", Proc. 7th IEEE Symp. Parallel and Distrib. Processing (1995) 252{259.


