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Algorithms are given for determining weighted L∞ isotonic regressions satisfying order 
constraints given by a directed acyclic graph with n vertices and m edges. An !(m logn)

algorithm is given, but it uses parametric search, so a practical approach is introduced, 
based on calculating prefix solutions. For linear and tree orderings it yields isotonic and 
unimodal regressions in !(n log n) time. Practical algorithms are given for when the values 
are constrained to a specified set, and when the number of different weights, or different 
values, is ≪ n. We also give a simple randomized algorithm taking !(m logn) expected 
time. L∞ isotonic regressions are not unique, so we examine properties of the regressions 
an algorithm produces. In this regard the prefix approach is superior to algorithms, such 
as parametric search and the randomized algorithm, which are based on feasibility tests.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A directed acyclic graph (dag) G = (V , E) with n vertices and m edges defines a partial order over the vertices, where 
u ≺ v if and only if there is a path from u to v . A function g on V is isotonic iff it is a weakly order-preserving mapping into 
the real numbers, i.e., iff for all u, v ∈ V , if u ≺ v then g(u) ≤ g(v). By weighted data on G we mean a pair of real-valued 
functions ( f , w) on V , where w , the weights, is non-negative, and f , the values, is arbitrary. Given weighted data ( f , w)
on G , an Lp isotonic regression is an isotonic function g on G that minimizes

(∑
v∈V w(v) · | f (v)−g(v)|p

)1/p 1 ≤ p < ∞
maxv∈V w(v) · | f (v)−g(v)| p = ∞

among all isotonic functions. The Lp regression error is the value of this expression. For 1 < p < ∞ the regression values 
are unique, but for L1 and L∞ they may not be. For example, on the vertices {1, 2, 3}, if f = 3, 1, 2.5 and w = 2, 2, 1: for 
1 < p < ∞ the Lp isotonic regression is g(1) = g(2) = 2, g(3) = 2.5, L1 isotonic regressions are of the form g(3) = 2.5
and g(1) = g(2) = x for x ∈ [1, 2.5], and L∞ isotonic regressions are of the form g(1) = g(2) = 2 and g(3) ∈ [2, 4.5]. In the 
example in Fig. 1 note that the regression values form level sets and that the regression is undefined in some regions.

Isotonic regression has long been applied to a wide range of problems in statistics [5,21,38,49] and classification [14,16,
44], with numerous recent applications to machine learning and data mining [27,28,34,35,37,50]. Routines for it are avail-
able in several machine-learning systems [39,40]. It is also used for some optimization problems [6,29]. It is of increasing 
importance as researchers reduce their assumptions, replacing parametric requirements with weaker assumptions about 
an underlying direction. For example, to shrink tumors via radiation and chemotherapy, it might be assumed that at any 
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Dots represent data, size represents their weight, lines are regression values

Fig. 1. An isotonic regression.

given radiation level the shrinkage increases with dose, and at any given dose the shrinkage increases with radiation. How-
ever, there may be no assumptions about a low dose and high radiation combination vs. a high dose and low radiation. 
Independent variables need not have a metric, merely an ordering, such as S < M < L < XL sizes.

Isotonic functions are also known as monotonic, monotonic increasing, or order-preserving (as a function from G to ℜ), 
and the L∞ metric is also known as the supremum norm, Chebyshev distance, uniform metric, minimax optimization, or 
bottleneck criterion.

We develop algorithms for finding L∞ isotonic regressions for weighted data. In Section 3 we give an algorithm for 
general dags taking !(m log n) time. While conceptually simple, based on using parametric search as a black box procedure, 
it is of only theoretical interest because parametric search is very complex and infeasible. Therefore we give practical alter-
natives for several important special cases. E.g., when the number of different weights or different values is ≪ n a practical 
search can be used (Section 4.1).

L∞ isotonic regressions are not unique, raising questions as to whether some are better than others. Previous algorithms 
have been compared only in terms of their running time, not in their mathematical properties when viewed as a map-
ping from data to isotonic functions. In Section 2 we examine properties such as minimizing the number of vertices with 
large regression errors, looking beyond just minimizing the worst error. By these measures the parametric search approach 
produces the worst regressions, lacking several properties that are shared by all L p regressions for 1 < p < ∞. In contrast, 
Strict, introduced in Section 2.1.3, has many of these properties. This topic is pursued further in [43].

Section 2.1.1 introduces Prefix, which is used in Section 6 to find isotonic regression for linear and tree orders and river 
isotonic regression on trees, where the regression value of a node is the same as the largest of its children. Unimodal 
regression on linear and tree orders is also examined, where the objective is to determine an optimal root and an isotonic 
regression towards the root. This arises in optimization problems such as competing failure modes [17,23,24] and multi-arm 
bandits [25,51].

Section 4.2 considers isotonic regression where the regression values are restricted to a specific set, such as the integers, 
using algorithms that are quite different from those in the other sections. An !(n log n) algorithm is given for finding an 
integer-valued isotonic regression for a linear order, improving upon the !(n2) algorithm of Liu and Ubhaya [33]. Section 7
contains concluding remarks.

Finally, Appendix A gives a very practical algorithm for arbitrary dags, replacing parametric search with a simple ran-
domized procedure. It takes !(m log n) expected time, not the worst-case time considered elsewhere in the paper, achieving 
this with high probability.

2. Background

Throughout we assume that G is a single connected component, and hence m ≥ n −1. If it has more than one component 
then isotonic regressions can be found for each component separately.

The complexity of determining an isotonic regression depends on the regression metric and the partially ordered set. For 
example, for a linear order it is well-known that a simple left-right scanning approach using pair adjacent violators, PAV, 
can be used to determine the L2 isotonic regression in !(n) time, L1 in !(n log n) time [3,42], and L∞ on unweighted data 
in !(n) time. In Section 6 an algorithm taking !(n log n) time is given for L∞ isotonic regression on weighted data.

L∞ isotonic regression on an arbitrary dag (poset) can easily be done in !(m) time for unweighted data (see Sec-
tion 2.1.1), but for weighted data the fastest previously known algorithm is !(n log2 n + m logn), due to Kaufman and 
Tamir [29]. Theorem 1 reduces this to !(m log n).

Given weighted data ( f , w) on dag G = (V , E), for vertex v ∈ V , the error of using r as the regression value at v , 
err(v, r), is w(v) · | f (v) −r|. Given vertices u and v , the weighted mean of their values, mean( f , w : u, v), is [w(u) f (u) +
w(v) f (v)] / [w(u) + w(v)]. Note that mean( f , w : u, v) has equal error for the two vertices. Let mean_err( f , w : u, v) denote 
this error.

There is a simple geometric interpretation of mean and mean_err: when regression values are plotted horizontally and 
the error is plotted vertically, the ray with x-intercept f (u) and slope −w(u) gives the error for using a regression value 
below f (u) at u, and the ray with x-intercept f (v) and slope w(v) gives the error for using a regression value above 
f (v) at v . The regression value where these lines intersect is mean( f , w : u, v), and the error of the intersection point is 
mean_err( f , w : u, v). See Fig. 2.
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Fig. 2. The mean and mean_err of (0,0.5) and (2,1.5).

For u, v ∈ V , if u ≺ v and f (u) > f (v) then u, v are a violating pair and mean_err( f , w : u, v) is a lower bound on the 
regression error. The only way the error at u can be less than mean_err( f , w : u, v) is if the regression value is larger than 
their mean. However, u ≺ v implies that the regression value at u is ≤ that at v , so the regression at v would have an 
error larger than the error for the mean. More generally, given a set S ⊂ V , the L∞ mean of the weighted data on S is 
mean( f , w : u′, v ′), where

mean_err( f , w : u′, v ′) = max{mean_err( f , w : u, v) : u, v ∈ S}

2.1. Regression mappings

L∞ isotonic regression is not always unique, so we examine properties of the regressions produced by various algorithms. 
An L∞ isotonic regression mapping, informally called a regression mapping, takes a dag G = (V , E) and weighted data ( f , w)
on G and maps them to an L∞ isotonic regression of ( f , w). Here we present several regression mappings. A more extensive 
discussion of their properties appears in [43].

2.1.1. Basic and Prefix
The most commonly used regression mapping, Basic, sets the regression value at vertex x to be mean( f , w : u′, v ′), where 

u′, v ′ maximize {mean_err( f , w : u, v) : u ≼ x ≼ v} (if there are two such pairs then they have the same mean). The values 
are easily seen to be isotonic, and the regression error is optimal. Basic has been studied since the 1970’s [49].

We introduce a closely related regression, Prefix, defined as follows: let

pre(v) = max{mean( f , w : u, v) : u ≼ v and f (u) ≥ f (v)}
Prefix(u) = min{pre(v) : u ≼ v}

For any x ∈ V , pre(x) = Basicx( f , w)(x), where Basicx is the Basic isotonic regression on the subdag induced by the vertices 
V x = {v ∈ V : v ≼ x}. The regression error on V x is max{err(v, pre(v)) : v ∈ V x}. The construction of Prefix guarantees that it 
is isotonic, and optimality follows from that of Basic.

For unweighted data the calculation for Basic reduces to (max{ f (u) : u ≼ x} + min{ f (v) : x ≼ v})/2, which can be de-
termined in !(m) time by using topological sorting and reverse topological sorting. Prefix can similarly be computed in 
!(m) time. For weighted data, suppose the transitive closure of G is given, and it has m′ edges. It is straightforward to 
compute Prefix in !(m′) time since the calculation of pre(v) is linear in the number of v ’s predecessors. Basic(v) involves 
pairs of predecessors and successors, but can be computed in linear time via linear programming [4,29]. Thus Basic too can 
be determined in !(m′) total time but it is more complicated than Prefix.

Section 6 shows that Prefix can be efficiently calculated for linear and tree orderings without using the transitive closure.

2.1.2. Min, Max, and Avg
The Min L∞ isotonic regression of ( f , w) is the pointwise minimum of all L∞ isotonic regressions of ( f , w), and Max

is the pointwise maximum. The pointwise minimum of isotonic functions is isotonic, and since at any vertex Min has an 
error the same as at least one L∞ isotonic regression its maximum error is optimal. Hence it, and similarly Max, is an L∞
isotonic regression. Avg is the pointwise average of Min and Max. The fastest L∞ isotonic regression algorithm for general 
dags, Theorem 1, computes Min, Max, and Avg. Given the optimal error, all three can be computed in !(m) time (via the 
feasibility test in Section 3), and hence they can always be computed at least as fast as any other regression.

2.1.3. Strict
The strict L∞ isotonic regression (Strict) is the limit, as p → ∞, of Lp isotonic regression. It is easy to show that the 

limit exists for all weighted data and dags. It has been called the “best best” L∞ isotonic regression [30]. Algorithms to 
compute Strict, and proofs of some of its properties, appear in [43]. Given the transitive closure, it can be computed in 
!(m′ + n′ log n′) time, where m′ is the number of edges in the transitive closure and n′ is the number of violating pairs.
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2.2. Properties of regression mappings

There is a natural pointwise ordering on functions, denoted ≤p , where f ≤p g iff f (v) ≤ g(v) for all v ∈ V . A regression 
mapping M is monotonic iff for any dag G and weights w on G , for functions f and g on G , if f ≤p g then M( f , w) ≤p

M(g, w). For isotonic regression, monotonicity is a natural property to expect.
For 1 < p < ∞, Lp isotonic regressions are monotonic mappings, and thus Strict is as well. Basic and Prefix are also 

monotonic, as can be seen from their construction. For unweighted data Avg = Basic, and hence it is monotonic, but for 
weighted data it isn’t. E.g., for vertices {1, 2, 3}, let w = 4, 4, 1, f = 2, 0, 2, and g = 3, 3, 3. Then f <p g , but Avg( f ) =
1, 1, 3.5 !p 3, 3, 3 = Avg(g). Min and Max are not monotonic even for unweighted data. E.g., if f = 1, 3, 1 and g = 1, 3, 3
then f ≤p g but Max( f ) = 2, 2, 2 !p 1, 3, 3 = Max(g). Similar examples hold for Min.

An important property of Strict is that it minimizes the number of large errors [43]. That is, if g ≠ Strict( f , w) is an 
isotonic function on G , then there is a C > 0 such that g has more vertices with regression error ≥ C than does Strict( f , w), 
and for any D > C , g and Strict( f , w) have the same number of vertices with regression error ≥ D (it is not necessarily true 
that if c < C then Strict has fewer vertices than g with regression error ≥ c, but the concern is with the number of large 
errors). Min and Max are at the opposite end of the spectrum, in that for any vertex v , one or both of them has the largest 
regression error at v among all L∞ isotonic regressions. For example, for the unweighted data 3, 1, 2, Strict is 2, 2, 2 while 
Basic and Prefix are 2, 2, 2.5, i.e., their last value has an unnecessary error. Max is even worse, being 2, 2, 3.

Min, Max and Min can result in values outside the data range, which might not be acceptable. E.g., for values 2, 3, 1, 2
with weights 1, 4, 4, 1, Min is −2, 2, 2, 2, Max is 2, 2, 2, 6, and Avg is 0, 2, 2, 4. While one could trim the values so that 
they lie within the data range, Prefix, Basic and Strict have this property automatically, as do all L p isotonic regressions for 
1 ≤ p < ∞.

3. Isotonic regression for arbitrary partial orders

As mentioned above, for arbitrary dags Prefix and Basic (and hence Min, Max, and Avg) can be calculated in !(T C(G) +
m′) time, where T C(G) is the time to determine the transitive closure of G , and m′ is the number of edges in the transitive 
closure. For arbitrary dags the transitive closure can be computed in !(min{nm, nω}) time, where ω is such that matrix 
multiplication can be performed in O (nω) time. It is known that ω < 2.376.

A generic approach for Min, Max and Min, not using transitive closure, is to couple a feasibility test with a search proce-
dure. The feasibility test is given ϵ ≥ 0 and determines if there is an isotonic regression with L∞ error ≤ ϵ , while the search 
procedure determines a sequence of ϵ values converging to the optimal value. Here the tests are constructive in that if there 
is a regression with error ϵ then the test produces one. This approach has also been used in L∞ histogram construction and 
step function approximation [12,19].

Kaufman and Tamir [29] provided a feasibility test taking !(m log n) time. A simpler test taking only !(m) time is as 
follows: given ϵ > 0 and vertex v , v ’s ϵ-window is the real interval [av , bv ], where w(v)( f (v) − av ) = w(v)(bv − f (v)) = ϵ . 
An isotonic function g has regression error ≤ ϵ iff g(v) ∈ [av , bv ] for all v ∈ V . Thus ( f , w) has an isotonic regression of 
error ϵ iff s(v) = max{au : u ≼ v} is one, which is iff s(v) ≤ bv for all v . The isotonic constraint forces any isotonic regression 
of error ≤ ϵ to be at least s(v), and hence if s(v) > bv then no isotonic function can have error ≤ ϵ . s can be computed via 
topological sort in !(m) time. When ϵ is the optimal regression error then s is Min. Max can be found similarly.

Theorem 1. Given weighted data ( f , w) on a connected dag G = (V , E), in !(m logn) time the Min, Max and Avg L∞ isotonic 
regressions can be determined.

Proof. Since the optimal regression error is of the form mean_err( f , w : u, v) for some u, v ∈ V , a straightforward approach 
is to do a binary search on these values, using a feasibility test to decide whether a larger or smaller value is needed. A naive 
implementation would explicitly compute all mean_err values, taking !(n2 + m log n) time. Kaufman and Tamir [29] noted 
that parametric search could be used instead, taking !(n log n) time to produce !(log n) error values which are evaluated 
via a feasibility search. Thus their total time is !(log n(n + m logn)). Using our faster feasibility test reduces the time to 
!(m logn). ✷

Linear and rooted tree orderings have m = n − 1, and d-dimensional grids have !(dn) edges, hence:

Corollary 2. Given weighted data ( f , w) on a linear, tree, or d-dimensional grid ordering, the Min, Max and Avg L∞ isotonic regressions 
can be determined in !(n logn) time, where for d-dimensional grids the implied constants are a function of d. ✷

In Section 6 it is shown that Prefix can be computed in !(n log n) time for linear and tree orders, but it is not known 
how to compute Prefix this quickly for d-dimensional grids, d ≥ 2.

Unfortunately, parametric search is quite complex and completely impractical, making the theorem of only theoretical 
interest (see the survey article by Agarwal and Sharir [2]). The remaining sections of the paper give algorithms which 
avoid it.
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4. Constraints on data or regression values

Here we give far more practical algorithms when the data has only a few different weights or values, or when the 
regression values are constrained to a given set.

4.1. Data with few different weights or few different values

In some applications the number of different weights is significantly less than n. For example, the author has encountered 
this scenario in computer simulations of complex experiments. A program of moderate accuracy was run for many points in 
the parameter space, while one of greater accuracy, but taking far longer, was run for only a few. Results of the latter were 
weighted more heavily than those of the former. In other situations there may be only a few different values but many 
weights.

While parametric search is impractical, for a modest number of different weights or different values a quite practical 
search is available.

Theorem 3. Given weighted data ( f , w) on a connected dag G = (V , E), with t different weights, or t different values, the Min, Max
and Avg L∞ isotonic regressions can be found in !(tn + m log n) time and the Prefix L∞ isotonic regression can be found in !(tm)
time.

Proof. We give the search algorithm for weights, with the one for values being nearly identical. For Min, Max and Avg we 
first give a version taking !((tn + m) log n) time, and then reduce this to the time claimed.

Suppose there are t weights w1 . . . wt . For weight wi let Zi = { f (u) : w(u) = wi, u ∈ V }, and let zi(1) . . . zi(k(i)) be the 
values of Zi in sorted order, where k(i) = |Zi |. For vertex v , let k(v, i) be the largest value such that zi(k(v, i)) ≤ f (v). 
A binary search over the range 1...k(v, i) will try to locate a j such that the mean error of (zi( j), wi) and ( f (v), w(v))
is the L∞ isotonic regression error (of course, there may be no such value for a given v and i). Note that the error is 
decreasing in j.

The search occurs in parallel for all v ∈ V and 1 ≤ i ≤ t , using a linear time algorithm for determining order statistics. 
At any step let e(v, i) denote the mean error of (zi( j), wi) and ( f (v), w(v)) where j is the middle of the remaining range 
in the search at v for weight wi , i.e., initially j = ⌊(1 + k(v, i))/2⌋. The weight of e(v, i) is the size of the remaining range. 
A feasibility test is run on the weighted median of all tn of the e(v, i) weighted values. At least 1/4 of the sum of the sizes 
of the remaining ranges is eliminated at each step, so only !(log n) iterations are needed.

To reduce the time further we use a more efficient approach for determining which mean_err values to calculate. For 
weights wi and w j , let M be the k(i) × k( j) matrix where M(a, b) is the mean_err of (zi(a), wi) and (z j(b), w j) if zi(a) ≥
z j(b), and 0 otherwise. (M is only conceptual, it isn’t actually created.) The rows and columns of M are sorted, so one can 
use searching on sorted matrices [20] as the search procedure. See Agarwal and Sharir [2] for a simple description: the 
procedure is easy to implement, it’s the time analysis that’s more complicated. Letting K = k(i) + k( j), the search evaluates 
!(K ) entries of M and uses !(log K ) feasibility tests, taking !(K ) time beyond that of the feasibility tests. Thus the time 
is as claimed.

A simpler approach can be used for Prefix. For each weight wi , using topological sorting, for all vertices v determine 
max{ f (u) : w(u) = wi, u ≼ v}. From the t values at v one can determine pre(v) and hence Prefix can be computed in the 
time claimed. ✷

Note that Prefix can be computed faster than the time in Theorem 1 when t = o(log n). Min, Max and Avg can be 
computed in the same time bound by using Prefix to determine the optimal regression error.

4.2. Restricted regression values

Isotonic regressions with restricted values have been studied by several authors (see [3] and the references therein), 
including their use in various classification problems [18]. For integer-valued isotonic regression on a linear order, Goldstein 
and Kruskal [22] gave a !(n) time algorithm for the L2 metric, and Liu and Ubhaya [33] gave a !(n2) time L∞ algorithm 
for unweighted data. Theorem 4 below, coupled with Theorem 1, shows that an integer-valued L∞ regression can be found 
in !(m logn) time for any dag. Theorem 6 shows that these ideas can be extended to find approximations with specified 
accuracy.

We use an approach applicable to arbitrary dags and regression values restricted to a set S of real numbers. An S-valued 
Lp isotonic regression is an S-valued isotonic function which minimizes the L p regression error among all S-valued isotonic 
functions. S must be a closed discrete set, which implies that for any real number x, if x ≤ max{s ∈ S} then ⌈x⌉S = min{s :
s ≥x, s ∈ S} is well-defined, and correspondingly if x ≥ min{s ∈ S} then ⌊x⌋S = max{s : s ≤x, s ∈ S} is well-defined. If x <
min{s ∈ S} let ⌊x⌋S = min{s ∈ S}, and if x > max{s ∈ S} then ⌈x⌉S = max{s ∈ S}. Further, for x ∈ S there is a unique successor 
if x < max{s ∈ S} and a unique predecessor if x > min{s ∈ S}. We assume that predecessor, successor, ⌊·⌋S , and ⌈·⌉S can be 
determined in constant time.

We will show that one can quickly convert an unrestricted isotonic regression into an S-valued one.
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Theorem 4. Given weighted data ( f , w) on a connected dag G = (V , E), a closed discrete set S of real numbers, and an unrestricted 
L∞ isotonic regression of f , an S-valued L∞ isotonic regression can be determined in !(m) time.

We first establish a property connecting values of restricted and unrestricted isotonic regressions. For linear orders, 
Goldstein and Kruskal [22] showed that for L2 integer isotonic regression, rounding the unrestricted isotonic regression gives 
the correct regression, and Liu and Ubhaya [33] showed that this is true for the L∞ metric when the data is unweighted 
and the original regression is Basic. However, for weighted data, or when the original regression is not Basic, integer-valued 
L∞ isotonic regression is a bit more complicated. For example, on vertices {0, 1} with the values 0.6, 0 and weights 2, 1, 
the unique unrestricted L∞ isotonic regression is 0.4, 0.4 yet the unique integer-valued one is 1, 1, not 0, 0. However, while 
rounding does not always give the optimal S-valued isotonic regression, it nearly does.

Lemma 5. For 1 ≤ p ≤ ∞, given weighted data ( f , w) on a connected dag G = (V , E), a closed discrete set S of real numbers, and an 
Lp isotonic regression g of ( f , w), there is an S-valued Lp isotonic regression ĝ such that ĝ(v) ∈ {⌊g(v)⌋S , ⌈g(v)⌉S } for all v ∈ V .

Proof. Given p, let g be an unrestricted Lp isotonic regression, and let ĝ be an S-valued Lp isotonic regression. If there 
are vertices v such that ĝ(v) > ⌈g(v)⌉S then let u be one that maximizes the difference (a similar proof holds if there 
are vertices v such that ĝ(v) < ⌊g(v)⌋S ). Let A = {v : g(v) = g(u) and ĝ(v) = ĝ(u), v ∈ V }. For any vertex v /∈ A which is a 
predecessor of an element of A, ĝ(v) < ĝ(u) because the fact that it isn’t in A means either ĝ(v) < ĝ(u) or g(v) < g(u), 
but if only the latter holds then u does not optimize the difference. Similarly, if v /∈ A is a successor of a vertex in A then 
g(v) > g(u).

Let x ∈ S be the predecessor of ĝ(u). Note that x ≥ ⌈g(u)⌉S . Let ĝ′ be the S-valued isotonic function which is ĝ on V \ A
and x on A. If the regression error of ĝ′ is less than that of ĝ then ĝ was not optimal. If the regression error of ĝ′ is larger 
then the weighted mean of A is greater than x. Let y = min{x, min{g(v) : g(v) > g(u), v ∈ V }}. Raising the value of g on A
to y, and keeping it the same elsewhere, would decrease the Lp error and maintain the isotonic property, contradicting g ’s 
optimality.

Finally, if the Lp regression error of ĝ′ is the same as that of ĝ then recursively consider ĝ′ . Since S is discrete there are 
only finitely many values between x and ⌈g(u)⌉S , so the process can only recurse a finite number of times. ✷

Proof of Theorem 4. Let g be an unrestricted L∞ isotonic regression and for r ∈ S let Lr be the set {v : ⌊g(v)⌋S = r, v ∈ V }. 
Note that this is a union of level sets in g . No matter what choices are made for the regression values within Lr , since these 
choices are either r or its successor r+ in S , they do not impose any isotonic restrictions on the choices for other level sets 
since the values used on Lr are at least as large as the upper values in any predecessor and no larger than the lower values 
in any successor. Therefore we can consider each Lr separately.

For v ∈ Lr , define functions down_err and up_err by

down_err(v) = max{err(u, r): u ≼ v, u ∈ Lr}
up_err(v) = max{err(u, r+): u ≽ v, u ∈ Lr}

down_err(v) is a lower bound on the L∞ isotonic regression error if the regression value at v is r since all predecessors in 
Lr must also have regression value r, and similarly up_err(v) is a lower bound if it is r+ . Let ĝ be defined by

ĝ(v) =
{

r if down_err(v) ≤ up_err(v)

r+ otherwise

Since down_err is monotonic increasing on Lr and up_err is monotonic decreasing, ĝ is isotonic increasing. At each vertex v , 
changing the choice for ĝ(v) can never decrease the overall regression error, and hence an optimal S-valued L∞ isotonic 
regression has been found.

down_err and up_err can be computed by topological sorting, completing the proof of the theorem. ✷

Thus for unweighted data an S-valued isotonic regression can be found in !(m) time. For weighted data it could be 
done in !(m log n) time via Theorem 4, but for small S one can do better.

Theorem 6. Given weighted data ( f , w) on a connected dag G = (V , E), and given a finite set S of real numbers, in !(m log |S|) time 
an S-valued L∞ isotonic regression can be determined.

Proof. The algorithm follows an approach in [44], which was used for Lp isotonic regression for 1 ≤ p < ∞. Let S =
{s1, . . . , sd}, let [sa, sb], 1 ≤ a ≤ b ≤ d denote the interval sa . . . sb of values in S , and for v ∈ V let errS (v, a, b) denote 
min{err(v, t) : t ∈ [sa, sb]}. The algorithm determines intervals of S in which the regression value for v will be assigned, 
where the intervals are progressively halved until they are a single value, which is the regression value of v . At each stage 
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Fig. 3. Error envelopes.

the assignment is isotonic in that if u ≺ v then either u and v are assigned to the same interval or the intervals have no 
overlap and u’s interval has smaller values than v ’s. Initially each vertex is assigned to all of S , i.e., to [s1, sd].

Suppose x is currently assigned to [sa, sb], and let c = ⌊(a + b)/2⌋. Define

down_err(x) = max{errS(u,a, c): u ≼ x, u currently assigned to [sa, sb]}
up_err(x) = max{errS(v, c+1,b): v ≽ x, v currently assigned to [sa, sb]}

down_err(x) is a lower bound on the L∞ regression error for vertices currently assigned to [sa, sb] if x is assigned to [sa, sc]
in the next stage, and up_err(x) is a lower bound if it is assigned to [sc+1, sb]. Assign x to [sa, sc] if down_err(x) ≤ up_err(x)
and to [sc+1, sb] otherwise. As before, this assignment is isotonic and can be determined in !(m) time.

The proof that the final assignments form an S-valued L∞ isotonic regression is similar to that in [44] and will be 
omitted. ✷

5. Error envelopes

Using intersecting line segments to find maximum violating pairs is a well-known approach to L∞ regression. Given 
data ( f , w) on a set S , for x ≥ min{ f (v) : v ∈ S} let g(x) be the L∞ regression error of using x as the regression value for 
{v ∈ S : f (v) ≤ x}. This has a simple geometric interpretation: for each v ∈ S , plot the ray with x-intercept f (v) and slope 
w(v). g is the set of line segments with no points above them. See Fig. 3 a). We call this upper envelope the upward error 
envelope, and max{err(v, x) : v ∈ S, f (v) ≥ x} is the downward error envelope. If the envelopes intersect at regression value r, 
then r is the L∞ weighted mean of S .

It is straightforward to use balanced search trees so that the upward and downward error envelopes can be maintained 
and in !(log |S|) time one can insert a weighted value, determine the value of the envelope at a given regression value, 
determine the regression value having a given error, and determine the point of intersection of a ray with an envelope. 
Given the error envelopes one can determine their intersection in !(log |S|) time and thus one can determine the mean 
of S in !(|S| log |S|) time. It is possible to do this in !(|S|) time by viewing it as a 2-dimensional linear programming 
problem, as noted in Section 2.1.1. This is needed for Basic to achieve its time bound, but is unnecessary for Prefix.

A slight variation will prove useful later. Given the downward error envelope E of a set S of vertices, and given a 
vertex v , an error query of E determines the intersection of the error envelope with the ray with x-intercept f (v) and slope 
w(v), i.e., the ray representing the error in using a regression value ≥ f (v) at v . The maximum of the error queries for 
vertices in S is the regression error of using the L∞ mean on S .

Another operation involving envelopes is merger. The only special aspect is that after two envelopes are merged, using 
standard merging of balanced binary search trees, some of the segments may need to be removed. E.g., in Fig. 3 b), when 
the envelope with Roman labeling and the one Greek labeling are merged, segments B, C, and γ will be removed. The 
endpoints of some of the remaining segments also change. Using a relatively straightforward procedure, once the envelopes 
are merged the removal of segments and changing of endpoints can be performed in !(a + b log n) time, where a is the 
size of the smaller envelope and b is the number of segments removed.

Given sets S1, S2 of vertices, a bipartite maximum violators operation determines a pair of vertices u1 ∈ S1, u2 ∈ S2 that 
maximize mean_err( f , w : v1, v2) among all pairs where v1 ∈ S1, v2 ∈ S2 and f (v1) ≥ f (v2). If there are no such pairs then 
it returns the empty set. Note that S1 and S2 might overlap.

Lemma 7 (Repeated violators). Given sets S1 and S2 of weighted values, in !(N log N) time one can do an arbitrary sequence of O (N)
deletion and bipartite maximum violators operations, where N = |S1| + |S2|.

Proof. A downward error envelope for S1, and an upward one for S2, will be used to determine the violators. The envelopes 
will be threaded so that one can determine the segments adjacent to a given segment in constant time. They are “semi-
dynamic” since only deletions change them once they are initially constructed. Hershberger and Suri [26] showed how to 
create the initial envelopes, and perform all the deletions, in O (N log N) time (they solved the semi-dynamic problem of 
maintaining the convex hull of a set of planar points which, by duality, can be used to solve the error envelope problem).
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Fig. 4. Dynamic envelope intersections.

Thus the only time remaining to be analyzed is the time needed to find the maximum violators. Given the envelopes, 
the initial maximum violators can be found in !(log N) time. For subsequent violators, the only case of interest is when the 
segment deleted was one of the ones in the intersection. For example, in Fig. 4, suppose initially B and β intersect, and then 
B is deleted, resulting in new segments in the upward error envelope represented by dashed lines. The new intersection 
can involve β or a successor, but not α. Further, on the upward envelope it might involve C since that segment may have 
lengthened, but cannot involve any successor of C. It might, however, involve some predecessor of C. The intersection is 
found by checking C, then its predecessor, etc., until it is found. During this process it may also be discovered that the 
intersection will involve a successor of α, etc.

While a single deletion may involve !(N) segments, if the new intersection does not involve C then no future inter-
section can involve C until its predecessor has been deleted. Therefore the total number of segments examined over all 
iterations is O (N). ✷

For integer k ≥ 1, a dag G is k-transitive closed if whenever u ≺ v there is a path of length ≤ k from u to v . Error 
envelopes can be used to extend approaches for transitive closures to 2-transitive closed dags.

Proposition 8. Given weighted data ( f , w) on a 2-transitive closed connected dag G = (V , E), the Prefix isotonic regression can be 
determined in !(m logm) time, and Min, Max and Avg in !(m + n log n) time.

Proof. For Prefix, to compute pre(v) for vertex v , let pre′(v) = max{mean_err( f , w : u, v) : (u, v) ∈ E and f (u) ≥ f (v)}. All 
other predecessors of v are at distance 2, so for every vertex p, compute the downward envelope D p of {( f (u), w(u)) :
(u, p) ∈ E}. Let err(p, v) denote the value of an error query for v on D p . Then pre(v) = max{pre′(v), max{err(p, v) : (p, v) ∈
E}}. The time to create the envelopes and do the queries is !(m log m).

For the other regressions, first compute the maximum error for adjacent violating pairs. Then for every vertex create the 
downward envelope of the data at its preceding neighbors and the upward envelope of its succeeding neighbors and find 
the error of their intersection. The optimal regression error is the maximum of all of these values. To create the envelopes 
efficiently, first sort the weights. Going through the vertices in this ordering, put their data in the appropriate envelopes. It is 
easy to show that by inserting in this order the envelopes can be created in linear time, as can finding their intersection. ✷

In [45] this approach was further extended by using a construction similar to Steiner 2-transitive-closure spanners [8]. 
Dag G = (V , E) is embedded into dag G ′ = (V ′, E ′) where V ⊂ V ′ and for any pair u, v ∈ V , u precedes v in G iff u precedes 
v in G ′ . Further, if u precedes v in G then there is a path from u to v in G ′ of length ≤ 2. Data on G is extended to G ′ , and 
an isotonic regression on G ′ induces one on G . See [45] for further details. Most of the material there appeared in a 2008 
version of the current paper.

One can interpret L∞ isotonic regression as minimizing the maximum “penalty” at the vertices, given the isotonic re-
quirement. This can be applied to rather general penalty functions, such as a classification problem with ordered classes and 
penalties for misclassifying a vertex. The time of the algorithms depend on the complexity of determining the regression 
value minimizing the error over a set of weighted values. One extension where there is no increase in time is when the 
error is linear but the weight for using regressions values larger than the data value is different than the weight for using 
regression values less than the data. For example, overestimating the capacity of a bridge is more serious than underesti-
mating it. None of the operations on envelopes require that the weights for errors above and below the data value be the 
same.

6. Linear and tree orderings

Linear orders are the most important dag by far, and isotonic regression on linear and tree orders has been used for 
decades (see the extensive references in [5,38]). Recent applications of isotonic regression on trees include analyzing web 
data [11,35]. For rooted trees the ordering is towards the root.

For linear orders it is widely known that the L1 and L2 isotonic regressions can easily be found in !(n log n) and 
!(n) time, respectively. For trees the fastest isotonic regression algorithms use a bottom-up pair adjacent violators (PAV) 
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{DecErrEnv(v) is the downward error envelope of {u : u ≼ v} for v ∈ V }

Using a topological sort traversal,
DecErrEnv(v) = ∪{DecErrEnv(u) : (u, v) ∈ E}
Insert ( f (v), w(v)) into DecErrEnv(v)

pre(v) = result of error query of DecErrEnv(v)

Using topological sort traversal in reverse order,
Prefix(v) = min{pre(u) : v ≼ u}

Algorithm A. Computing Prefix using topological sorting on dag G = (V , E).

approach [47], taking !(n log n) time for the L2 [36] and L1 [44] metrics. Corollary 2 shows that Min, Max and Avg can be 
determined in !(n log n) time via parametric search. By using a bottom-up approach Prefix can be computed in the same 
time without requiring parametric search, and hence Min, Max and Avg too can be computed in the same time without 
parametric search.

Theorem 9. Given weighted data ( f , w) on a rooted tree T = (V , E), Algorithm A computes the Prefix L∞ isotonic regression in 
!(n log n) time.

Proof. Envelope merging was described in Section 5. A balanced tree of size a can be merged with one of size b, a ≤ b, in 
!(a (1 + log(b/a))) time, hence all of the initial union and insertion operations can be performed in !(n log n) time [10]. 
The time of the segment removal during each merge is linear in the number of elements in the smaller envelope, plus the 
time needed to remove intervals. An interval is removed at most once throughout all of the mergers, so the total time for 
removals is O (n log n), and since the processes are initiated by segments in the smaller tree, the total time for initiations is 
O (n log n). This completes the proof of Theorem 9. ✷

6.1. River isotonic regression for trees

Isotonic regression on trees arises in a variety of hierarchical classification and taxonomy problems in data mining and 
machine learning. Recent variations of isotonic regression for such problems include requiring that the regression value at 
a node be greater than or equal to the sum of the values of its children [7], and requiring that for each non-leaf node the 
regression value is the largest value of a child. Punera and Ghosh [37] called the latter “strict classification monotonicity”, 
but that is the opposite of the usual meaning of “strictly monotonic”. Here it is called river isotonic regression due to its 
similarity to river naming conventions. They solved the L1 problem in !(n2 log n) time. We use a Prefix-like approach to 
show:

Theorem 10. Given weighted data ( f , w) on a rooted tree T = (V , E), in !(n logn) time an L∞ river isotonic regression can be 
determined. If the data is unweighted then this can be done in !(n) time.

Proof. For the unweighted case, at vertex v let a be the largest data value in v ’s subtree. For a path p from v to a leaf 
node under it, let b be the smallest value on p. If the regression values along the path are all the same, then the overall 
regression error in v ’s subtree is at least (a − b)/2, and choosing x = (a + b)/2 as the regression value at v achieves this 
error along p. Given this choice, for any isotonic regression on the remainder of v ’s subtree, reducing any values larger than 
x to x cannot increase the overall error. At each node, keep track of the minimal value on the path beneath with maximal 
minimal value, the child that achieves this, and the maximum value at all vertices in the subtree. If v were the root than 
this path gives an optimal regression value for it. These can all be determined in !(n) time by a bottom-up process.

Just as for Prefix, a top-down second stage is used, but it is slightly more complicated since the value at the root may 
be larger or smaller than its children. The value at the root is that of the bottom-up phase. Recursively, if the value at a 
node v has been determined to be x in the top-down stage, let w be the child that was recorded on the bottom-up phase. 
w ’s value will be x. For all other children, their value is the minimum of x and their value on the bottom-up phase. It’s 
relatively straightforward to show that this produces an optimal river isotonic regression.

For the weighted case, for a vertex v again let p be a path from a leaf to v . Given the downward envelope for all vertices 
in v ’s subtree, and the upward envelope for vertices in p, using their intersection as the regression value at v gives a lower 
bound on the total regression error in the subtree when all vertices in p must have the same value. Choosing p to minimize 
the error of the intersection gives the minimal possible error bound for v ’s subtree. A top-down stage provides the final 
regression value.

Determining the path to use in the weighted case is more complex than for the unweighted case. For example, suppose 
there is vertex v with two leaf children. The left child has data value 0 and weight 1, the right child has value 1 and 
weight 2, and v has value 2 and weight 2. Then on the upward stage the value at v will be 1.5, using the path to the right 
child. Suppose v ’s parent u has a descendent with value 11 and weight 1, and that the optimal path for u involves v . Then 
the optimal path is from u to v ’s left child, with a regression value of 5 and error 6. Had the path terminated at v ’s right 
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child then the regression value would have been 4 2
3 , with error 6 1

3 . Thus, even though u’s path passes through v , the 
continuation to a leaf is different than for v .

To keep track of the correct path information upward envelopes are used, but are slightly different. At vertex v , the 
envelopes for its children are merged together. However, rather than keeping the maximum error for each regression value, 
the smallest value is kept since there is a path achieving it. Once the children’s envelopes are merged, then the segment 
corresponding to v is added, but it is inserted keeping track of the maximum error at a regression value since any path 
through v must include it. It’s straightforward to show that the envelope merging operations can still be done in !(n log n)
total time. A final detail is that to determine the values during the top-down stage one needs to determine how to assign 
values to children. This requires the envelopes used when going up, so as they are being created they are maintained in 
persistent form so that intermediate stages can be recovered. ✷

6.2. Unimodal regression for linear orders

Given weighted data on a linear order v1 < . . . < vn , a unimodal regression g is a regression that minimizes the regression 
error subject to the unimodal constraint

g(v1) ≤ g(v2) . . . ≤ g(vk) ≥ g(vk+1) . . . ≥ g(vn)

for some k, 1 ≤ k ≤ n. Unimodal orderings are also known as umbrella orderings. Optimal modes may not be unique, which 
can be seen by considering the unweighted data 1, 0, 1. This example shows there need not be a unimodal regression 
corresponding to Max, i.e., one which is pointwise as large as any other.

Several unimodal regression algorithms [13,42,48] have been applied to “competing failure modes” problems [17,23,24]. 
For example, in dose-response settings, as the dose increases the efficacy increases, but toxicity increases as well. The goal 
is to find a dose that maximizes the probability of being both efficacious and nontoxic [17,24]. A multi-arm bandit model 
is used, one bandit per dose, where the expected value of the bandits is assumed to be unimodal. The weights reflect the 
uncertainty in the expected value. An adaptive trial design is used, where after each observation, unimodal regression is 
used to decide which dose to use next. Unimodal bandit models have been examined since the 1980’s [25].

A prefix approach was used in [42] to find the unimodal regression of a linear order, taking !(n) time for L2, !(n log n)
for L1, and !(n) for L∞ with unweighted data. For this approach the information that needs to be computed at each vertex 
vk is the regression error of an isotonic regression on v1 . . . vk . This is the maximum of the error of using pre(i) at vi , 1 ≤
i ≤ k, which can be computed as pre is being computed. The corresponding information for decreasing isotonic regressions 
on vk . . . vn is also determined (computed in reverse order). An optimal mode vertex for L∞ is one that minimizes the larger 
of these two errors. Using Algorithm A gives the following corollary which was also obtained by Lin et al. [31].

Corollary 11. Given weighted data ( f , w) on a linear order of n vertices, an L∞ unimodal regression can be determined in !(n logn)
time. ✷

6.3. Unimodal regression for trees

For an undirected tree the unimodal problem is to find an optimal root and the isotonic regression on the resulting 
rooted tree. Agarwal, Phillips and Sadri [1] were motivated to study this problem by an example concerning determining 
the surface topology in geographic information systems. They showed that for a tree with unweighted data the L2 unimodal 
regression, with a Lipschitz condition imposed, can be found in !(n log3 n) time. In a machine learning context, Yu and 
Mannor [51] gave active learning algorithms for locating the root of a tree for a multi-arm bandit model with a bandit at 
each vertex, where the expected reward is unimodal. This is similar to the use of unimodal regression in response adaptive 
dose-response designs mentioned above. Bandit models using rooted trees appear in [15].

The algorithms below are quite different than those for unimodal regression on a linear order, in that they first locate 
the root without creating regressions, and then any algorithm for rooted trees can be applied. For unweighted data, locating 
a root is simple.

Proposition 12. Given unweighted data f on an undirected tree T = (V , E), in !(n) time an L∞ unimodal regression can be found.

Proof. Let x be a vertex where f achieves its maximum and let g be an optimal L∞ unimodal regression on T . Let g′ be 
the function on T given by g′(v) = min{g(v), g(x)} for all v ∈ V . If ϵ = | f (x) − g(x)|, then || f − g||∞ ≥ ϵ . Since f (v) ≤ f (x)
for all v ∈ V , |g′(v) − f (v)| ≤ max{ϵ, |g(v) − f (v)|}. Thus ||g′ − f ||∞ ≤ ||g − f ||∞ , and, since g was optimal, so is g′ . Further, 
g′ is isotonic when the tree is directed with x as its root.

Thus, to find a unimodal regression it suffices to locate a vertex with maximum data value, orient the tree with this as 
the root, and use Prefix to determine the isotonic regression. ✷

For weighted data it is not immediately obvious which vertices can be optimal roots, but there are edges for which one 
can quickly determine their correct orientation. The path from u to v , for u, v ∈ V , means the simple path from u to v . For 
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weighted data ( f , w) on the undirected tree T = (V , E), let u, v be such that mean_err( f , w : u, v) = max{mean_err( f , w :
p, q) : p, q ∈ V }. Suppose f (u) < f (v). If in the directed tree u is on the path from v to the root then they are violators and 
the regression error is at least mean_err( f , w : u, v). This is the error of the regression where all values are mean( f , w : u, v), 
and hence every vertex is an optimal root. To obtain a smaller regression error it must be that u is not on the path from v
to the root of the directed tree, in which case the edge incident to u on the simple path from u to v is directed towards 
the root. This will be used to show the following:

Theorem 13. Given weighted data ( f , w) on an undirected tree T = (V , E), in !(n logn) time an L∞ unimodal regression can be 
found.

Proof. The algorithm locates the root via recursion. Locate a pair of vertices u, v which maximize mean_err. If f (u) < f (v)
then let e be the edge incident to u on the path towards v . Remove e, which partitions T into trees T1 = (V 1, E1), T2 =
(V 2, E2), where u ∈ V 1. Recursively find an optimum root r for a unimodal regression of T2. Lemma 14 proves that r is an 
optimal root for unimodal regression on T . Once an optimal root is known the Prefix isotonic regression can be determined 
in !(n log n) time (Theorem 9).

To find u, v , set S1 = S2 = V and perform a bipartite maximum violator operation. Once T1 is determined, all weighted 
values corresponding to it are removed from S1 and S2 and the resulting sets are used for the subproblem on T2. The 
repeated violators lemma (Lemma 7) shows that one can find pairs of maximum violators during all recursive steps in 
!(n log n) total time.

Knowing u and v does not immediately tell one which edge incident to u is e. Lemma 15 shows that one can find e
in O (|V 1|) time. Using this, T1 can be removed from T , creating T2, in !(|V 1|) time. Thus the total time for recursively 
shrinking the subtrees is !(n). ✷

Lemma 14. For an undirected tree T = (V , E) with weighted data ( f , w), let u1, u2 be a pair which maximizes mean_err and for 
which f (u1) < f (u2). Let {u1, x} be an edge on the path from u1 to u2 . Let T1 = (V 1, E1), T2 = (V 2, E2) be the subtrees of T induced 
by removing this edge, where u1 ∈ T1 and x ∈ T2 . Then an optimal root for L∞ unimodal regression of ( f , w) restricted to T2 is an 
optimal root for L∞ unimodal regression of ( f , w) on T .

Proof. If the minimal regression error of a unimodal regression on T is mean_err( f , w : u1, u2) then all vertices are optimal 
roots. Otherwise the regression value at u2 must be > mean( f , w : u1, u2) and at u1 is < mean( f , w : u1, u2), and therefore 
any optimal root is in T2. Let g be a unimodal regression on T2 with root r, and let h be a unimodal regression on T . Define 
g′ on T as follows:

g′(v) =

⎧
⎪⎨

⎪⎩

h(v) if v ∈ T1

max{h(u1), g(v)} if v is on the path from r to x

g(v) otherwise

Since the root of h is in T2, h restricted to T1 has u1 as its root, and the construction insures that g′ is unimodal on T , 
with root r. Since g and h are optimal, to show that g′ is optimal we only need to show that on the path from r to x its 
error is no worse than that of g or h.

For an optimal regression the value at u2 is > h(u1), and hence on the path from r to u2, g > h(u1). Similarly, on the 
path from x to u2, h ≥ h(u1). Since the path from r to x is a subset of the union of the paths from r to u2 and x to u2, the 
value of g′ on the path from r to x is between (or equal to) the values of g and h, and hence its error is no more than the 
maximum of theirs. Thus it too is optimal. ✷

Lemma 15. Given an undirected tree T = (V , E) and vertices u, v ∈ V , u ̸= v, let x ∈ V be such that the edge {u, x} is on the path 
from u to v. Then x can be determined in O (|T ′|) time where T ′ is the maximal subtree of T containing u but not containing x.

Proof. Let T ′ denote the maximal subtree of T containing u but not containing x. Let p1, . . . , pk be the neighbors of u. 
Viewing u as the root, let Ti denote the subtree with root pi , i = 1, k. On each Ti a preorder traversal will be used. A global 
traversal is performed as follows: visit the first node in the traversal of T1, then the first node in the traversal of T2, . . . , first 
node in Tk , then the 2nd node in the traversal of T1, 2nd node in the traversal of T2, . . . . If v is reached while traversing T j , 
or for every Ti , i ̸= j, the final node in the traversal of Ti has been reached, then x = p j and T ′ = {u} ∪ {Ti : i = 1 . . .k, i ̸= j}. 
In all cases, x is identified and the number of nodes examined in the traversal of T j is no more than the number of nodes 
traversed in the other subtrees, i.e., in T ′ . ✷

7. Final comments

For an arbitrary dag, Theorem 1 shows that the Min, Max and Avg L∞ isotonic regressions can be found in !(m log n)
time. It is an open question as to whether this is optimal, and the optimal times for Prefix and Basic are also unknown. 
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Unfortunately the algorithm in Theorem 1 is based on parametric search, which is quite infeasible, so practical algorithms 
were given for various settings. While the emphasis is on worst-case time, Appendix A provides a practical randomized 
algorithm taking !(m log n) time with high probability.

This paper introduced the Prefix regression. Basic has been extensively studied and is trivial to compute for unweighted 
data, but for weighted data Prefix is more useful. Prefix can be computed by reusing calculations at one vertex to reduce 
those at successors. For linear and tree orders, river isotonic regression, and unimodal regression, it can be determined in 
!(n log n) time, obviating the need for the parametric search used by Chun et al. [13]. While there are now linear time 
algorithms for linear and tree orders [46], they use feasibility tests and yield the less desirable Min, Max or Avg regres-
sions. That paper also shows that these regressions can be computed in !(n logd−1 n) time for d-dimensional points with 
component-wise ordering, and Prefix can be computed in !(n logd n) time. Isotonic regression on points in d-dimensional 
space, which corresponds to having d independent variables, has been extensively studied [5,9,21,38,41,45].

Beyond their computational time, an important aspect of L∞ isotonic regression algorithms is the properties of the 
regressions they produce. The algorithms in Theorem 1 and Appendix A use feasibility tests, which results in regressions 
(Min, Max, or Avg) which can have undesirable properties (see Section 2.2). Prefix and Basic are somewhat better, and Strict
is the best but more difficult to compute. These issues, and algorithms for Strict, are pursued in [43].

Overall, among the current algorithms for L∞ isotonic regression on arbitrary dags there is an inverse relationship 
between an algorithm’s time and the desirability of the regressions it produces.

Acknowledgments

Research partially supported by NSF grant CDI-1027192, DOE grant DE-FC52-08NA28616, and King Abdulaziz University.

Appendix A. Randomized !(m log n) expected time algorithm

As noted earlier, the algorithm in Theorem 1 determines L∞ isotonic regression in !(m log n) time, but its use of para-
metric search makes it impractical. Parametric search determines a sequence of potential regression errors that converge to 
the optimal value, with each error being checked via a feasibility test. This approach has also been applied to problems such 
as determining optimal L∞ step functions with a specified number of steps [19]. Here we replace parametric search with 
a simple randomized search to determine the sequence of regression errors to be tested. It takes !(m log n) expected time, 
not the worst-case time considered everywhere else in the paper. However, it achieves this time with high probability.

As before, we consider the problem of creating an L∞ isotonic regression of the graph G = (V , E) with weighted data 
( f , w), and we reduce to the connected case and hence m ≥ n − 1. The approach is based on the observation that the 
optimal regression error ϵ∗ is the maximum mean_err( f , w : u, v) among all violating pairs u, v ∈ V , i.e., where u ≺ v and 
f (u) > f (v). Determining whether u ≺ v may take !(m) time, so we ignore the violating condition and consider the larger 
set R = {mean_err( f , w : u, v) : u, v ∈ V , u ̸= v}. It might be a multiset, but that does not affect the algorithm nor analysis. 
Algorithm B locates ϵ∗ ∈ R .

Step 3 requires explanation. For a vertex p let U p be the “upper” interval of values ≥ f (p) where the weighted error at p
is in [a1, a2), and Lp the “lower” interval of values ≤ f (p) where the error is in [a1, a2). For any vertices p, q, if f (p) < f (q)
then mean_err( f , w : p, q) ∈ [a1, a2) iff U p ∩ Lq ≠ ∅. This gives an easy way to construct B . First sort the smallest endpoints 
of the upper intervals of all vertices. Let T denote this sorted array. Then, for all q ∈ V , if Lq = [c, d), find the first value x in 
T where x ≤ c, and then sequentially go through T until a value is encountered that is > d. For every value y encountered 
in this scan (except the last), if it is the smaller endpoint of U p , then add mean_err( f , w : p, q) to B . A similar procedure is 
used where the smallest endpoints of the lower intervals are sorted and the scans are based on the upper intervals. After 
the two sort and scan procedures, all of the elements of B have been determined. The time is !(n log n + |B|).

Step 1 can be violated a slight bit, in that the pairs can be chosen randomly with replacement. It may be that the same 
pair is chosen more than once, but the expected number of such occurrences is so small it doesn’t affect the analysis in 
any meaningful way and it can simplify the implementation. For Step 2, utilizing a linear time median algorithm makes the 
time !(m logn). Step 4’s time is !(|B| + m logn).

The final aspect is to determine |B|. To bound the probability that |B| > n ln n, note that this is true iff there is an 
interval of n ln n consecutive elements of R which contains ϵ∗ but no elements of A. For any set C ⊂ R of size n ln n, 
the probability that a specific element of A is not in C is 1 − 2 ln n

n−1 , and hence the probability that none are in it is 
< (1 − 2 ln n

n−1 )n ln n ≈ 1/n2 ln n . There are n lnn intervals of R of length n ln n which contain ϵ∗ , hence the probability that 
|B| > n ln n is ≈ ln n/n2 ln n −1. Thus the total expected time is !(m log n), and this is achieved with high probability. The 
worst-case time is !(n2 + m log n).

1. Select a random subset A ⊂ R of size n ln(n) by randomly selecting n ln(n) pairs of vertices u ̸= v and adding mean_err( f , w : u, v) to A. Also add 
{0, ∞} to A.

2. Use a binary search, incorporating feasibility tests, to determine consecutive elements a1, a2 ∈ A such that a1 ≤ ϵ∗ < a2.
3. Create the set B = {x : a1 ≤ x < a2, x ∈ R}.
4. Use a binary search on B, incorporating feasibility tests, to locate ϵ∗ .

Algorithm B. Randomized algorithm to determine optimal regression error ϵ∗ . R = {mean_err( f , w : u, v) : u, v ∈ V }.
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Once ϵ∗ is known, Min, Max and Avg can be computed in !(m) worst-case time. Thus:

Theorem 16. Given weighted data ( f , w) on a connected dag G = (V , E), by using Algorithm B the Min, Max, and Avg L∞ isotonic 
regressions can be determined in !(m logn) expected time with high probability. ✷

Feasibility tests are used for additional L∞ optimization problems such as histogram construction and step function 
approximation [12,19], isotonic regression with a specified number of steps, and 1-dimensional weighted k-centers. Algo-
rithm B provides a simple, systematic approach to these problems, yielding algorithms that take !(n log n) expected time 
with high probability. A !(n log n) expected-time algorithm for step function approximation appears in [32], but it is much 
more complicated. Since feasibility tests are usually quite fast, solutions based on Algorithm B are quite practical.
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