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Abstract

Isotonic regression is a shape-constrained nonparametricregression in which the regression is an increasing
step function. Forn data points, the number of steps in the isotonic regression may be as large asn. As a
result, standard isotonic regression has been criticized as overfitting the data or making the representation
too complicated. So-called “reduced” isotonic regressionconstrains the outcome to be a specified number
of stepsb, b ≤ n. However, because the previous algorithms for finding the reducedL2 regression took
Θ(n+ bm2) time, wherem is the number of steps of the unconstrained isotonic regression, researchers felt
that the algorithms were too slow and instead used approximations. Other researchers had results that were
approximations because they used a greedy top-down approach. Here we give an algorithm to find an exact
solution inΘ(n+ bm) time, and a simpler algorithm takingΘ(n + bm logm) time. These algorithms also
determine optimalk-means clustering of weighted 1-dimensional data.

Keywords: reduced isotonic regression, step function, v-optimal histogram, piecewise constant approxima-
tion, k-means clustering, nonparametric regression

1 Introduction

Isotonic regression is an important form of nonparametric regression that allows researchers to relax para-
metric assumptions and replace them with a weaker shape constraint. A real-valued functionf is isotonic
iff for all x1, x2 in its domain, ifx1 < x2 thenf(x1) ≤ f(x2). In some settings isotonic functions are called
monotonic, while in others monotonic is used to indicate either nondecreasing or nonincreasing. Myriad
uses of isotonic regression can be found in citations to the fundamental books of Barlow et al. [3] and
Robertson et al. [14]. Nonparametric approaches are increasingly important as researchers encounter situ-
ations where parametric assumptions are dubious, and as algorithmic improvements make the calculations
practical.

Isotonic regression is useful for situations in which the independent variable has an ordering but no
natural metric, such as S< M < L < XL clothing sizes. Since the only important property of the domain is
its ordering, we assume that it is the integers1 . . . n for somen, and use[i :j], 1 ≤ i ≤ j ≤ n to denote the
rangei . . . j. By weighted values(y,w) on [1 :n], we mean values(yi, wi), i ∈ [1 :n], where they values
are arbitrary real numbers and thew values (the weights) are nonnegative real numbers. Given weighted
values(y,w) and a real-valued functionf on [1 :n], theLp regression or approximation error off is

(
∑n

i=1wi|yi − f(i)|p)1/p 1 ≤ p < ∞

maxni=1 wi|yi − f(i)| p = ∞
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a) isotonic regression b) 4-step regression c) 4-step reduced isotonic

Figure 1: Stepwise regressions, size indicates weight

An Lp isotonic regressionis an isotonic function that minimizes theLp error among all isotonic functions.
Figure 1 a) gives an example of an isotonic regression. Because researchers from varying fields often use
different expressions for a single concept, we use the termsregressionandapproximationinterchangeably.
We identify approximations that are not optimal regressions assub-optimalapproximations.

Isotonic regressions are step functions for which the number of steps is determined by the data. In
certain cases there is criticism that such functions can overfit the data [12, 15, 16] or produce a result with
too many steps [5]. Consequently, some researchers utilizeisotonic regressions that restrict the number of
steps. Schell and Singh [16] have referred to such functionsasreducedisotonic regressions.

Restricting the number of steps is a central issue in approximation by step functions. It arises in settings
such as databases and variable width histogramming [6, 9, 13], segmentation of time series and genomic
data [8, 10, 19], homogenization [4] and piecewise constantapproximations [11].

A function f is anoptimal Lp b-step approximation, 1 ≤ b ≤ n, iff it minimizes theLp error over
all functions withb steps. Here we are primarily concerned with computingL2 b-step reduced isotonic
regressions, where a functionf is anoptimalLp b-step reduced isotonic regression, b = 1, . . . ,m ≤ n,
iff it minimizes theLp error over all isotonic functions havingb steps. Figure 1 gives examples ofb-
step regression andb-step reduced isotonic regression. Optimalb-step approximations andb-step reduced
isotonic regressions are not always unique. For example, with unweighted values 1, 2, 3 on[1 :3] andb = 2,
for anyp the function which is 1.5 on[1 : 2] and 3 at 3 is optimal, as is the function which is 1 at 1 and 2.5
on [2 :3].

In 1958 Fisher [4] gave a simple algorithm for determining anoptimal b-stepL2 regression inΘ(bn2)
time (this is shown in Algorithm A). His algorithm can be easily modified to determine an optimalb-stepL2

reduced isotonic regression in the same time bounds. His algorithm has been widely used and rediscovered,
and often falsely attributed to Bellman. However, for many researchers the quadratic time inn makes
it too slow for their applications [5, 6, 8, 10, 19]. Thus mostprevious work utilizing reduced isotonic
regression used sub-optimal approximations, with the exception of an algorithm due to Haiminen, Gionis
and Laasonen [5]. Their algorithm for theL2 metric takesΘ(n + bm2) time, wherem is the number of
pieces of the unrestricted isotonic regression. (To lessenconfusion, we use “pieces” to refer to the steps
of the unrestricted isotonic regression.) However, even with this reduction in time they then developed an
approximation algorithm based on a greedy heuristic.
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In Section 3 we decrease the time to find the optimalb-stepL2 reduced isotonic regression toΘ(n+bm),
using an algorithm in Section 2.2 for the special case in which the values are themselves isotonic. A simpler
algorithm, takingΘ(n+ bm logm) time, is also given. These algorithms should be fast enough to eliminate
the need for approximations, even for very large data sets.

Since we are only looking for optimal approximations, we often omit “optimal”.

2 Approximation by Step Functions

A real-valued functionf on [1 :n] is ab-step function, 1 ≤ b ≤ n, iff there are indicesj0 = 0 < j1 . . . <
jb = n and real valuesCk, k ∈ [1 : b], such thatf(xi) = Ck for i ∈ [jk−1 +1 : jk]. If f is isotonic then
C1 ≤ C2 . . . ≤ Cb. An approximation with fewer thanb steps can be converted to ab-step approximation
by merely subdividing steps, and thus we do not differentiate between “b steps” and “no more thanb steps”.

Let meanp(i, j) denote anLp mean of the weighted values on[i : j]. For 1 ≤ p < ∞, an optimalLp

step function has the property thatCk = meanp(jk−1 +1, jk). Since we are only concerned with optimal
approximations, whenever a function has a step[i :j], then its value on that step ismeanp(i, j). Leterrp(i, j)
denote thepth power of theLp error of the step[i : j]. Minimizing the sum of theerrp values is the same as
minimizing theLp approximation error and thus from now on only theerrp values will be used.

2.1 Arbitrary Data

Fisher’s [4] dynamic programming approach to determining an optimalLp b-step approximation for1 ≤
p < ∞ is based on the observation that iff is an optimalb-step approximation of the data, with a first step
of [1 : j], thenf is an optimal(b−1)-step approximation of the data on[j+1 : n]. This is obvious since if
it were not optimal then replacing it with an optimal(b−1)-step approximation would reduce the error. Let
e(i, c) denote the sum of theerrp values of the steps of an optimalc-step approximation on[i : n], and let
e′(i, j, c) denote the sums of theerrp values of the steps of ac-step approximation on[i :n] which is optimal
amongc-step approximations where the first step is[i :j]. Fisher’s observation yields the equations:

e′(i, j, c) = errp(i, j) + e(j+1, c−1) (1)

e(i, c) = min{e′(i, j, c) : i ≤ j ≤ n− c+ 1} (2)

By storing thej that minimizese(i, c) in jmin(i, c), inΘ(n) time one can generate the optimal approximation
after the dynamic programming has completed. This leads to Algorithm A. The time isΘ(bn2) plus the time
to compute theΘ(n2) errp values. ForL∞, e′(i, j, c) = max{err∞(i, j), e(j+1, c−1)}.

Fisher’s algorithm can be modified to determine theb-step reduced isotonic regression in the same time
bounds. The lines

for i = 1 to n− c+ 1

e(i, c) = min{e′(i, j, c) : i ≤ j ≤ n− c+ 1}

should be replaced by

for i = 1 to n− 1

e(i, c) = min
{

errp(i, n), min{e′(i, j, c) : i ≤ j ≤ n−1, meanp(i, j) ≤ meanp(j+1, jmin(j+1, c−1)) }
}

Including theerrp(i, n) term, and changing the upper bound oni, is necessary so that, say, for unweighted
data 3, 2, 1, theL2 2-step reduced isotonic regression is correctly determined to be 2, 2, 2. Using either 3,
or 3, 2, as the initial step would involve a second step that was lower, and hence the solution has only 1 step.
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for i = 1 to n

e(i, 1) = errp(i, n); jmin(i, 1) = i

for c = 2 to b

for i = 1 to n− c+ 1

e(i, c) = min{e′(i, j, c) : i ≤ j ≤ n− c+ 1} {e′ is defined in (1)}
{record minimizing j in jmin(i, c)}

end for i

end for c

generate the approximation using jmin and meanp

Algorithm A: Fisher’s algorithm for optimalLp b-step approximation of arbitrary data,1 ≤ p ≤ ∞

Throughout, the values ofe andjmin are stored in 2-dimensional arrays, whilee′ is evaluated as a func-
tion, not stored as a 3-dimensional array. To evaluateerr2, once the scan values

∑i
j=1

wjyj,
∑i

j=1
wjy

2
j ,

and
∑i

j=1
wi have been determined for alli ∈ [1 :n], eacherr2 value can then be computed in unit time.

2.2 Isotonic Data

Reducing the time of Algorithm A requires reducing the number of errp values referenced. It is not known
how to do this for arbitrary data, but isotonic data has some special properties. We give two algorithms:
Algorithm B is simpler than Algorithm C, but, in O-notation,slower by a logarithmic factor. It is likely that
many will prefer Algorithm B over Algorithm C. Algorithm B isgiven in Section 2.3, and Algorithm C is
in Section 2.4.

For isotonic data, the fact that values are nondecreasing allows one to make inferences concerning the
means of intervals. For example, theLp mean of the weighted values on[i : j] is no larger than that of the
values on[i+1:j]. Further, for any1 < i ≤ j < n, errp(i, j+1)−errp(i, j) ≥ errp(i+1, j+1)−errp(i+1, j).
That is, if we consider the increase in error of adding(xj+1, wj+1) to the step[i : j], this is greater than the
increase when adding it to the step[i + 1 : j]. This is true because the monotonicity insures thatxj+1 is at
least as large as the mean on[i+ 1:j], which has a mean not more than that of[i :j], and the total weight of
[i :j] is greater than the total weight of[i+ 1:j]. When the values are not isotonic then this inequality may
not hold.

LettingM(i, j) = errp(i, j), this can be rewritten as

M(i, j+1) +M(i+1, j) ≥ M(i, j) +M(i+1, j+1) (3)

for all 1 ≤ i < j < n and1 ≤ p ≤ ∞. This is known as theMonge property, andM is known as a Monge
matrix (typically the Monge property has the inequality in the opposite order and is applied to maximization,
not minimizing).

If jmin(i) denotes the smallestj such thatM(i, j) is a minimal value in rowi of M , then the Monge
property implies that for anyi < i′, jmin(i) ≤ jmin(i

′), i.e., jmin is isotonic. This property is typically
calledmonotonicity. If we defineM(i, j) = ∞ whenj < i thenM satisfies (3) for alli andj. Iteratively
combining this inequality over adjacent elements shows that it holds much more widely, in that for all
1 ≤ i1 < i2 ≤ n and1 ≤ j1 < j2 ≤ n,

M(i1, j2) +M(i2, j1) ≥ M(i1, j1) +M(i2, j2) (4)

4
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Dashed lines: range of potential endpoints of initial step

Figure 2: Possible endpoints of odd multiples of 1/8

Thus all submatricies of a Monge matrix are Monge, where a submatrix can be formed from an arbitrary
set of rows and an arbitrary set of columns and the number of rows need not equal the number of columns.
Since all submatricies are Monge, all are monotonic. This property is calledtotal monotonicity. There are
monotonic matrices that are not totally monotonic and totally monotonic matrices that aren’t Monge.

The fact thatM is a Monge matrix implies thatM c is a Monge matrix, forc > 1, whereM c(i, j) =
e′(i, j, c). This is because

M c(i, j+1) +M c(i+1, j) = M(i, j+1) + e(j+1, c−1) +M(i+1, j) + e(j+2, c−1)

M c(i+1, j+1) +M c(i, j) = M(i+1, j+1) + e(j+2, c−1) +M(i, j) + e(j+1, c−1)

Algorithm B, in Section 2.3, exploits the monotonicity ofM c and Algorithm C, in Section 2.4, exploits its
total monotonicity. We will show

Theorem 2.1 Givenn isotonic weighted values(y,w) and number of stepsb ≤ n, Algorithm B finds an
optimalL2 b-step approximation (hence an optimalL2 b-step reduced isotonic regression), inΘ(bn log n)
time, and Algorithm C finds one inΘ(bn) time.�

2.3 Using Monotonicity

Let jmin(i, b) denote the smallestj such thate′(i, j, b) = e(i, b). As noted,jmin(·, b) is an isotonic function.
This fact can be used to efficiently computee(·, b) andjmin(·, b) from the values ofe(·, b−1) andjmin(·, b−1).
Figure 2 shows an intermediate stage of the calculations fora single stage. The optimal first step for each
multiple of 1/4 has been computed and now the first step for each odd multiple of 1/8 needs to be determined.
For each of these, the possible values of the endpoint of the optimal first step are the range indicated by the
dashed lines with the solid line indicating the part that anyoptimal first step must include.

This observation forms the basis of Algorithm B. Compared toFisher’s algorithm, for fixedc, the order
in which e(i, c) values are determined is changed, as is the range ofj values used to compute each value.

Proposition 2.2 Givenn isotonic weighted values(y,w) and number of stepsb ≤ n, Algorithm B finds an
optimalb-stepL2 approximation inΘ(bn log n) time.
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j start . . . j end : range of possible endpoints

for i = 1 to n do

e(i, 1) = errp(i, n); jmin(i, 1) = n

for c = 2 to b do

for level = ⌊log2(n−c+1)⌋ downto 0 do

for i = 2level to n− c+ 1 by 2level+1 do

if i = 2level then j start = j

else j start = max{i, jmin(i− 2k, c)}
if i+ 2level > n− c+ 1 then j end = n− c+ 1

else j end = jmin(i+ 2level, c)
e(i, c) = min{e′(i, j, c) : j start ≤ j ≤ j end}

{store largest minimizing j in jmin(i, c)}
end for i

end for level

end for c

generate the approximation using jmin and meanp

Algorithm B: b-stepLp approximation of isotonic data, using monotonicity

Proof: Suppose thate(·, c) andjmin(·, c) have been determined fori1 < i2 . . . < ik. Let ℓo . . . ℓk be such
that ℓ0 < i1 < ℓ1 < i2 . . . < ik < ℓk. To determinee(·, c) and jmin(·, c) for the ℓ values, note that
sincejmin(·, c) is isotonic thenjmin(ℓ0, c) ∈ [ℓ0 : jmin(i1, c)], jmin(ℓ1, c) ∈ [max{ℓ1, jmin(i1, c)} : jmin(i2, c)],
. . . , andjmin(ℓk, c) ∈ [max{ℓk, jmin(ik, c)} : n−c+1]. Thus, to determinee(ℓ0, c) andjmin(ℓ0, c) we only
need to evaluatee′(ℓ0, j, c) for j ∈ [ℓ0 : jmin(i1, c)]; to determinee(ℓ1, c) and jmin(ℓ1, c) we only need to
evaluatee′(ℓ1, j, c) for j ∈ [max{ℓ1, jmin(i1, c)} : jmin(i2, b)]; and so forth; i.e., we need at mostn+ k total
evaluations. In Figure 2, this corresponds to the fact that the dashed lines can overlap only at endpoints. In
1 + ⌊log2 n⌋ iterations all values ofe(·, c) andjmin(·, c) can be determined. This gives Algorithm B.

To complete the proof we need to show that each iteration of the “for level” loop can be completed in
Θ(n) time. Thej start andj end values that control the number ofj values examined guarantee that, over
all i values in in “for level” loop, a givenj value is used at most twice.�

2.4 Using Total Monotonicity

The fact thatM c is totally mononotonic can be used to further reduce the total number ofj values examined.
Algorithm C replaces

e(i, c) = min{e′(i, j, c) : j start ≤ j ≤ j end}

in Algorithm B with a while loop over a smaller set ofj values, reducing the worst-case total number used
at levelk from n − 2k + 1 to ⌊n/2k⌋. Thesej values are determined in Algorithm D. The approach used
is known as the SMAWK algorithm, an anagram of the initials ofthe authors of [1]. It is likely that most
readers are unfamiliar with SMAWK, and some might prefer to just view Algorithm D as a black box having
the properties that for everyc:

• for any levelk and anyi for which jmin(i) is determined at levelk, jvalues(k, ·) containsjmin(i),

• the total number ofj values returned over all levels isO(n),

6



A B C

D E F

α β γ

δ

ε

A ≤ B

A > B

E ≤ F

E > F

Move β from J to K

Proceed to next row,

continue as A≤B case

Move α from J to K

Proceed to row ε, 

compare E and F 

Delete α from J

Go back to row above,

continue as in E>F case

Delete β from J

Move α from K back to J

Go back to row δ,

compare A and C

Currently at rowδ, comparing A and B.
α, β, γ are the first 3 columns remaining inJ ; δ, ǫ are consecutive rows in the submatrix

Figure 3: An intermediate step of the SMAWK algorithm

• determine jvalues takesΘ(n) time.

The pseudo-code given in Algorithm D is quite explicit, suitable for efficient implementation in any lan-
guage. It converts the recursive list-based description in[1] to an iterative array-based one. Mention of
eliminating columns, creating submatrices, etc., is merely symbolic since there aren’t any real matrices:
they are just conceptual representations of calculatinge′(i, j, c) values. The only arrays being used are to
storej values.

To see how the SMAWK algorithm works, letM denote an arbitrary totally monotonic matrix. The
algorithm starts with a list of columnsJ (jvalues), and a subset of them are moved toK and kept, with the
remaining ones deleted. The final set of values inK will be the ones returned bydetermine jvalues. When
a columnm is deleted fromJ and not put intoK it is guaranteed that for all rowsi, m 6= jmin(i). The
guarantees come about by exploiting two facts implied by thegeneral Monge property (4): for the2 × 2
submatrix with columnsα < β and rowsδ < ǫ,

a) if β is the minimal location in rowδ, i.e.,M(δ, α) > M(δ, β), then it is the minimal location in row
ǫ, and hence inM α is not the minimal location in any row≥ δ

b) if α is the minimal location in rowǫ, i.e.,M(ǫ, α) ≤ M(ǫ, β), then it is the minimal location in row
δ, and hence inM β is not the minimal location in any row≤ ǫ

At any step in the algorithm two adjacent entries ofM are being compared, where they are in the same
row and the first two columns (j values) remaining inJ . For every row above the current row, one column
has been moved intoK. Suppose the algorithm is comparingA andB in Figure 3. IfA ≤ B then it might
be thatα = jmin(δ), and henceα is moved fromJ to K. Note thatα might also bejmin for some rows
above and belowδ. Relative to rowδ, columnβ does not need to be kept. Further, for any row aboveδ,
Monge property b) shows thatβ is not needed there either. However, it might be needed for lower rows,
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so the algorithm proceeds to the next row,ǫ, and compares E and F. IfE ≤ F thenβ is moved toK and
the algorithm proceeds to the next row. However, ifE > F thenβ is not needed for rowǫ, and Monge
property a) shows that it is not needed for any row below. Thereforeβ can be deleted fromJ , which in
the implementation is done by merely incrementingnext j index. Deletingβ condenses the submatrix in
Figure 3 to the entries A, C, D, and F. It might be thatA > C, so the algorithm movesα from K back toJ
and goes back to rowδ, comparingA andC. If A ≤ C thenα is put back inK and the algorithm goes to
the next row (ǫ), otherwise it is removed fromJ and the algorithm backs up another row, etc. If E= ∞, i.e.,
β < ǫ, then we treat it as E>F even if F= ∞.

If ǫ is the last row, ifE ≤ F thenγ can be deleted fromJ since there are no lower rows for whichγ
might need to be kept. Combining this with the rule that ifE > F thenβ is deleted and the algorithm goes
back a row shows that if the last row is reached then all of the remaining columns are examined. Whether
it occurs in the last row or earlier, eventually there is only1 column left, which should be kept. Any row
results in one column being moved toK, or is a row after the row in which the last column is reached, and
hence|K| is no more than the number of rows. Further, the time requiredisΘ(|J |).

To initialize, for level 0, which corresponds to all rows, all columns are kept, i.e.,jvalues(0, k) = k for
1 ≤ k ≤ n. One could apply the above reduction for level 0, but it isn’trequired for the time analysis nor
correctness, and it slightly simplifies the implementation. At any levelm above 0, the process is applied to
the submatrix consisting of every second row of the submatrix used for levelm − 1, i.e., to rows that are
multiples of2m. The initialJ for levelm is jvalues(m−1, 1 : num jvalues(m−1)).

Proposition 2.3 Givenn isotonic weighted values(y,w) and number of stepsb ≤ n, Algorithm C finds an
optimalb-stepL2 approximation inΘ(bn) time.

Proof: Since each level halves the number of rows and the number of kept j values is no more than the num-
ber of rows, the total number ofj values kept over all levels isO(n) and the total time ofdetermine jvalues

isΘ(n). The time for Algorithm C is linear in the total number ofj values considered, so it too isΘ(n). �.

3 Reduced Isotonic Regression

For arbitrary data, isotonic regressions are somewhat easier to compute than are general approximations by
step functions. One can use a simple left-right scan where each location is initially a step and then adjacent
steps are merged whenever they violate the isotonic condition. This is known as “pool adjacent violators”,
PAV, and first appeared in 1955 in Ayer et al. [2]. ForL2 it can easily be computed in onlyΘ(n) time.

Isotonic regression is a very flexible nonparametric approach to many problems. However it does have
its detractors due to results with impractically many stepsor overfitting. Some researchers have instead
used approximations with a specified number of steps [5, 19].To reduce overfitting, Schell and Singh [16]
used the approach of repeatedly merging pairs of adjacent steps whose difference had the least statistical
significance. Haiminen et al. [5] used an approach that repeatedly combines the adjacent steps that cause
a minimum increase in the error. These greedy (aka myopic) approaches repeatedly make the choice that
seems to be the best at the moment, but may not produce an optimal reduced isotonic regression. For
example, for allLp, 1 < p ≤ ∞, given the unweighted values 0, 2, 4, 6, 8, 10, the unique optimal 3-step
isotonic regression is 1, 1, 5, 5, 9, 9, and the unique optimal2-step isotonic regression is 2, 2, 2, 8, 8, 8.
Thus the 2-step isotonic regression cannot be obtained by merging steps of the 3-step isotonic regression.

The fastest previous algorithm for optimalL2 reduced isotonic regression is due to Haiminen et al. [5],
takingΘ(n + bm2) time, wherem is the number of pieces in the unconstrained isotonic regression. As
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integer array jvalues(0 :⌊log2⌋, 1 :n), num jvalues(0 :⌊log2 n⌋)

for i = 1 to n do

e(i, 1) = errp(i, n); jmin(i, 1) = n

for c = 2 to b do

determine jvalues(jvalues, num jvalues, c) {see Algorithm D}
for level = ⌊log2(n−c+1)⌋ downto 0 do

for i = 2level to n− c+ 1 by 2level+1 do

if i = 2level then j start = i; j index = 1

else j start = max{i, jmin(i− 2level, c)}
if i+ 2level > n− c+ 1 then j end = n− c+ 1

else j end = jmin(i+ 2level, c)
e(i, c) = ∞
while (j index ≤ num jvalues(level)) ∧ (jvalues(level, j index) ≤ j end) do

j = jvalues(level, j index)
if (j ≥ j start) ∧ (e′(i, j, c) < e(i, c)) then

e(i, c) = e′(i, j, c); jmin(i, c) = j

j index = j index+ 1

end while

j index = j index− 1

end for i

end for level

end for c

generate the approximation using jmin and meanp

Algorithm C:b-stepLp approximation of isotonic data, using total monotonicity for determine jvalues

9



procedure determine jvalues(jvalues, num jvalues, c)

num jvalues(0) = n

for k = 1 to n do jvalues(0, k) = k

for level = 1 to ⌊log2(n−c+1)⌋
j = jvalues(level−1, 1); next j index = 2; k index=0
i = 2level

while next j index ≤ num jvalues(level−1) do
next j = jvalues(level−1, next j index)
if (j ≥ i) ∧ (e′(i, j, c) ≤ e′(i, next j, c)) then

if i+ 2level > n− c+ 1 then {at last row, eliminate next j}
next j index = next j index+ 1

else {keep this j, increment i, j}
k index = k index+ 1; jvalues(level, k index) = j

j = next j; next j index = next j index+ 1

i = i+ 2level

end if

else {e′(i, j, c) > e′(i, next j, c), eliminate current j, go back to previous i, j}
if i > 2level then

i = i− 2level; j = jvalues(level, k index); k index = k index− 1

else {at first row}
j = next j; next j index = next j index+ 1

endif

end if

end while

k index = k index+ 1; jvalues(level, k index) = j

num jvalues(level) = k index

end for level

end determine jvalues

Algorithm D: Reducing the number of relevantj values using SMAWK

10



a reminder, we use “pieces” to refer to the steps of an unrestricted isotonic regression and “steps” to refer
to the steps of a reduced isotonic regression. Even though often m ≪ n, Haiminen et al. felt that this
may be too slow so they developed the greedy heuristic mentioned above. Our exact algorithms should be
sufficiently fast even for very large problems.

One cannot directly findb-step reduced isotonic regression of arbitrary data by using the approaches in
Algorithms B and C since it does not have the required monotonic properties. For example, for unweighted
values 7, 8, 0, 6, 9, 10, the optimalL2 2-step reduced isotonic regression has its first step on the interval
[1 :4], while the optimal first step for the data starting at position 3 is the interval[3 :3], i.e.,4 = jmin(1, 2) 6≤
jmin(3, 2) = 3. Howevever, a critical observation in Haiminen et al. [5] isthat, given the pieces of anL2

unrestricted isotonic regression, the steps of an optimalL2 reduced isotonic regression can be formed by
merging the pieces. Each piece becomes a weighted point, where the value of the point is the mean of the
piece and the weight of the point is the total weight of the piece. In the above example, the data would be
represented by the 4 weighted points (5,3), (6,1), (9,1), (10,1), and the first step of a 2-step reduced isotonic
regression uses the first two pieces.

Their observation gives a simple algorithm: find the unrestricted isotonic regression, convert the pieces
to weighted points, and then find ab-step approximation of these isotonic points. Haiminen et al. used
Fisher’s algorithm to determine the optimalb-step reduced isotonic regression inΘ(n + bm2) time, but
Algorithms B and C provide faster solutions.

Theorem 3.1 Givenn weighted values(y,w) and number of stepsb, an optimalL2 b-step reduced isotonic
regression can be found inΘ(n+ bm logm) time via Algorithm B, and inΘ(n+ bm) time via Algorithm C,
wherem is the number of pieces in the unconstrainedL2 isotonic regression.�

Unfortunately, forp 6= 2 the optimal reduced isotonic regression might not be formedfrom pieces of
the unrestricted isotonic regression. For example, for unweighted values -10, -10, -10, 0, 0, 0, -10, -1, 7, 7,
7, 7, the uniqueL1 unrestricted isotonic regression has pieces[1 : 3], [4 : 8], and[9 : 12], with values -10,
0, 7, respectively. The unique optimal 2-step reduced isotonic regression has steps[1 : 7] and[8 : 12], with
values -10 and 7, which requires cleaving the middle piece. However, one can determine an approximation
by constructing an optimalb-step isotonic regression among those restricted to use unbroken pieces of the
unrestricted isotonic regression. By doing so, the problemis now similar to isotonic regression on isotonic
data. An algorithm using this approach to approximateL1 reduced isotonic regression appears in [7]. It is
more complicated than theL2 case since to determine medians one needs to retain the values in the original
pieces, rather than combining them into a single weighted value as can be done forL2.

For L∞ an optimalb-step reduced isotonic regression, and an optimalb-step approximation with no
isotonic restrictions, can be found inΘ(n+log n · b(1+ log n/b)) time [17]. The approaches used there are
quite different, unrelated to dynamic programming.

4 Final Comments

The thousands of citations to the books by Barlow et al. [3] and Robertson et al. [14] shows a significant
interest in isotonic regression. Further, this interest isgrowing as researchers seek to remove parametric
assumptions from their modeling. Similarly, step functions with a constraint on the number of steps arise
in a wide range of applications and guises [4, 6, 8, 9, 10, 11, 13, 19]. For reduced isotonic regression both
aspects are important [5, 15, 16], using a reduced number of steps to simplify the regression and/or prevent
overfitting.
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However, researchers used approximations, rather than theoptimal answer, due to the slowness of the
available algorithms. The fastest previous algorithm for optimalL2 b-step reduced isotonic regression takes
Θ(n+bm2) time [5], wherem is the number of pieces in the unconstrained isotonic regression. Algorithm B
reduces this toΘ(n+bm logm) time, and the somewhat more complicated Algorithm C furtherreduces this
to Θ(n + bm). Note that the minimal time for optimalb-step approximation, with no isotonic restrictions,
is a long-standing open question.

Fisher [4] called theb-step approximations “restricted homogenization”, and defined another form of
approximation that he called “unrestricted homogenization”: givenn weighted values(y,w) andb ∈ [1 :n],
partition the values intob subsetsPi, i ∈ [1 :b] and assign a valueCi to eachPi so as to minimize

b
∑

i=1

∑

j∈Pi

wj|yj − Ci|
2

among all such partitions. This is now known ask-means clusteringof 1-dimensional data, fork = b. He
noted it could be solved by sorting the values and then findingthe optimalb-step approximation, i.e., the
optimal b-step isotonic regression of the sorted data. Thus for 1-dimensional data Algorithm B solves the
k-means clustering problem inΘ(kn log n) time, and for sorted data Algorithm C reduces this toΘ(kn).

Finally, an interesting problem is that of selecting the most desirable number of steps. For reduced iso-
tonic regression, Schell and Singh [16], Strobl et al. [18] and Haiminen et al. [5] start with an unconstrained
isotonic regression and then repeatedly merge pieces untiltheir criteria are met. However, Haiminen et
al. showed that the regression error of their greedy approximation can be nearly twice that of the optimal
reduced isotonic regression with the same number of steps. They believe that 2 is an upper bound on the
relative error of their approximation, but that has not beenproven, nor have bounds been proven for other ap-
proximation schemes. Forb-step approximation, many researchers chooseb a priori based on considerations
such as storage or access time requirements. This seems to beespecially true in the database community,
whereL2 b-step approximations are known as “v-optimal histograms”.

In contrast, the dynamic programming approach generates optimal b-step reduced isotonic regressions
for each value ofb asb increases. One can stop when a criterion is met and always have an optimal result.
However, appropriate stopping criteria for a given application may be somewhat subtle since they would be
applied repeatedly.
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