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Abstract

Optimal designs are presented for experiments in which sampling is carried out in stages. There are two Bernoulli
populations and it is assumed that the outcomes of the previous stage are available before the sampling design for the
next stage is determined. At each stage, the design specifiesthe number of observations to be taken and the relative
proportion to be sampled from each population. Of particular interest are 2- and 3-stage designs.

To illustrate that the designs can be used for experiments ofuseful sample sizes, they are applied to estimation
and optimization problems. Results indicate that, for problems of moderate size, published asymptotic analyses do
not always represent the true behavior of the optimal stage sizes, and efficiency may be lost if the analytical results
are used instead of the true optimal allocation.

The exactly optimal few stage designs discussed here are generated computationally, and the examples presented
indicate the ease with which this approach can be used to solve problems that present analytical difficulties. The
algorithms described are flexible and provide for the accurate representation of important characteristics of the
problem.

Keywords: sequential analysis, dynamic programming, algorithms, clinical trials, two-stage, three-stage, experi-
mental design, group allocation, adaptive, sampling, bandit, product of means
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1 Introduction

It is well known that adaptive sampling or allocation, in which decisions are made based on accruing data, is more
efficient than fixed sample allocation, in which all decisions are made in advance. Allocating adaptively can reduce
costs or time, or improve the results for a given sample size.Fully sequential adaptive designs, in which one adjusts
after each observation, are the most powerful. However, they are rarely used, due to concerns over their design,
analysis, and implementation.

While advances in computing hardware and algorithms make iteasier to optimize and analyze certain fully
sequential designs, and while portable computers make themmore accessible, there are still difficulties with im-
plementation. Experimental responses may be too slow for a design requiring full updates prior to each allocation.
Further there may be set-up costs that dissuade individual allocations.

One way to address such concerns is to incorporate a restricted form of sequential allocation, in which decisions
are made in stages. The most common of these is a 2-stage experiment, in which an initial decision is made to
observe specified numbers from the various populations; andthen, once the results have been obtained, to make a
second and final decision as to how to sample in the last stage.Within each stage, updates are not required so the
impact of response delays is minimal.

Both 2- and 3-stage designs have received extensive analytical treatment, and the results typically indicate that
the designs are first- and second-order asymptotically optimal respectively. In particular there is a considerable body
of literature on 2- and 3-stage designs for obtaining fixed precision confidence intervals and for minimizing risk
functions when observational costs are incurred. (See for example Ghosh (1975) and Ghurye and Robbins (1954).)
A review of these types of sequential few-stage designs is provided in Ghosh, Mukhopadhyay and Sen (1997).



Despite the volume of this work, however, there doesn’t appear to be work in which attempts have been made
to fully optimizefew-stage designs. In particular, two features that we allow to vary freely in the designs described
here are the stage lengths and the proportions allocated from each population within each stage. Both sets of design
parameters (lengths and proportions) can be critical to theefficiency of a design. With regard to selecting stage
lengths as a function of total sample size or total expected sample size, we have found that published analyses are
quite vague except in limiting cases which may not be relevant in practice. With regard to how to allocate within
each stage, previously published few-stage designs are typically characterized by having equal allocation in the first
stage. We make no such restriction and provide examples illustrating that this assumption has the potential to be
arbitrarily damaging.

Figure 1: Schematic of a 3-Stage Design

Figure 1 illustrates the manner is which a 3-stage design might
flow. The two shades within the rectangles (the “stages”) represent the
different proportions sampled from each population withinthe stage.
So, in the first stage of Figure 1 we see that approximately1

3

rd
of the

observations are fromP1 and the rest are fromP2. In the second stage
there are two rectangles which represent a couple of the manyways one
could sample in the next stage. Note in particular that one rectangle is
shorter than the other, representing a shorter stage size.

The goals of this paper, which extend the work in Hardwick and
Stout (1995), are

• to provide efficient algorithms for determining optimal few-
stage designs,

• to motivate the use of such algorithms via a number of examples,

• to show how easily the base algorithm can be adjusted to handle
new design variations, and

• to compare the exact computational results with the analytical results that have appeared in the literature.

Definitions used in describing the algorithms are presentedin Section 2 and the base algorithms are introduced in
Section 3 and Appendix A.

In Section 4 we illustrate the range of our algorithms by applying them to several sample problems. We give
optimal solutions for four separate examples and compare our results with the previously best results that appearing
in the literature.

Among results of interest, we found that, for some of the problems examined, asymptotic results do not appear
to provide useful guidelines in practice. On the other hand,we found that some ad hoc approaches performed
remarkably well compared to optimal designs. Perhaps of more interest is the ease with which one can optimize
variations as long as the new problem fits roughly within the population model framework utilized here. Many
problems that might be extremely difficult or impossible to address analytically may be simple to optimize fully
with only minor alterations to the base algorithms described here. This benefit may encourage designers to utilize
models which more accurately reflect the important factors in the experiment, rather than choosing models which
are analytically tractable.

Many of our examples can be computed by programs more efficient than one would expect from the worst-case
scenarios used in the base algorithms. We address this in Appendix B. We also show how to incorporate new
constraints such as fixed stage sizes.

Finally, in Section 5, we discuss some extensions of this work and efforts to extrapolate exact optimizations for
moderate sample sizes to predict nearly optimal allocations for sample sizes larger than can be fully optimized.
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2 Definitions

k : number of stages

n : sample size,n ≥ k

si, fi : successes and failures onPi, i = 1, 2

si, fi : vectors denoting 1 success or failure onPi;
hence|si| = |fi| = 1

oi : number of new observations assigned toi

pi(s, o; v) : probability of s successes amongo ob-
servations onPi, starting at statev

R∗
t (v) : value of startingt-stage experiment,

1 ≤ t ≤ k, at statev and proceeding optimally
(R∗

0(v) is the objective function)

Rt(o1, o2; v) : value of startingt-stage experiment
at statev, assigningoi observations toPi, and
proceeding optimally.

Lji : number of observations onPi in stagej.

Lj : number of observations in stagej, i.e.,
Lj = Lj1 + Lj2.

Figure 2: Notation

With the exception of Sections 4.2 and Appendix B, we
assume that the total sample size of the experiment,n, is
fixed. This assumption is used merely to simplify descrip-
tions and comparisons, and, as Section 4.2 shows, one can
modify our algorithms to handle cases where the sample
size is random but bounded. There are two independent
Bernoulli populations,P1 andP2. We use a Bayesian ap-
proach, in which the success parameters of the two pop-
ulations have independent distributions. (In all of our ex-
amples these distributions are beta, but our work applies to
general distributions.) Thus, at any given point one can de-
termine the probability that the next observation on a given
population will be a success. Suppose that at some point
in time we have observedsi successes andfi failures on
Pi. Then the vector(s1, f1, s2, f2) is a sufficient statistic,
and forms a natural index for the state space describing the
experiment. States, denoted asv, will be treated as vectors
so that one can add observations in a natural manner.

We are interested ink-stage designs in whichk is
small. In a 1-stage design, the only decision required is
the number of observations to sample fromP1, as all re-
maining observations are sampled fromP2. If k > 1, one
determines how many observations to take fromP1 and
P2 in stage 1. These are denoted asL11 andL12 respec-
tively, and the total number of observations in stage 1 is
denoted byL1, whereL1 = L11 + L12. Once the initial
observations have been obtained, one is left with a(k − 1)-stage experiment of sizen − L1, where the priors have
been updated to include the initial observations. Without loss of generality, we require that each stage have at least
one observation, sok ≤ n. Our algorithms are correct for all suchk andn, but our analyses assumek ≪ n since
that is the case of interest. If, for example,k = n, then the problem is fully sequential and simpler approaches could
be used.

There is an objective functionR∗
0(v) that is the value of each final statev (i.e., states for which|v| := s1 + f1 +

s2 + f2 = n), and the goal is to minimize the expected value ofR∗
0. Thevalue of allocationA is the sum, over all

final statesv, of R∗
0(v) times the probability ofA reachingv. An optimalk-stage allocationis ak-stage allocation

that achieves the minimum value among allk-stage allocations. The only restriction on the objective function is the
requirement that it can be determined by knowing only the final state reached and the prior distributions.

To describe the time and space requirements of algorithms, we use “generalized O-notation” from computer
science, in which O and o have the same meanings as in statistical use; and in which we say a functionf(n) =
Θ(g(n)) if there exist positive constantsC, D, N such thatCg(n) ≤ f(n) ≤ Dg(n) for all n ≥ N . Notation used
in the remainder of the paper are displayed in Figure 2.

3 Optimal Few-Stage Allocation

The starting point for our algorithms is the simple version given in Figure 3. It proceeds in a typical dynamic
programming fashion, from the end of the experiment towardsits beginning. In a fully sequential allocation, dynamic
programming usually proceeds by analyzing all states with|v| = n, then all states with|v| = n − 1, and so on until
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one reaches state(0, 0, 0, 0). {Evaluate last (kth) stage}
For all statesv with k − 1 ≤ |v| ≤ n − 1,

R∗
1(v) = min

o1+o2=n−|v|
R1(o1, o2; v)

{Evaluate middle stages}
For t = 2 to k − 1

For all statesv with k − t ≤ |v| ≤ n − t,
R∗

t (v) = min
1≤o1+o2≤n−|v|−t+1

Rt(o1, o2; v)

{Evaluate initial stage}
R∗

k(0) = min
1≤o1+o2≤n−k+1

Rk(o1, o2; 0)

Figure 3: Simple Few-stage Algorithm

A similar scheme is used here, but there is an additional
implicit part of the state space, namely, the number of stages
so far. The number of stages, as opposed to the number of ob-
servations, is not part of the sufficient statistics, but is acrucial
part of the dynamic programming. It controls the outermost
loop level, ranging from the last stage towards the first.

The equations in the loops determine the best continuation
at any stage and state by taking the minimum over all possible
options. In other words,

R∗
t (v) = min{Rt(o1, o2; v) : o1, o2 legal}.

“Legal” values are determined by the constraints that thereare
t stages remaining, each of which must have at least one ob-
servation, that|v| observations have already occurred, and that
there will be a total ofn observations. Thus, the legal values ofo1 ando2 are those such that

1 ≤ o1 + o2 ≤ n − |v| − t + 1 if t > 1 and o1 + o2 = n − |v| if t = 1

For each stage, one proceeds through the entire range of states. However, the evaluation at each state is more complex
than in the fully sequential case. In fully sequential designs, there are only two options that need to be evaluated
(sample either fromP1 or P2), and each of these involves only two successor states. Thus, one can evaluate each
state inΘ(1) time, and complete the design inΘ(n4) time (since there areΘ(n4) states).

For the few-stage problem, however, there are many options at each stage. In the general case, one must decide
the number of observations allocated toP1 amdP2, creatingO(n2) options. Further, to evaluateRt(o1, o2; v) one
must considerO(n2) outcomes:

Rt(o1, o2; v) =
o1∑

s′
1
=0

o2∑

s′
2
=0

p1(s
′
1, o1; v) p2(s

′
2, o2; v) · R∗

t−1(v + (s′1, o1−s′1, s
′
2, o2−s′2)),

wherepi(s, o; v) is the probability of observings successes amongo observations onPi, if one started at statev.
Thus, if straightforward implementations are used, it takes O(n2) time to evaluateRt(o1, o2; v); O(n4) time to
evaluateRt(v) for each statev; andΘ(n8) time to evaluate the entire stage over allΘ(n4) states. Thus the total time
for all stages, using a straightforward implementation of dynamic programming as in Figure 3, would beΘ(kn8).
The space required would beΘ(n4), since all of the results of each stage are needed to compute the preceding one.

In these analyses, and throughout the paper, there is an implicit assumption that one can compute all of the
valuespi(s

′
i, oi; v) in time no more than the number of states involved, using space no more than the number of

states involved. Similar assumptions are made concerning the terminal cost functionR∗
0(v).

In Appendix A it is shown that the number of calculations can be dramatically reduced. Utilizing that work gives
the following:

Theorem 3.1 The optimalk-stage allocation for an experiment ofn observations from 2 Bernoulli populations can
be determined in

• Θ(n3) time andΘ(1) space, ifk = 1,

• Θ(n5) time andΘ(n3) space, ifk = 2,

• Θ(kn6) time andΘ(n4) space, ifk ≥ 3. 2

4



The above is the worst case scenario that will work for any few-stage problem. Often, there are features of the
problem that allow us to design a more efficient algorithm. Infact, all of the examples that we consider in Section 4
have characteristics that allowed for faster algorithms. In Appendix B, we discuss ways to improve upon this base
result when special design constraints are encountered.

4 Examples and Applications

The few-stage optimization algorithm is applicable to a wide range of problems. We have chosen the particular ex-
amples in this section because they are ones for which prior asymptotic or approximate analyses provide a framework
for comparison.

4.1 2-Stage Bandit

We begin with a 2-stagetwo-armed banditexample, a problem with a large legacy of associated literature. In
a bandit problem the goal is to maximize the total reward obtained when sampling sequentially from among the
different available populations or “arms”. A Bernoulli bandit is one in which the outcomes from the populations are
distributed as Bernoulli random variables which can be thought of as having outcomes “success” or “failure”. In this
case, one seeks to determine how to sample from the differentarms so as to maximize the total number of successes.
(Thus the “min” of Section 3 should be a “max”.) A two-armed Bernoulli bandit can be a model for a two therapy
clinical trial in which one is strongly motivated to cure as many of the subjects in the experiment as possible.

A heuristic for optimizing such a problem is to sample at least some from each population, but to identify the
better of the two as quickly as possible and then to sample from it exclusively. This brings us to early concep-
tualizations of 2-stage designs for clinical trials such asthose proposed by Colton (1965). Colton suggested that
observations be taken in pairs during the first stage and thatall observations in the second stage be sampled from
the population that was apparently superior after the first stage. At issue was the length of the first stage size,L1,
which depends not only on the total sample size,n, but also, for Bayesian designs, on the prior distributions. Canner
(1970) addresses optimal first stage lengths for the Bayesian case. He analytically determined that, when uniform
priors are assumed, the optimal first stage size is approximately

√
2n + 4− 2. Computationally, he ascertained that,

for arbitrary beta priors, the optimal first stage asymptotically grows as the square root ofn. Note that the scenarios
considered in both Colton (1965) and Canner (1970) are not true bandit set-ups since equal allocation in the first
stage is mandatory. The restriction greatly simplifies the analysis and computation, but causes a loss of efficiency.

A staged1-armedbandit version of this problem was later approached by Clayton and Witmer (1988). For the
1-armed bandit, the success rate for one of the two populations is assumed known. While this assumption greatly
restricts the applicability of the result, the solution is significantly simpler. In 1996, Cheng reported on a 2-stage
two-armed Bayesian Bernoulli bandit in which the apparently better population is sampled from exclusively in the
second stage (unless there are ties). She provides an upper bound for the number to sample fromP1 andP2 during
the first stage when a total ofn observations are to be taken and the prior distributions arebeta.

Here, we fully optimize the problem examined by Cheng (1996). Note that, due to the simplified second stage,
the time required to compute this optimal 2-stage allocation and its value is reduced fromΘ(n5) in Theorem 3.1 to
Θ(n4). Figure 4 provides a comparison of first stage sizes determined by

• the upper bound given in Cheng (1996);

• the optimal 2-stage design constrained to using equal allocation in the first stage, i.e., the case solved in Canner
(1970);

• the fully optimized version computed using the algorithms described in Section 3.

The data in the figure arise from using beta prior parametersp1 ∼ Be(2, 1) andp2 ∼ Be(1.5, 1.5), which is the
configuration used in Section 3 of Cheng (1996). Figure 4 illustrates that the stage sizes obtained from the bounds
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in Cheng (1996) suggest a first stage size that is considerably larger than is needed. In fact, it is interesting to note
thatL1, the number used in stage one when sampling optimally, is quite a bit smaller thanL11, the number assigned
merely toP1 of stage one by the upper bound rule. The optimal equal allocation procedure, however, selects first
stage sizes that are very similar to those called for by the optimal rule. The results in Figure 4 are typical of those
obtained using a variety of different prior parameter configurations. In Figure 5, the relative efficiencies of the
values of the upper bound and optimal equal allocation rulesare shown. The efficiencies are taken relative to the the
optimal 2-stage strategy for this problem. Note that the results are better when using optimal equal allocation than
when using the upper bound rule. Note also how well the optimal equal allocation procedure performs compared to
the fully optimal strategy for this problem. The best equal allocation strategy was computationally determined by
Canner in 1970. Thus, for all practical purposes, an excellent solution to versions of this problem were given nearly
30 years ago. Even so, one couldn’t ascertain this without having the fully optimal procedure.

Another point to consider is that, while the calculations toobtain optimal stage sizes for the present problem is
quite trivial, good analytic solutions for the problem are still being sought a generation later. For example, Cheng,
Su and Berry (1998) give a bound that improves on the one in Cheng (1996).

4.2 2-Stage Bandit with Cost and Random Total Sample Size

In this section, we address extensions of the example in Section 4.1 in which we allow the total sample size,n, to
be a random variable, and we add a costc per observation for the first stage. This illustrates the fact that variations
such as optional stopping are not difficult to incorporate into the basic few-stage algorithms in Section 3.

When a basic two-stage procedure is applied in a clinical setting, the first stage is thought to represent a controlled
clinical trial. The end result the first stage affects the decision as to which of the two treatments is superior and is to
be used in the second stage. Whether the second stage is of fixed or random length, it affects the total length of the
trial, and there are important questions that involve triallength. In particular, there has been considerable discussion
in the literature addressing the tradeoff relationship between the length of a clinical trial and the patient horizon (i.e.,
all patients who will need treatment). (See Anscombe (1963), Armitage (1985), Bather (1985), Colton (1965), and
Simon (1977).) For example, it has been pointed out that the total sample size of a trial could/should incorporate
rough estimates of the patient horizon, the rate of introduction of new therapies, the magnitude of the anticipated
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improvement in the ongoing trial and so forth.
Clearly, there are numerous ways to model the such concerns and the model chosen here is simply an illustration.

First suppose that an investigator believes that if the besttherapy has a low success rate, then new therapies are likely
to be proposed at a faster rate than they would be if the present therapy is already quite good. One can model
this simply by assuming that the patient horizon is an increasing function of the success probability of the superior
treatment.

0 1 2 3 4 5

Cost per Observation

0

10

20

30

40

50

60

Le
ng

th
 o

f S
ta

ge
 1

Be(1,1); Be(1,4)
Be(1,1); Be(1,1)

2-AB with Cost: Length 1 of 2-Stage vs. Cost
n1=100 & n2=500

Figure 6: 2-Stage 2-Armed Bandit with Cost per Observa-
tion and Variable Sample Size

Let the total length of the trial,n, range between
two specified valuesn1 ≤ n2, and define the patient
horizon to ben(p∗) = n1+p∗(n2−n1), wherep∗ de-
notes the posterior estimate of the treatment declared
superior. (Note that this imposes a debatable upper
bound on the horizon for this problem.) Then, the re-
ward function to be optimized is

E [ p1 ·L11+p2 ·L12−c ·L1+p∗ ·(n(p∗)−L1) ], (1)

where p∗ = p∗(L1) = max{ p̂1(L11), p̂2(L12)},
and p̂i(L1i) denotes the posterior estimate ofpi, i =
1, 2 based onL1i observations. Note that the reward
function is quadratic inp∗. The expectation in (1) is
taken with respect to the Bayesian model in whichp1

and p2 are independent random variables and, con-
ditional on this, the experimental observations are
Bernoulli random variables with success ratesp1 or
p2. Although even this simple model may pose inter-
esting analytical challenges, it is quite straightforward
to optimize computationally.

We tested this model for several parameter con-
figurations. In Figure 6, one sees the exponential-like decay in L1, the length of the first stage, as the cost per
observation in the first stage increases from 0 to 5. Figure 6 provides a comparison of this behavior for two prior
parameter configurations givenn1 = 100 andn2 = 500 in each case. Using uniform priors, we find thatL1 varies
from 4 to 38. There is a corresponding (unshown) variation inE[n], the expected total sample size, which varies
from 349 to 363. In the second case, we take the priors to beBe(1, 1) andBe(1, 4). Here, the range ofL1 is larger,
2 ≤ L1 ≤ 60, and the range of the sample size varies from 300 to 310. In both cases, most of the drop in sample
size occurs when the cost per observation is between0 and1.

These results were for a specific model, but many other modelscan be optimized with similar ease. In particular,
the program used to determine the above results is suitable for any model in which the expected patient horizon is
determined by the endpoint of the initial stage. One can alsoeasily add costs and variable patient horizons to designs
with more stages.

4.3 2- and 3-Stage Nonlinear Estimation

In Sections 4.1 and 4.2, we discussed a 2-stage model in whichthe allocations within the second stage have a trivial
form, i.e., all observations in the second stage are taken from a single population. Here we evaluate a 2-stage design
that takes better advantage of the few-stage algorithm in Figure 3 to adjust the allocation proportions in the second
stage as well as in the first.

The problem we consider is that of minimizing the mean squared error when estimating the product of the
success probabilities of two independent Bernoulli populations. Here again, the success probabilities are modeled
as independent beta random variables. This problem has applications in systems reliability and also in estimating
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area. Note that in nonlinear problems of this nature, it is typically the case that when sampling equally from the two
populations one loses considerable efficiency. If, however, one samples differentially, using merely an optimal 1-
stage design, then the efficiency can be substantially increased and will continue to increase as the number of stages
grows. Several good allocation strategies for versions of the product of means problem have been discussed by Page
(1985, 1990, 1995). Also, for the more general problem of estimating any polynomial function of two means, a
variety of allocation rules, including the best fixed allocation rule, are compared with the optimal fully sequential
strategy in Hardwick and Stout (1996).

While 2-stage sampling rules are not evaluated in Hardwick and Stout (1996), asymptotic solutions for the 2-
stage product of means problem have been proposed in Noble (1990), Rekab (1992) and Zheng, Seila and Sriram
(1995). In this section, we discuss how the optimal 2-stage procedure relates to the asymptotics suggested by these
authors.

Rekab (1992) proposes that the length of the first stage,L1, be such that

lim
n→∞

L1

n
= 0 and lim

n→∞
L1 = ∞.

This suggestion concurs with the literature on 2-stage designs but is of scant use in determining an optimal or
necessarily goodL1 for any specificn. Further, it does not predict the order of growth.

More specific asymptotic guidelines were suggested in Noble(1990) and Zheng, Seila and Sriram (1995). In
both articles, the authors take a frequentist approach. Ourown formulation is Bayesian, so exact comparisons are not
appropriate. However, for moderaten, the design in which both prior distributions are taken to beuniform provides
an acceptable basis for comparison.

Noble indicates that the rate of growth of the first stage in a 2-stage design for this problem should beΘ(
√

n)
with upper and lower bounds given by

√
n

4σ1σ2

≤ L1 ≤
√

n

2σ1σ2

(2)

for σi = pi(1 − pi), i = 1, 2. Applying these bounds, we find, for example, that whenn = 100,

if p1 = p2 =





.25, then(12 ≤ L1 ≤ 16)

.5, then(10 ≤ L1 ≤ 14)

.9, then(16 ≤ L1 ≤ 24).

Later, Zheng, Seila and Sriram (1995) provided an approximation that suggests thatL1 = 2nα for α in the range
(.5, (1 − ln(2)/ ln(n)), i.e.,2

√
n < L1 < n.

In Figure 7, the optimal size first stage length for the uniform case is plotted for sample sizes ranging from 10
through 1000. These stage lengths closely follow the linelog10(L1) = −0.016 + 0.817 log10(n). For this range of
sample sizes, then, the optimal stage size grows likeΘ(n0.817).

These optimal solutions were first reported in Hardwick and Stout (1995). However, independently, Zheng, Seila
and Sriram (1995), used simulation to search for a value ofα that minimized their approximated mean-squared error.
They concluded that a good value forα is 0.8− (ln 2/(2 ln n), i.e., thatL1 =

√
2n0.8. Forn = 100, this gives a first

stage length ofL1 = 56.
In the uniform case, we find that the optimal first stage size isL1 = 42, a value significantly larger than Noble’s

approximations and somewhat less than that of Zheng, Seila and Sriram. Note, however, that Noble’s final estimator
does not use information from the first stage, which partially accounts for his suggestion of shorter first stages.

In Figure 8 we have plotted the efficiency of the optimal 1-, 2-and 3-stage designs for this problem as a function
of the total sample size,n. We know of no published guidelines for the selection of stage sizes for three stage
allocation. In Figure 8, efficiency is measured relative to the optimal fully sequential design. One can see that even
the optimal 1-stage design (also known as thebest fixed design) is not terribly inefficient. It’s also of interest to note
how extremely efficient both the 2- and 3-stage designs are. The difference in efficiency between the two designs
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is minimal provided that one uses reasonable prior parameter specifications forp1 andp2. As we see in the next
section, there do, however, exist situations in which optimal 2-stage designs fare much worse than optimal 3-stage
designs.

Finally, Figure 9 shows the length of the optimal second stage as a result of the outcome of the first stage, where
the total sample size is 100 and uniform priors are used. Notethat the optimal second stage does not have a constant
length, and has non-monotonic behavior.

2nd Stage Length of 3-Stage Design
Uniform Priors; n=100

Figure 9: Product of Means, 1st Stage Allocation is 15 for each population
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4.4 3-Stage Estimation with Ethical Cost

As noted, the literature on multi-stage designs is not rife with detailed examples of 3-stage allocation procedures.
Typically there are critical design features left unspecified. With the present example, we review the issues most
often addressed in the classical literature on 3-stage designs and relate them to the capabilities of the algorithms
described in Section 3.

The focus here is on an estimation problem from Woodroofe andHardwick (1991), in which one seeks to
minimize the risk of estimating the difference in two population means using a weighted squared error loss plus a
cost per failure. The specific function to be minimized is

n2(p1 − p2 − (p̃1 − p̃2))
2 + n1(1 − p1) + n2(1 − p2),

wherep̃i is a consistent estimator ofpi, i = 1, 2, andni is the number of observations onPi. Problems of this
nature arise, for example, in clinical trials with ethical costs or in destructive industrial testing. In Woodroofe and
Hardwick (1991) the observations in the two populations arenormally distributed. However, the analytic arguments
are essentially the same for the binomial case. This articleis of interest because it is among the very few that provide
guidelines for the stage sizes of an asymptotically optimal3-stage design. Thus we have a basis for comparison.
Note also that the approach to the estimation problem in Woodroofe and Hardwick (1991) is quasi-Bayesian. While
the sequential designs are generated via a Bayesian decision theoretic approach, the allocation rules themselves, as
well as the estimators, are independent of the prior distributions used in the analysis of the integrated risk function
as long as the priors fall within a fairly broad general class.

We next describe the allocation procedures used in Woodroofe and Hardwick (1991). Letn∗
1(n; p1, p2) be the

sample size fromP1 that minimizes the risk function whenn is to be the total sample size andp1 andp2 are known.
That is, if p1 andp2 were known, then the optimal 1-stage design would be to allocaten∗

1(n; p1, p2) to P1, and
n − n∗

1(n; p1, p2) to P2. Next, let p̂i(m) be the maximum likelihood estimator forpi whenm observations have
been taken fromPi, i = 1, 2.

These allocation procedures make use of two positive integer sequences,L1(n) andL3(n), n ≥ 5, which specify
the lengths of stage 1 and 3, respectively, for a sample size of n. LettingL2(n) = n− L1(n)− L3(n) be the length
of the second stage, these sequences can be arbitrary as longas they satisfy

L1(n) + L3(n) < n; L1(n), L3(n) are even; lim
n→∞

L2(n)

n
= 1; lim

n→∞

√
L1(n)L3(n)

n log n
= ∞ (3)

To simplify notation, we writeLi = Li(n), i = 1, 2, 3. Recall thatLij is the number sampled during Stagei from
Pj .

The sampling goes as follows:

Stage 1:SampleL1

2
from each population (soL11 = L12 = L1

2
).

Stage 2:SampleL21 more fromP1 andL22 more fromP2, where

L11 + L21 = min

{
n − L12 − L3,max{L11, n∗

1(L1 + L2; p̂1(L11), p̂2(L12)}
}

(4)

andL22 = n − L1 − L3 − L21.

Stage 3:SampleL31 more fromP1 andL32 more fromP2, where

L11 + L21 + L31 =min

{
n − L12 + L22, max{L11 + L21, n

∗
1(n; p̂1(L11 + L21), p̂2(L12 + L22)}

}
(5)

andL32 = n − L1 − L2 − L31.

We refer to the Bernoulli version of the 3-stage procedures described in Woodroofe and Hardwick (1991) as WH
procedures. The WH procedures use a fairly standard technique for determining allocations. The concept applies to
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both few-stage and fully sequential designs in which optimal 1-stage allocations can be derived as long as certain
parameters are specified. (See for example Melfi and Page (1998) and Robbins, Simons and Starr (1967).) The
idea is simply to determine the optimal 1-stage allocation using estimators of the unknown parameters, updating the
estimators before each new allocation decision is made. Given the decision about the best allocation to be used for
the entire experiment, one subtracts the allocations that have already occurred to determine the allocation(s) now to
be made. If the estimators are consistent, this sequential process is generally good enough to guarantee asymptotic
optimality.

Of interest here are the performance differences between WHprocedures and fully optimized 3-stage procedures.
Note first of all that WH procedures require equal allocationin the first stage. This can substantially reduce the
efficiency of a design when there is a large discrepancy between the population success rates. Next, note that WH
procedures are actually a class of procedures, and that one must choose a member of the class by selecting the
stage sizes for the experiment in advance. The only information we have to help us do this is provided in (3), and
this means that the efficiency of these procedures can vary from being highly efficient to being not very good. To
gain a better understanding of how these designs vary in practice, we developed an algorithm to optimize the WH
procedures and to evaluate them for arbitrary stage sizes tobe input by the user.

In general, we found that optimal WH procedures perform verywell compared with optimal 3-stage procedures.
Still, without the algorithm that provides an optimal WH procedure, one may have difficulty determining appropriate
stage sizes using only the information in (3). Furthermore,one would not be able to assess the efficiency of any WH
procedure if one could not determine the fully optimal 3-stage procedure.

Design Type L1 E(L2) E(L3) Efficiency
Optimal 3-Stage 33 4 13 0.9994
Optimal WH 6 40 4 0.9990
Optimal 2-Stage 38 12 – 0.997
WH using guess 34 4 12 0.790

Figure 10: Efficiency of Designs Compared to Fully Se-
quential Design.p1 ∼ Be(1, 10); p2 ∼ Be(10, 1) and
n = 50

As an example, consider a case in which there is
significant disparity between the prior estimates of the
population success probabilitiesp1 and p2. Figure 10
displays the stage sizes of four different designs for the
case in whichn = 50 and the beta prior parameters are
p1 ∼ Be(1, 10) andp2 ∼ Be(10, 1). The last column
of Figure 10 gives the efficiency,e, of each design taken
relative to an optimal fully sequential design. As ex-
pected, the fully optimal 3-stage procedure is virtually
fully efficient with e = 0.9994. The optimal WH pro-
cedure, which specifies very different stage sizes, is also
extremely good withe = 0.9990. Note, however that if
we use a WH procedure guided by, say, the stage sizes
used in the optimal 3-stage procedure, we obtain an ef-
ficiency of only e = 0.790. As it happens, even a good 2-stage procedure outperforms a WH procedure based
on guessing the stage sizes using only (3). In particular, the optimal 2-stage procedure for this problem is 0.997
efficient.

Despite the results from the previous example, WH procedures generally seem to be quite robust with respect
to departures from the optimal WH stage sizes. This suggeststhat the way the allocations are adapted within the
second and third stages may be more important than the actualstage lengths themselves. Another point of interest
is that WH procedures don’t depend on information in the prior distributions. In one sense this is positive because
it allows for the intended frequentist interpretations of the data. It also suggests robustness if one takes a Bayesian
interpretation. Recall, however, that this type of built-in robustness leads only to asymptotic optimality. As we
saw in the previous example, where the priors were discrepant, the lack of inclusion of prior information in the
determination of the sampling strategy had the potential toseriously reduce design efficiency. On the other hand, if
the priors forp1 andp2 are approximately the same, then most WH procedures will be highly efficient since equal
allocation itself is nearly optimal.

To provide some insight as to how big optimal stage sizes for this problem are, Figure 11 givesL1(n), E [L2(n)]
andE [L3(n)] for sample sizes ranging between 10 and 100. Uniform priors are used. Note that, as was seen in
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Figure 11: Optimal Stage Sizes in 3-Stage Experiment, Uniform Priors

Section 4.3, the optimal Stage 1 sizes are generally larger than those suggested in the literature, whereas for the
problem in Section 4.1, we found that optimal Stage 1 sizes were far smaller than suggested in the literature. There
doesn’t appear to be a general rule, and this emphasizes the need to be able to calculate optimal stage sizes for
various different procedures.

5 Final Remarks

We have shown that it is possible to fully optimize few-stageallocation designs for useful sample sizes. Further,
the results of these optimizations indicate that asymptotic guidelines may be quite misleading for reasonable sample
sizes, and may not even predict true growth rates. These results, which we found unexpectedly, are not likely to have
been uncovered without the ability to perform exact calculations for sample sizes of interest.

The few-stage algorithms developed here can be applied to a wide variety of problems, with flexible optimization
goals, stopping rules, etc. Additional points being pursued include sensitivity analysis of few-stage rules, handling
multiple populations, modeling censoring, allowing multiple endpoints, allowing additional constraints, and incor-
porating covariates.

As part of an ongoing project, we are using the algorithms given here, combined with graphical approaches,
to visualize aspects of the optimal rules. We hope to achievea better understanding of the structure of few-stage
optimal rules; and, more generally, to gain insight into thestructure of good adaptive rules. There are both practical
and statistical reasons for this effort. Investigators areoften uncomfortable utilizing adaptive allocation schemes for
which they have no intuition, such as those described here that are optimized by a computer. Users have a better
understanding of, and greater affinity for, simple fixed allocation schemes. However, if a user could explore an
adaptive design and gain a better understanding of the decisions it makes, then they might gain enough confidence
to utilize the design.

As for the statistical aspects, we believe that exploring adaptive rules for moderate sample sizes can help suggest
analyses and designs for much larger sizes. Thus, we hope fora synergistic interplay between analysis, computation,
and visualization. For example, for the product of means problem, plots of the efficiency of a 2-stage rule as
a function ofL11 and L21 show that this is usually, although not always, a unimodal surface (Beta priors with
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parameters less than 1, for example, can cause it to be multimodal). In cases where one could prove a priori that it
is unimodal, one could drastically reduce the number of calculations needed for the optimal first stage, and hence
could optimize far larger problems.

As another example, the data in Figures 7 and 11 suggest explicit growth rates that are consistent through a wide
range of sample sizes. This leads one to consider approaching problems with large sample sizes by extrapolating
the optimal allocations computed for moderate sample sizes, perhaps coupled with hill-climbing approaches, as in
preceding paragraph, to improve the initial extrapolation. Thus explicit constructions, rather than vague guidelines,
are obtained for producing near-optimal allocation schemes. We are presently pursuing this approach. Extrapolation
techniques can compliment analytical approaches to give better insight and guidance for large problems.
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A Basic Algorithm

The algorithm shown in 3 is relatively straightforward, butrequires excessive time and space. Its requirements make
it impractical for useful sample sizes, so to achieve exact optimizations and evaluations one needs to rearrange the
calculations to eliminate redundancy and maximize reuse ofspace.

A.1 Time/Space Reductions

To reduce the time per stage, one reuses calculations among the states. To do so, note that at any statev,

for o1 ≥ 1 : Rt(o1, o2; v) = p1(1, 1; v) · Rt(o1−1, o2; v+s1) + p1(0, 1; v) · Rt(o1−1, o2; v+f1),

for o2 ≥ 1 : Rt(o1, o2; v) = p2(1, 1; v) · Rt(o1, o2−1; v+s2) + p2(0, 1; v) · Rt(o1, o2−1; v+f2).

Thus, if one computes and storesRt(o1, o2; v) for all o1, o2, andv, there is a natural way to reduce the calculation
time toΘ(n6) per stage. First, compute the values for all statesv with |v| = n, then compute them for all states with
|v| = n− 1, and so on. Since there areΘ(n6) options to be evaluated, this time is optimal unless one can determine
that not all options need be evaluated.

However, if one proceeds in this way, the space requirementswould also beΘ(n6), and even the common trick
of writing values for|v| = m on top of the values originally stored for|v| = m + 1 would only reduce the space
to Θ(n5). To reduce space toΘ(n4), the calculation order can be rearranged to that given in Figure 12. Using
this order, one need only store arrays corresponding toR∗

t (·), Rt(o1, 0; ·) for a fixed value ofo1, andRt(o1, o2; ·)
for fixed values ofo1 ando2. Rt(o1, 0; ·) is written on top ofRt(o1−1, 0; ·), andRt(o1, o2; ·) is written on top of
Rt(o1, o2−1; ·).

Note that one must also keep track of the values ofo1 ando2 for which the minimumR∗
t (v) is obtained. This

requires a constant amount of storage per state, and hence anextraΘ(n4) space per stage.
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A.2 Final and Initial Stages {determine optimal decisions for staget}
for all statesv with k − 1 + 1 ≤ |v| ≤ n − t − 1,

initialize R∗
t (v) = ∞

for all t end in k − t + 1, . . . , n − t + 1
for o1 = 0 to t end − k + t

for all statesv with |v| = st end − o1

if o1 6= 0 then
computeRt(o1, 0; v) usingRt(o1−1, 0; ·)
R∗

t (v) = min{R∗
t (v), Rt(o1, 0; v)}

else{o1 = 0}
Rt(0, 0, v) = R∗

t−1(v)
for o2 = 1 to t end − k + t − o1

for all states with|v| = t end − o1 − o2

computeRt(o1, o2; v) usingRt(o1, o2−1; ·)
R∗

t (v) = min{R∗
t (v), Rt(o1, o2; v)}

Figure 12: Improved Mid-stage Evaluation Order

The final stage is simpler than the general case, since
the stage length is fixed and the problem of determin-
ing the optimal final allocation from a given state is
the well-known optimal fixed-allocation problem with
a fixed sample size. This can often be algebraically
simplified to take onlyΘ(1) time per state, orΘ(n4)

overall, a point which is pursued in Appendix B. For
those cases where no algebraic simplification is possi-
ble, the ordering in Figure 12 can be used to keep the
time atΘ(n5).

The initial stage is also simpler than the mid-
stages since evaluation is required only at state
(0, 0, 0, 0). Thus the straightforward implementation
takes onlyΘ(n4) time. If there is only a single stage,
then there are onlyΘ(n) options, needingΘ(n3) total
time.

Using these reductions gives the results in Theo-
rem 3.1. All of the results follow directly from the
above algorithms and observations, with the possible exception of the space analysis fork ≥ 3. In the preceding
comments, it may have seemed that an array of sizeΘ(n4) was needed for each intermediate stage. However, since
each stage is evaluated using only the results from the preceding stage, one never needs more than 2 such arrays at
any one time. Hence one can alternate back and forth between two arrays, so that the space does not increase withk.

While the space required to determine the optimal design does not continue to grow fork ≥ 3, additional space
may be needed to store the decisions of the optimal design, sothat it can be implemented or some post analysis can
be performed. It is a common occurrence in dynamic programming that storing the decisions increases the space,
because they cannot be written on top of each other. One may assume that one needs to store only one decision per
state, which would imply that onlyΘ(n4) space is needed, but fork ≥ 4, there is the possibility that a given state
could be reached at the end of more than one stage, and hence one would need to know how to optimally proceed
for each different stage. While this does not normally occur, we have not been able to rule out the possibility, and
hence the space may increase toΘ(kn4). One can easily utilize disk storage for the decisions, since they are not
referenced in the algorithm.

B Algorithmic Refinements

The base algorithm in Section 3 is quite general, and assumesno special properties of the objective function nor of
the prior distributions. The algorithm also allows for arbitrary allocation within thek-stage constraint. However,
in many situations significant simplifications are possible, and these may dramatically reduce the time or space
required. Some of these are explored in this section. Then, in Appendix B.3, we give an example of a design
restriction that complicates rather than simplifies the algorithm’s complexity.

B.1 Analytical 1-stage Determination

One common simplification arises when extra information is available about the optimal 1-stage allocation. For
example, for a specific allocation, it may be possible to analytically determine its value, instead of explicitly summing
over all of the possible outcomes. Even better, one may be able to analytically determine the value and form of the
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optimal 1-stage design, instead of trying all possible allocations. Another special scenario is when it is known that
the last stage must sample from a single arm: if the value can be determined analytically then it is a special case of
the above, while otherwise there are further improvements possible. All of these simplify the optimization of 1- and
2-stage designs, although there is no improvement for designs of 3 or more stages.

We assume that each of these analytic calculations can be computed in a fixed amount of time, independent
of n. Incorporating such simplifications into the final stage calculations of the base algorithm yields the following
reductions. For three or more stages no reductions occur.

Theorem B.1 The optimalk-stage allocation for an experiment ofn observations of two Bernoulli populations can
be determined in

Θ(1) time andΘ(1) space, ifk = 1 and Θ(n4) time andΘ(1) space, ifk = 2.

if the optimal final stage allocation is given by an analytic expression.
If the value of any specific final allocation is given by an analytic expression, but it is not known how to analyti-

cally select the best, then the optimal allocation can be determined in

Θ(n) time andΘ(1) space, ifk = 1 and Θ(n5) time andΘ(1) space, ifk = 2.

If it is known that the final stage must sample from a single population, but it is not known how to analytically
evaluate the final stage, then the optimal allocation can be determined in

Θ(n) time andΘ(1) space, ifk = 1 and Θ(n4) time andΘ(n3) space, ifk = 2.

Proof: The time and space changes from Theorem 3.1 are quite straightforward fork = 1. For k = 2, in the first
case one merely needs to evaluate allΘ(n2) possible allocations for the first stage, takingO(n2) time per allocation
to evaluate allO(n2) possible outcomes. In the second case it will take an extraO(n) time per outcome. In both
cases, no special efforts are needed to reuse calculations,so no extra space is needed to store intermediate results.

For the third case, withk = 2, for each levelm one can determine the value of the final stage allocating all to
population 1, and the value of allocating all to population 2, from these values for levelm + 1. These can then be
used to determine all first stage allocations of sizem. 2

Note that such simplifications were utilized in the calculations for the examples in Sections 4.1, 4.2 and 4.3.
In Sections 4.1 and 4.2, the necessary calculations are quite straightforward. For the problem in Section 4.3, the
relevant algebraic manipulations are in Hardwick and Stout(1996).

B.2 Stages of Bounded Length

Another significant improvement is possible when it can be proven that fewer alternatives need to be evaluated
because the length of a stage is bounded. For example, if it isknown that the last stage must start by themth

observation, withm ≪ n, then the earlier stages need only be investigated up through m, rather than up throughn.
An example of an a priori bound on stage length appears in Section 4.1. The explicit bounds provided in Cheng

(1996) and Cheng, Su and Berry (1998) show that the first stageof a 2-stage design is of lengthΘ(
√

n). Thus there
are onlyΘ(n) options for the first stage, each having onlyO(n) outcomes. Since the final stage can be determined
analytically, the time to optimize a 2-stage design is reduced to onlyΘ(n2).

The program used for Section 4.1 also incorporated a second technique for reducing the first stage size, based
on curtailment. An upper boundB2 on the per-observation outcome of the second stage was obtained by integrating
the maximum ofp1 andp2 over the joint distribution of the two populations, and an upper boundB1 on the per-
observation outcome of the first stage is the larger of the twoprior means. Note thatB2 ≥ B1. First stage options
were evaluated forL1 = 1, 2, . . . Each time a better total valueV was found, it was used to create a smaller upper
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boundm for the first stage. This is based on the observation thatm must satisfym · B1 + (n − m) · B2 ≥ V. The
largerV is, the smallerm can be.

Curtailment techniques were also used in Section 4.2. For these problems, the bounds on the first stage dramati-
cally increased the range ofn for which the problem can be fully optimized.

B.3 Fixed Stage Sizes

{Initialize R′ array}
For all statesv with |v| = n,

determineR′
0(v)

{Evaluate stages}
call eval(1, n)

{determineR′
t(v) for k−t ≤ |v| < t last}

procedure eval(t, t last)
if t = k

R′
k(0) = weighted sum ofR′

k−1(v),
for |v| = t last

else{t < k}
for all v with k−t ≤ |v| < t last

determineR∗
t (v) as in Figure 12,

usingR∗
t−1(·) for states of sizet last .

for s last = k−t to n−k+t+1
call eval(t+1, s last)

Figure 13: Optimal Fixed Stage Allocation

There are two different ways in which designs with
fixed stage sizes can arise. In one case the stage sizes
are specified in advance, while in the other the sizes
are not specified.

If the stage lengths have been fixed, then the op-
timization problem is simplified. For example, if a 2-
stage allocation has a specified first stage lengthL1,
then there are onlyΘ(L1) first-stage options to be
evaluated, and onlyΘ(L3

1) possible starts for the sec-
ond stage. If the last stage can be optimized analyt-
ically, then the total time can be reduced toΘ(L3

1).
Similar reductions occur fork-stage allocations with
specified stage sizes.

For a generalk-stage allocation with specified
stage sizes, using the techniques of Section 3, each
state can be involved in the computation of at most
n different options. Fork ≥ 3 this reduces the total
time toΘ(n5). Comparing this to the values in Theo-
rem 3.1, one sees that not only has a factor ofn been
eliminated, but so has the factor ofk.

When the stage sizes are fixed, but their size is not
specified in advance, the local optimality principles that underlie the dynamic programming algorithms in Section 3
do not apply. It appears that the only way to obtain the optimal stage sizes is to try all possible sizes, and for each
choice determine the optimal allocation within each stage.

There are
( n
k−1

)
choices of stage sizes, which would seem to imply that

Θ

((
n

k−1

)
· n5

)
= Θ

(
nk+4/(k − 1)!

)

time is required (using the previous result about fixed stagesizes). This can be reduced to

Θ

((
n

k−2

)
· n5

)
= Θ

(
nk+3/(k − 2)!

)

as follows. The main induction step, as in Section 3, is over the stages, and is again done in reverse order. Suppose
that specific stage lengths have been chosen for stagest + 1 . . . k, and thatR′

k−t+1
(v) denotes the value of starting

staget at statev and proceeding optimally, given these stage lengths. Then one loops through each possible stage
length for staget. For each value, one computesR′

k−t+1(v) and recursively repeats the process for staget−1. When
the process reaches the second stage, this is now the standard 2-stage problem, solvable inΘ(n5) time. Note that
the 2-stage problem can be viewed as the same process, where the first stage only evaluatesR′

k(0). This algorithm
is outlined in Figure 13. It is presented recursively, but can be converted to a non-recursive implementation in a
straightforward manner.
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The primary difference between this algorithm and the one inSection 3 is that here, staget repeatedly calls
staget − 1 within a loop, rather than calling it only once. This causes the multiplicative effect of

( n
k−2

)
in the time

analysis. It may appear that because one must return to staget, R′
t(v) needs to be saved, which would mean the

space requirements would increase toΘ(kn4). However, by looping through the stage lengths in increasing order,
then staget − 1 can use the initial part of the array and not overwrite portions from staget that are needed for later
iterations. Thus the space requirements remainΘ(n4).

In summary, one has the following:

Theorem B.2 The optimalk-stage allocation for an experiment ofn observations from 2 Bernoulli populations, in
which the stage sizes must be fixed, can be determined in

• Θ(n3) time andΘ(1) space, ifk = 1,

• Θ(n3) time andΘ(n3) space, ifk = 2,

• Θ(n5) time andΘ(n3) space, ifk ≥ 3,

if the stage sizes have been fixed in advance, and in

• Θ(n3) time andΘ(1) space, ifk = 1,

• Θ(n5) time andΘ(n3) space, ifk = 2,

• Θ(nk+3/(k − 2)!) time andΘ(n4) space, ifk ≥ 3

if the stage sizes must be determined.2
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