
JOURNAL OF PARALLEL AND DISTBIBUTED COMPUTING 4,95- 115 ( 1987) 

Supporting Divide-and-Conquer Algorithms 
for Image Processing 

QUENTIN F. STOUT* 

Department of Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor, Michigan 48109 

Received April 4,1986 

Divide-and-conquer is an important algorithm strategy, but it is not widely used in 
image processing. For higher-level, symbolic operations it should often be the strategy 
of choice for parallel computers. It is natural for a machine with a regular interconneo 
tion scheme such as a mesh, mesh with broadcasting, tree, pyramid, mesh-of-trees, 
PRAM, or hypercube, and can be used either on a machine with a pixel per processor 
or on one with many pixels per processor. However, divide-andconquer algorithms 
use parallel computers in a different manner than, say, local edge detection, so ma- 
chines optimized for local neighborhood algorithms may be poor for divide-andum- 
quer algorithms. Rome characteristics of divide-and-conquer algorithms are exam- 
ined, along with some of their implications for the design of machines and languages 
which can support the efficient programming and execution of divide-and-conquer 
algorithms. Q 1987 Academic Press, Inc. 

1. IN-~R~DuC~~~N 

Divide-and-conquer is an important algorithm strategy which has been 
successfully used on a wide range of problems, yet it receives scant attention 
as a strategy for image processing. This is particularly true for the image pro- 
cessing that is performed on parallel computers. Perhaps this is because di- 
vide-and-conquer is not especially useful for low-level local neighborhood 
operations, the sort of operations on which most parallel image processing 
computers excel. However, as research advances into using parallel comput- 
ers for higher-level tasks such as scene recognition or image understanding, 
it seems that divide-and-conquer will become increasingly useful. To make 

* Partially supported by the Naval Research Laboratory under Contract 65-2068-U and the 
National Science. Foundation under Grant LXTR 850785 1. 

95 
0743-7315187 $3.00 
Copyx’ight BB 1987 by Academic Press, Inc. 
All right.7 of repmduction in any form reserved. 



96 QUENTIN F. STOUT 

use of this strategy, though, the hardware and software need to provide sup- 
port for the requirements of divide-and-conquer algorithms. 

This paper examines the divide-and-conquer strategy, giving some exam- 
ples illustrating why it may be more useful in higher-level tasks, analyzing 
some of the requirements of such tasks, and deducing some of the implica- 
tions for machine architectures and software. The viewpoint taken is strongly 
biased toward aiding algorithm design for high-level algorithms. It is also 
speculative, since the currently proposed algorithms for higher-level tasks are 
themselves quite speculative and incomplete. In fact, the uncertainty of the 
nature of future image understanding algorithms is itself a strong argument 
for considering the implications of the divide-and-conquer strategy. Divide- 
and-conquer has proven to be a useful strategy in numerous areas, so it is 
unwise to omit support for it. 

This paper will concentrate on parallel computers which are local memory 
machines, instead of shared memory machines. That is, each processor will 
have its own memory, containing, among other things, some of the pixels. If 
a processor needs to obtain information residing in another processor then 
the information must be transmitted along communication links. Most cur- 
rent parallel computers are local memory machines, though a few shared 
memory machines have been built and ‘others are being designed. Most of 
our observations also hold for shared memory machines. 

Throughout, all images will be of size n X n. We use 8 to mean “order 
exactly,” Q to mean “order at least,” 0 to mean “order no greater than,” and 
o to mean “order strictly less than.” For example, 3n2 + 6 = e(n’), n* sin2(n) 
+ 4 = Q(l), n * sin2(n) + 4 = O(n), and n * sin2(n) + 4 = o(n2). The term poly- 
log time will mean time which is O(logk n) for some integer k. 

2. DIVIDE-AND-CONQUER 

The essence of the divide-and-conquer strategy is quite simple: 

To solve a large instance of a problem, break it into smaller instances of the same 
problem, and use the solutions of these to solve the original problem. 

The fact that the smaller problems are instances of the same problem is what 
distinguishes divide-and-conquer from the more general top-down strategy. 

This strategy is strongly encouraged in texts on data structures and algo- 
rithms. For example, 

To summarize, many of the most interesting algorithms that we will encounter are 
based on the divide-and-conquer technique of combining the solutions of recursively 
solved smaller subproblems. [Sedgewick [27, p. 5211 

Perhaps the most important, and most widely applicable, technique for designing effi- 
cient algorithms is a strategy called “divide-and-conquer.” . . . It is probably the ease 



SUPPORTING DIVIDEAND-CONQUER 97 

of discovery of divide-and-conquer algorithms that makes the technique so important, 
although in many cases the algorithms are also more efficient than more conventional 
ones. [Aho et al. [ 1, pp. 306-30711 

Efficient divide-and-conquer algorithms have been used in sorting, search- 
ing, geometry, graph theory, Fourier transforms, arithmetic, algebra, approx- 
imations of NP-hard problems, and many other areas [ 1,3,27]. As Ullman 
notes, it is also a useful strategy in hardware design [4 1, Sect. 3.31. 

Divide-and-conquer has a large number of variations, depending on the 
work needed to create the subproblems and the work needed to combine the 
solutions of the subproblems. For example, most of the work in quicksort 
occurs while creating the subproblems, but most of the work in mergesort 
occurs while combining the subproblems. Similarly, the difference among 
preorder, inorder, and postorder tree traversals is the point at which the work 
on the original problem (“visiting” a node) is interspersed with the work on 
the subproblems (“visiting” its children). 

Other variations are introduced by differences in the implementation of 
the strategy. For example, mergesort can be implemented recursively in a 
top-down manner, or, as is more common, iteratively in a bottom-up man- 
ner. In this case, the two approaches give algorithms requiring very similar 
times. In geometry, sometimes a recursive divide-and-conquer algorithm is 
converted to an iterative one using a planar sweep 1271 to avoid repetitive 
sorting which can increase the time. Finally, dynamic programming can be 
considered as a bottom-up implementation of divide-and-conquer which 
eliminates redundant computations. 

When using parallel computers, there are several additional reasons why 
a divide-and-conquer approach may be particularly useful. First, there may 
be more data than can be contained in the processors at one time, so the data 
must be analyzed piecemeal. For example, a 128 X 128 mesh (see Fig. la) of 
processors able to hold only a single pixel each may need to process an image 
with 1024 X 1024 pixels. In such cases it is often useful to analyze subsquares 
(dividing) and then combine the results (conquering), with particular empha- 
sis on the boundaries of the subsquares. 

Second, in some machines the individual processors may be quite large, 
holding many pixels, in which case often a two-level strategy is needed. We 
will call such machines medium-grained machines, to distinguish them from 
jhe-grained machines with only a single (or a few) pixel per processor. 
(Coarse-grained machines have only, say, tens of powerful processors. Such 
machines will not be discussed herein.) For example, the Massively Parallel 
Processor (MPP) [2] is a fine-grained machine, while the Cosmic Cube [28] 
is a medium-grained machine. In medium-grained machines the pixels have 
already been “divided,” typically into subsquares, and often the problem can 
be then “conquered” by combining serial and parallel algorithms. A serial 
algorithm is used in each processor (simultaneously) to solve as much of 



98 QUENTIN F. STOUT 

a) bl 

4 d) 

Processor - Communication Link 

FIG. 1. Some parallel computers. (a) Mesh. (b) -id. (c) Hypercube. (d) Mesh-of-trees 
(base mesh connections omitted for clarity). 

the problem as possible, combined with a parallel algorithm to interchange 
necessary information. For example, if local median filtering is being per- 
formed, then pixel values along the edges of the subsquare in a processor 
need to be exchanged with the processors containing the neighboring sub- 
squares. The determination of what information needs to be exchanged (a 
rather trivial consideration in this example) occurs whenever a divide-and- 
conquer approach is being tried. 

Finally, many of the interconnection schemes being used or suggested for 
massively parallel image processing machines naturally suggest partitioning 
the machine into similar submachines. Meshes can easily be partitioned into 
quadrants, each of which is a mesh. Meshes with broadcasting capabilities 
almost force one to use a divide-and-conquer approach, dividing the mesh 
into submeshes in which a standard nonbroadcasting mesh algorithm is 
used, with broadcasting used to combine results of the subproblems [ 13,3 1, 



SUPPORTING DIVIDE-AND-CONQUER 99 

361. Binary trees can be partitioned into an apex and two subtrees. Pyramids 
(see Fig. lb) can be partitioned into the apex and four subpyramids. Binary 
hypercubes (see Fig. lc) can be partitioned into halves, each of which is a 
(binary) hypercube of one smaller dimension. Mesh-of-tree machines (also 
known as orthogonal trees) can be partitioned into quadrants which are 
mesh-of-tree machines (see Fig. Id). Parallel random access machines 
(PRAMS) can be divided at will into collections of smaller PRAMS, and usu- 
ally machines which are simulations of PRAMS, such as the Ultracomputer 
[9] and RP3 [2 11, can similarly be arbitrarily partitioned, although some par- 
titions have slightly lower performance than others. Further, some machines, 
such as PASM [29], have been explicitly designed to simplify partitioning. 

Meshes and variations of them have been widely discussed and con- 
structed as image processing machines [6,24], pyramids and their close rela- 
tives have been widely discussed, and a few are being built, as image process- 
ing machines [5,18,26,38,40], and hypercubes are now becoming available 
for arbitrary uses. At least one medium-grained hypercube, at the University 
of Michigan, is being used for image processing, and some image processing 
algorithms are being developed for the Connection Machine [43], a fine- 
grained hypercube. The medium-grained Ultracomputer [9] is also being 
considered for image processing problems ranging from very low level to 
very high level, and the fine-grained NON-VON tree machine [lo] is being 
considered for low-level image processing. A few vision-related algorithms 
for the mesh-of-trees appear in [ 12, 191, and vision-related algorithms for a 
mesh with broadcasting appear in [ 13,3 1,361. 

3. EXAMPLES 

Many divide-and-conquer algorithms have been developed for mesh, pyr- 
amid, tree, mesh-of-tree, PRAM, and hypercube computers, but these algo- 
rithms have usually originated from algorithm designers solving general 
problems, rather than from the image processing community which is actu- 
ally using such machines. As was mentioned earlier, much of this can be 
attributed to the fact that divide-and-conquer is not needed for simple neigh- 
borhood transformations, while the algorithm designers have tended to con- 
centrate on problems requiring more global integration of information. 

The simplest divide-and-conquer solutions are tree-like. For example, to 
find the average gray level in an image, find the average in each quadrant, 
and average the averages. This approach is suitable for a tree, pyramid, hy- 
per-cube, mesh-of-trees, or PRAM, taking logarithmic time if there is a pixel 
per processor. However, it is not a useful example as there are very few prob- 
lems which can be solved so easily. 



100 QUENTIN F. STOUT 

3.1. Black/White Component Labeling 

Probably the most widely discussed nontrivial example is (connected) 
component labeling of a black/white image. In this problem, the image is an 
n X n array of pixels, each of which is either black or white. Two black pixels 
are said to be adjacent if they share an edge, and they are connected if there 
is a path of adjacent black pixels between them. Connectedness defines 
equivalence classes of black pixels, where two black pixels are in the same 
equivalence class if and only if they are connected. These classes are called 
(connected) components. The component labeling problem is to assign a label 
to each black pixel, where two black pixels receive the same label if and only 
if they are in the same component. Throughout, the pixel at row i, column j 
will start with a label of (i - 1)n + j (its row-major index). The (final) label 
ofa component is the smallest label of any of its members. 

3.1.1. Propagation 

On a parallel computer where each processor holds one pixel, and where 
adjacent pixels are in adjacent processors, a common algorithm for this prob- 
lem is as follows: 

Propagation Component Labeling 
1. Each black pixel starts with its row-major label. 
2. Each black pixel takes as its new label the minimum of its current label and the 

current labels of all adjacent black pixels. 
3. If no pixels changed their labels in this iteration then the algorithm is done, other- 

wise go to 2. 

In each component, the pixel with the smallest row-major index in the com- 
ponent initially is the only one with its label. In the next cycle all adjacent 
black pixels acquire its label, in the next cycle all black pixels adjacent to 
these acquire it, and so on, with the minimum label propagating in a breadth- 
first manner. 

This simple algorithm is quite easy to implement, and as a parallel algo- 
rithm has been suggested at least since the 1960s [4]. It has the difficulty that 
the number of iterations needed can be proportional to n2, as would occur 
with a spiral as in Fig. 2. Because of this worst case possibility, either the 
algorithm must always be run for 0(d) iterations, each of which takes unit 
time, or else the algorithm must occasionally intersperse steps in which the 
processors are checked to see ifthey have changed their labels. This intersper- 
sion can be done on meshes, pyramids, hypercubes, and many other parallel 
machines with a fixed interconnection network, so that the algorithm fin- 
ishes in 8(d + c) time, where d is the largest internal path distance between 
any pair of black pixels in the same component and c is the communication 
diameter of the machine. That is, for all pairs of black pixels p, g, let d(p, q) 



SUPPORTING DIVIDE-AND-CONQUER 101 

FIG. 2. A difficult image. 

be 1 less than the minimum number of black pixels in a path of adjacent 
black pixels starting at p and ending at q, if p and q are in the same compo- 
nent, and let it be cc otherwise. Then 

d = max{d(p, 4 : d(p, 4) < 00 >. 

Similarly, for processors P and Q, let c(P, Q) be the minimum number of 
communication links which must be traversed in going from P to Q. Then 

c = max{c(P, Q)}. 

Spiral-like images should be rare in any reasonable definition of expected 
case, so 0(n) is probably a more realistic expected value of d. If this is so, 
then for meshes this algorithm will have an expected time of e(n), which 
is the best possible since c = e(n) and all algorithms potentially involving 
combining information from throughout the image must take n(c) time. 
However, for trees, pyramids, mesh-of-trees, PRAMS, and hypercubes, 
c = o(n), and hence a propagation algorithm taking 9(n) time is not necessar- 
ily optimal in the expected case. In the worst case the propagation algorithm 
is not even optimal for the mesh. 

3.1.2. Divide-and-Conquer 

For machines with a sublinear communication diameter, or to guarantee 
better worst case times on a mesh, there is a well-known divide-and-conquer 
solution which is much better than the propagation algorithm. It is based on 
Sollin’s component labeling algorithm for graphs, a parallel version of which 
was given by Hirschberg [ 81. Apparently the first application of this to images 
is that of Nassimi and Sahni [20], who used it to provide an optimal mesh 
algorithm. The algorithm is as follows: 



102 QUENTIN F. STOUT 

Divide-and-Conquer Component Labeling 
I. Initially each pixel starts with its row-major in&x as its label. 
2. If the image is 1 X 1 then the algorithm is finished, otherwise divide the picture into 

quadrants and label the components in each quadrant, ignoring adjacent pixels in 
other quadrants. (This is a recursive call to the algorithm starting at 
Step 2.) 

3. Combine adjacency information from along the boundaries of the quadrants to 
decide on the final labels of all components lying in more than one quadrant. 

4. Correct the labels of components lying in more than one quadrant. 

Figure 3 shows the labels as they might be assigned by the end of Step 2. Note 
that the only components which can have more than two labels are those 
lying in more than one quadrant. This means that Step 3 uses only the adja- 
cency information from pixels along the borders of the quadrants, instead of 
the entire image. This data reduction is crucial in obtaining the desired speed. 

This algorithm has been used to derive optimal algorithms for meshes, 
taking e(n) time on an n X n mesh [20], and pyramids, taking e(n”*) time 
on a pyramid with an n X n base [ 181. For a tree with n2 leaves it gives an 
optimal algorithm taking 9(n) time, and for mesh-of-trees, hypercubes, and 
PRAMS it gives algorithms taking poly-log time [ 12, 191. 

A similar algorithm can be used if the pixels have some gray level. In this 
case one could choose some threshold value and set pixels black iftheir inten- 
sity is below the threshold, and white otherwise. Thegruy-level connectedness 
problem is to decide if the blacks always form a single connected component, 
no matter what threshold is used. This problem is a variant of the fuzzy 
connectedness problem [23]. One could try all thresholds, but if each pixel 
has a different gray level then this would take fI(n2) time. Instead, by slightly 
modifying the above algorithm, for all the machines mentioned above gray- 
level connectedness can be decided as quickly as black/white component 
labeling [35]. 

The above algorithm was described as if the machine had one pixel per 
processor, but it can easily be implemented on a medium-grained machine 

FlG. 3. Labels assigned in quadrants. 



SUPPORTING DIVIDE-AND-CONQUER 103 

where each processor stores a small subsquare of the image. However, using 
a purely recursive divide-and-conquer approach may be somewhat slower 
than a blended approach which uses divide-and-conquer to reduce the size 
of the image until each piece is in a single processor, and then uses a fast 
serial algorithm within each processor to label its piece. (Even on a single 
processor a properly implemented pure divide-and-conquer approach gives 
an optimal algorithm, as measured by O-notation, but the constants in- 
volved may be significantly higher than other serial algorithms.) If each pro- 
cessor stores a k X k subimage, then Step 2 should be changed to read: 

2. If the image is k x k or smaller then use a serial algorithm within each processor. 
Otherwise divide the picture into quadrants and label the components in each quad- 
rant, ignoring adjacent pixels in other quadrants. (This is a recursive call to the 
algorithm starting at Step 2.) 

Note that it is very easy to incorporate a serial algorithm for small subprob- 
lems into the parallel divide-and-conquer algorithm. 

3.2. Convexity 

Given a black/white image with its components labeled, the all-compo- 
nents extreme point problem is to find the extreme points of each black com- 
ponent, that is, to find the black pixels in each component which are the 
corners of the smallest convex polygon containing the component. This 
problem is useful because the extreme points form a compact representation 
of a convex set, permitting faster algorithms for determining additional prop 
erties of the set such as its elongatedness or diameter. We first analyze the 
simpler problem of finding the extreme points of all of the black pixels. Paral- 
lel algorithms for these problems have appeared in [9, 16, 17, 19,3 l] and in 
numerous other papers. 

The algorithm is based on the simple observation that if one has a set of 
points and partitions it into subsets, then each extreme point of the original 
set is an extreme point of its subset. Using this, the structure of the algorithm 
is quite straightforward: 

Extreme Points via Divide-and-Conquer 
1. If the image is 2 X 2 then each black pixel is an extreme point and the algorithm is 

finished. Otherwise, divide the image into quadrants and find the extreme points 
of each component restricted to each quadrant. (A pixel’s label is kept with the 
representation of the pixel throughout.) 

2. Collect the extreme points from the quadrants for those components which lie in 
more than one quadrant, and eliminate those which are not extreme points of their 
component. 

As for component labeling, this divide-and-conquer approach yields good 
algorithms for meshes [ 161, trees, pyramids [ 181, meshes with broadcasting 
[ 13, 3 1, 361, mesh-of-trees, hypercube [ 12, 191, and PRAMS [9]. Further, as 



104 QUENTIN F. STOUT 

before, for medium-grained machines a serial algorithm can easily be utilized 
when the recursion has subdivided the image into pieces which fit into single 
processors. 

3.3. Multiresolution Algorithms 

One increasingly popular technique for image processing is the use of mul- 
tiresolution images and algorithms [25]. Given an n X n image, an (n/2) 
X (n/2) image is formed by partitioning the original image into blocks of 4 
pixels and averaging their values to get one new pixel value. This process is 
recursively repeated to get a sequence of images, the smallest of which is 1 
X 1. (We have used averaging to get new pixel values, but other operations 
such as taking a median or lowest value can also be used to obtain the smaller 
images.) This sequence of images can then be used for a variety of operations, 
with much less computational effort than is required if all operations occur 
on the original image. 

For example, suppose one has an image and is trying to determine where 
the sky, horizon, and road are. A multiresolution approach is to use one of 
the smaller, lower-resolution images to get initial estimates of the boundaries 
of the different objects, and then to follow these initial positions down 
through higher resolutions to find more exact boundaries. Quadrants of the 
larger images at higher resolutions can be processed in parallel, where there 
is communication between quadrants if the target objects cross their borders. 
The initial estimate is found on a smaller image so it requires less computa- 
tion than an estimate based on the original image, and from then on only 
portions of the higher-resolution images are being examined. 

Multiresolution image processing can be viewed as a variation of divide- 
and-conquer where the emphasis has been placed on the role of a specific 
data structure (the multiple images at different resolutions) which supports 
a divide-and-conquer approach. Perhaps not all authors would agree that 
multiresolution image processing is a variation of divide-and-conquer, but 
its similarity to divide-and-conquer is readily apparent. Currently multireso- 
lution image processing is often thought of as being intimately tied to the use 
of pyramid computers, which naturally store the different images at different 
levels. However, multiresolution image processing can be fruitfully utilized 
on a wide variety of parallel machines, particularly if the proper software 
support is provided. 

3.4. Further Examples 

The approach of dividing an image into quadrants, solving subproblems 
in the quadrants, and combining the subproblem solutions, has been applied 
to yield good parallel algorithms for several other problems involving images. 
The approach can be used to find the nearest neighboring black component 



SUPPORTING DIVIDEAND-CONQUER 105 

for each black component, to find an encasing rectangle of minimal area for 
each black component, to find an encasing circle of minimal area for each 
black component, to decide if the black pixels form a straight line, to find a 
minimal path in a maze, and to find the diameter of each black component 
[ 16- 181. A more complex problem also solved via several uses of divide-and- 
conquer is to determine if two images are topologically isomorphic [32], i.e., 
to see if one can be deformed into the other. 

An important example not directly related to image processing is sorting. 
Sorting forms the basis of several data movement operations, including ran- 
dom access read, random access write, and path compression for directed 
trees 1201. While these operations do not seem to be related to image process- 
ing, they actually play a crucial role in the optimal mesh and pyramid com- 
ponent labeling algorithms and the algorithms mentioned in the preceding 
paragraph. This point is expanded upon in Section 4.3. 

Other examples include various graph algorithms such as deciding tree 
isomorphism, computing certain functions on trees, and component labeling 
of arbitrary graphs [32, 341. Again, while these may not initially seem to 
be related to images, they are important ingredients of the optimal mesh 
algorithm for deciding if a pair of images are topologically isomorphic [32]. 
Further, since many artificial intelligence and higher-level image under- 
standing algorithms make extensive use of graph algorithms for matching 
and searching problems, it is reasonable to expect that parallel graph algo- 
rithms will become increasingly important as more high-level image under- 
standing tasks are attempted on parallel machines. 

4. REQUIREMENTS 

If one examines the divide-and-conquer algorithms given or referenced 
above, it becomes clear that they are not performing quite the same opera- 
tions as, say, local median filtering. This section examines some of these 
differences and makes suggestions concerning the hardware and software 
support needed to program and execute such algorithms efficiently. 

4.1. Spatial Subdivision 

The second step of the algorithm in Section 3.1.2 and the first step of the 
algorithm in Section 3.2 are typical steps in image processing divide-and- 
conquer algorithms, in that they partition the image into quadrants and then 
the operations proceed in each quadrant as if the quadrant is the entire im- 
age. To incorporate such steps, one needs software which allows such spatial 
subdivision to be easily described, and hardware which efficiently supports 
variations among the quadrants. First the hardware problem will be dis- 
cussed, and then the software. 



106 QUENTIN F. STOUT 

4.1.1. Conditional Neighbors 

After the image has been subdivided into quadrants, the pixels along the 
middle lines must temporarily behave as if their neighbor across the middle 
line were not present. This is easily accomplished in an MIMD machine, but 
it can cause difficulty in some SIMD machines. For an SIMD machine to 
have some of its processors temporarily ignore the fact that they actually 
have a neighbor in a given direction, it is necessary that the processors have 
a masking ability to ignore instructions which would have them access neigh- 
bors which are not part of the same partition, or else they need the ability to 
set pointers or flags of some sort which indicate which neighbors to use on 
certain operations. Note that this ability is far less useful in an algorithm in 
which all processors access their neighbors in the same manner, as occurs 
with many local neighborhood operations. 

A mask could either be broadcast to processors based on their coordinates, 
or computed from local data. The ability to compute the mask from local 
data would be useful in other steps, such as when a pixel needs to decide 
with which of its neighbors it should exchange labels. It often happens that a 
specific neighbor is picked based on local data, and then that neighbor is 
repeatedly used for certain communications. For example, in component 
labeling, once a black pixel has determined that a neighbor is white, it never 
sends any labels to that neighbor. 

The ability to set a pointer or flag to indicate which neighbor to use can 
sometimes be more efficient than a masking ability. If the algorithm is at a 
point where each processor is sending data to at most one neighbor, then 
some implementations of masking would require the controller on a mesh 
computer to issue four instructions roughly saying “If you are communicat- 
ing with your North neighbor then send it your data,” “If you are communi- 
cating with your West neighbor then send it your data,” etc. With the ability 
to set a flag or pointer indicating which neighbor gets the communication, 
only one instruction, of the form “Send your data to your flagged neighbor,” 
need be sent. This is a relatively minor point, but because some algorithms 
rely so heavily on near-neighbor communication, appropriate support of 
conditional neighbors may significantly decrease the time. (However, since 
it can decrease time-only by a multiplicative factor, it will not be apparent in 
an O-notational analysis.) 

4.1.2. Software 

While the pseudo-code algorithm outlines used in Section 3 are fairly natu- 
ral descriptions, this would not be the case if they had to be translated into 
the languages currently in use on parallel machines. Most medium-grained 
machines are currently programmed in some serial language such as FOR- 
TRAN, augmented with a few communication primitives. In such a lan- 



SUPPORTING DIVIDE-AND-CONQUER 107 

guage a global overview of the algorithm, as given in Section 3, must be 
replaced with the specific instructions to each processor on how to accom- 
plish its task. While this must ultimately occur, it does not seem that the 
programmer should be required to do the translation. 

Some fine-grained SIMD image processing machines can be programmed 
in languages such as Parallel Pascal [22], which provides some global over- 
view of computations by specifying actions on global arrays with one entry 
per processor. However, Parallel Pascal does not directly support writing al- 
gorithms which subdivide global arrays into arrays global to quadrants, so 
again the programmer is forced to translate natural divide-and-conquer algo- 
rithms into a prespecified format not designed to support the writing of such 
algorithms. 

One language which is more adapted to divide-and-conquer is Occam 
[44], in that Occam makes it easier to describe mapping algorithms and data 
onto processors, and can do so in a recursive manner. However, even Occam 
does not directly allow one to describe, say, an image as an array spread 
across the processors, so some of the global overview capabilities of Parallel 
Pascal are missing in Occam. 

Besides providing a capability for describing data structures such as image 
arrays spread across processors, and providing a capability for describing re- 
cursive algorithms which can operate on such data structures both globally 
and in a subdivided manner, languages and/or programming environments 
also need to explicitly deal with the actual sixes of image subarrays on indi- 
vidual processors and with images too large to fit on the parallel machine at 
one time. To be portable, algorithms need to be written where the size of an 
image subarray that fits on a single processor is a constant which is initialized 
at execution time. It may be that the compiler or loader should determine 
this size by examining the memory requirements of the program and other 
data structures, combined with a knowledge of the memory size of the pro- 
cessors. 

Explicitly dealing with images too large to fit on the machine at one time 
is currently an unsolved research problem, in that it is very difficult to deter- 
mine how to do this efficiently. This problem involves an understanding of 
the algorithm involved, along with the characteristics of the processors and 
external memory devices. While it certainly will not be solved immediately, 
there is a need to increase the support a language (or programming environ- 
ment) can provide to simplify this task. For example, the MPP implementa- 
tion of Parallel Pascal explicitly avoids such support. 

4.2. Bandwidth 

An extremely important feature of a divide-and-conquer algorithm on a 
parallel computer is that it focuses attention on the information which one 



108 QUENnN F.ST0U-I 

region needs from another. This factor is often used to establish lower bounds 
on the performance of algorithms for parallel computers and VEX. Con- 
versely, given algorithms and the amount of information they transfer, and 
given a desired performance goal, the minimum acceptable bandwidth be- 
tween regions can be determined, and from this machines can be designed. 
For example, this approach is used in Leiserson’s Fat-Trees [ 141, which are 
a class of tree machines which efficiently simulate other parallel machines by 
providing the same bandwidth between regions. A related approach, where 
one uses bandwidth considerations to choose. a best design within a class of 
parallel machines, appears in Stout [36]. 

Miller and Stout use bandwidth considerations to establish the somewhat 
nonobvious optimality of the divide-and-conquer pyramid component la- 
beling algorithm in [ 181. Bandwidth considerations also show that a pyramid 
can sort or rotate an image no faster than a mesh (to within a small multipli- 
cative constant). To see this, one merely notes that a pyramid sliced through 
its center has at most 2n wires crossing the cut, while sorting or rotating an 
image will require moving 8(n2) items across the cut, thus requiring Q(n) 
time. The same bandwidth considerations show that simply adding a global 
bus, or even a bus per row and column, cannot significantly improve the 
sorting or image rotation time of a mesh. They also show that a simple tree 
is a poor architecture for image processing since cutting one wire leading to 
the root disconnects the tree into halves, but as Leiserson noted it can be 
turned into a potentially suitable one by increasing the bandwidth toward 
the root [ 141. 

Note that all of these architectures have a communication diameter which 
is O(log n), but that this small diameter is not sufficient to guarantee logarith- 
mic, or even polylogarithmic, algorithms for image rotation. The diameter, 
which usually is an easily determined function of the size, is often used as 
simplistic evidence that an architecture is “good.” While a small diameter 
usually guarantees that simple problems such as determining the average 
gray level or counting the number of black pixels can be done quickly, it is 
no guarantee of good performance on nontrivial problems. 

Many divide-and-conquer algorithms for images show that the number of 
data which must be transferred between quadrants is O(n), instead of Q(d). 
This was true for the component labeling problem, the gray-level connected- 
ness problem, the single-component convexity problem, and for all of the 
image related problems mentioned in Section 3.4. For example, for compo- 
nent labeling, the algorithm in Section 3.1.2 shows that only information 
about labels on the boundary of quadrants need be exchanged with other 
quadrants. This reduces the data between quadrants to 0(n), and the exam- 
ple in Fig. 4 shows that this much information must be exchanged in some 
bad situations. For deciding convexity of a single component, it is easy to see 
that each quadrant has at most one extreme point in each row and column, 
so the amount of information that must be exchanged is O(n). Using a bit of 



SUPPORTING DIVIDE-AND-CONQUER 109 

FIG. 4. Proper Y labels require knowledge of whether x’s are black or white. 

number theory, one can show that actually each quadrant can have at most 
8($j3) extreme points, and that this bound is the best possible [42]. 

Based on these observations, one can design pyramid-like computers with 
sufficient bandwidth between quadrants that all of these problems can be 
solved in poly-log time, even in the worst case, while still trying to retain 
some of the wiring cost advantages of a pyramid as compared to, say, a hyper- 
cube [ 181. Some designs achieving this performance appeared in [32], and 
many others are possible. Mesh-of-trees machines [ 12, 171 also provide ex- 
actly enough bandwidth between quadrants to solve these problems in poly- 
log worst case time, even though they cannot sort in poly-log time. However, 
when using bandwidth considerations to help design a machine, one must 
be careful to include the proper problems. For example, while the mesh-of- 
trees can be used to determine the extreme points of a single component in 
poly-log time, it cannot always determine the extreme points of all compo- 
nents in poly-log time. The reason for this is that an image as in Fig. 5 has 

FIG. 5. An image with many components and many extreme points. 



110 QUENTIN F. STOUT 

0(n) components crossing the middle, each of which might have e(n213) ex- 
treme points. Since the mesh-of-trees has only e(n) wires crossing the mid- 
dle, it will take Q@z*‘~) time. 

One interesting question in connection with this is the expected amount 
of information which must be passed between regions. If this is significantly 
lower than the amount needed in the worst case for nonadjacent regions, 
then it may be possible that a standard pyramid can have poly-log expected 
time on many of these problems, even though its worst case time is much 
slower. It is an interesting and useful research problem to determine a good 
model of expected image complexity for several of the image problems men- 
tioned herein, since from such a model one might be able to suggest new 
architectures which obtain the desired performance with an inexpensive 
design. 

Bandwidth considerations are one reason to consider hypercube machines 
for image processing problems, particularly in a research environment where 
numerous algorithms are being tried. When a hypercube with p processors 
is partitioned into two subcubes, there are p/2 wires between the halves. Thus 
the hypercube can solve some problems, such as sorting and image rotation, 
in poly-log time even though potentially all the data must be exchanged be- 
tween the subproblems. This makes the hypercube much more powerful 
than the mesh or pyramid, or than any of the proposed broadcasting based 
modifications of these architectures. Since a hypercube can efficiently simu- 
late each of the other architectures [37], it provides a useful general-purpose 
image processing machine, though its numerous long wires make it more 
expensive than the other designs. 

4.3. Data Movement Operations 

The actual implementations of the divide-and-conquer algorithms intro- 
duce important aspects which may be overlooked initially. For example, an 
interesting aspect of Step 3 of the divide-and-conquer component labeling 
algorithm is the fact that the relabeling decisions inside the subsquare are 
very symbolic, and in fact use a general graph labeling algorithm. These data 
no longer resemble pixels, and almost all of the initial geometric properties 
of the data have been replaced with graph properties. Processors in the sub- 
square are not performing many arithmetic operations, but are instead using 
comparisons and pointer manipulation. Therefore instruction sets need to 
provide a sufficiently rich set of operations for such symbol manipulation. 

Another feature of the divide-and-conquer component labeling algorithm 
is that an optimal mesh algorithm must complete Step 3 in O(n) time. Nas- 
simi and Sahni [20] accomplished this by moving the O(n) words of infor- 
mation to a subsquare. Moving to and from the subsquare takes O(n) time. 
The subsquare has a communication diameter of only 0(n’/*), which enabled 



SUPPORTING DIVIDE-AND-CONQUER 111 

the relabeling decisions within the subsquare to be performed in o(n) time. 
Therefore the total time for the mesh implementation of Step 3 was O(n). 
Similar movement was needed in the optimal pyramid implementation [ 181, 
but to a subsquare above the base. 

The movement of the data to and from the subsquare may be slightly un- 
expected, but it is needed so that the resulting graph problem can be solved 
in a region with as small a communication diameter as possible. The move- 
ment is simple in that it is possible to predetermine the subsquare to which 
items are moved, and to give easy, efficient routing algorithms. The opera- 
tions used in the graph algorithm are not like this, in that they are concerned 
with finding the information associated with a given key, without knowing 
in advance the index of the processor holding the record with the given key. 
In [20], operations to accomplish this are called random access read, random 
access write, and path compression, and are based on using efficient sorting 
algorithms [37]. These operations have been used and extended in many 
other mesh algorithms [ 161, and several related pyramid, hypercube, and 
mesh-of-tree operations have been developed [ 18, 191. Other common data 
movement operations are broadcast and report functions, which are usually 
implemented in a tree-like manner. In broadcasting there is some infor- 
mation which must be sent to all processors, while in reporting there are 
values at all processors which must be collected together, perhaps combining 
them together with some semigroup operation such as addition or minimi- 
zation. 

The role of these data movement operations is crucial in the divide-and- 
conquer algorithms for all of the image related problems mentioned in Sec- 
tion 3. To achieve desired levels of speed on these operations, it may be that 
special hardware support is necessary. For SIMD machines this may involve 
additional microcode for the controller, while for MIMD machines it may 
encourage the use of separate communications processors at each node, 
where the communication processor has the microcode for the operations. 

Whether or not the operations are directly supported by hardware, the 
software needs to supply such operations. The operations are too compli- 
cated for most users to develop on their own, particularly if they are primarily 
interested in quickly trying new algorithms and approaches instead of discov- 
ering efficient ways to move data. Work is needed to develop a fairly com- 
plete collection of data movement operations, in that a wide variety of algo- 
rithms need to be examined to see what operations are needed. The opera- 
tions might be directly supplied in some language especially designed for 
expressing parallelism, or might be offered via preprocessors for some serial 
language like FORTRAN. Currently neither approach is being used, except 
in locations where a few standard subprograms have been written for opera- 
tions such as simple broadcasting or reporting. 

The data movement operations are an important tie between global and 



112 QUENTIN F. STOUT 

local views of the computation. Algorithms can be described as local compu- 
tations interspersed with global data movement, where the programmer 
should not have to worry about the instructions an individual processor must 
execute in order to perform the global data movement. This style of program- 
ming makes code more transportable across architectures since, while the 
specific instructions performed by the processors will change, and the time 
of the operation might also change, the logical effect of data movement oper- 
ations such as broadcasting a word of data to all processors is independent 
of the architecture. If the individual data movement operations are efficiently 
coded, then the resulting algorithms can be efficient on many architectures. 
Since there will be only a fairly small set of data movement operations, they 
will form a small core of procedures which must be efficiently implemented 
on each new machine, and then divide-and-conquer algorithms for general 
machines can be ported to the specific one. This point of view is further 
expanded in [ 151, where it is shown how to code the component labeling 
algorithm explicitly in terms of such data movement operations. The 
(O-notational) speed of the resulting algorithm is also given for a variety of 
architectures. 

5. CONCLUSION 

We have shown that divide-and-conquer has been used for a variety of 
algorithms on meshes, trees, pyramids, mesh-of-trees, PRAMS, and hyper- 
cubes, and that one may expect that they will be used for higher-level image 
processing in the future. We have shown that divide-and-conquer algorithms 
use neighbor processors in a more conditional way than they are used by 
local neighborhood algorithms, that a programmer must be able to specify 
in a natural manner the spatial subdivision of an image and its mapping onto 
a machine, that divide-and-conquer algorithms can point to the bandwidth 
needed between regions, and that sophisticated data movement operations 
are important when actually implementing divide-and-conquer algorithms. 

Divide-and-conquer provides an interesting method for interrelating the 
global and local actions of computations. If proper software support is pro- 
vided, then programmers of local memory machines will have the ability to 
describe global data structures which can be acted on either uniformly or 
differentially depending on their position, and they wilI have a collection 
of data movement operations which manipulate data throughout the entire 
machine, as well as retaining the current ability to describe the local compu- 
tations. Even for problems which are not solved via divide-and-conquer, 
these seem to be desirable features for any language which is intended to 
support rapid prototyping of new advanced algorithms for image processing 
and image understanding. The development of languages allowing one to 



SUPPORTING DIVIDE-AND-CONQUER 113 

express and exploit parallelism is stated as a critical goal of parallel comput- 
ing in [45]. 

Some hardware systems already support some of the desirable hardware 
features mentioned, but these factors are certainly not universally supported. 
This is particularly true among SIMD image processing machines where the 
emphasis has been on low-level image processing. Further, language and/or 
programming environment support for the software issues raised here is 
quite meager. Languages and programming environments such as those de- 
scribed in [7, 11,22, 30,441 support a few of the desiderata noted here, but 
none of them provides the full support desired, and none are in widespread 
use. If programmers are going to be able to easily develop high-level algo- 
rithms using standard algorithm techniques such as divide-and-conquer, 
then the hardware and software must take many more of these factors into 
account. 

REFERENCES 

1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Data Structures and Algorithms. Addison- 
Wesley, Reading, MA, 1983. 

2. Batcher, K. E. Design of a massively parallel processor. IEEE Trans. Comput. C-29 (1980), 
836-840. 

3. Bentley, J. L. Multidimensional divide-and-conquer. Comm. ACM23 (1980), 2 14-229. 
4. Beyer, W. T. Recognition of topological invariants by iterative arrays. Ph.D. thesis, Massa- 

chusetts Institute of Technology, 1969. 
5. Cantoni, V., Ferretti, M., L&&ii, S., and Stefanelli, R. PAPIA: Pyramidal architecture for 

parallel image analysis. Proc. 7th Symp. on Comp. Arith., 1985, pp. 231-242. 
6. Danielsson, P. E., and Levialdi, S. Computer architectures for pictorial information sys- 

tems. IEEE Comput. 14 (198 l), 53-67. 
7. Gelemter, D. Generative communication in Linda. ACM Trans. Progr. Lang. Systems 

(1985). 
8. Hirschberg, D. S., Chandra, A. K., and Saxwate, D. V. Computing connected components 

on parallel computers. Comm. ACM 22 ( 1979), 46 l-464. 
9. Hummel, R. A. Image processing on the NYU Ultracomputer. Proc. Workshop on Algo- 

rithm-Guided Parallel Arch, for Auto. Target Recog.. 1984, pp. 11 l- 120. 
10. Ibrahim, H. A. H. Some image understanding algorithms on fine-grained tree-structured 

SIMD machines: Extended abstract. Proc. Workshop on Algorithm-Guided Parallel Arch. 
for Auto. Target Recog., 1984, pp. 12 1-142. 

11. Kuehn, J. T., and Siegel, H. J. Extensions to the C programming Language for SIMD/ 
MIMD parallelism. Proc. I985 Int ‘I. Co@ on Parallel Proc., pp. 232-235. 

12. Prasanna Kumar, V. K., and Eshaghian, M. Parallel geometric algorithms for digitized pic- 
tures on mesh of trees. Proc. I986 Int ‘1. Conf on Parallel Proc., pp. 270-273. 

13. Prasanna Kumar, V. K., and Raghavendra, C. S. Image processing on enhanced mesh con- 
nected computers. Proc. Comp. Arch. for Pattern Anal. and Image Database Man, 1985, 
pp, 243-247. 



114 QUENTIN F. STOUT 

14. Leiserson, C. E. Fat-trees: Universal networks for hardwareefficient supercomputers. Prof. 
1985 Int’l. Conf on Parallel Proc., pp, 393-402. 

15. Miller, R. Writing SIMD algorithms. Proc. 1985 Int’l. Conf on Computer Design: VLSI in 
Computers, pp. 122-125. 

16. Miller, R., and Stout, Q. F. Geometric algorithms for digitized pictures on a mesh-con- 
nected computer. IEEE Trans. PAMI PAMI- (1985), 2 16-228. 

17. Miller, R., and Stout, Q. F. Pyramid computer algorithms for determining geometric prop 
erties of figures. Proc. Symp. on Computational Geometry, 1985, pp. 263-27 1. 

18. Miller, R., and Stout, Q. F. Data movement techniques for the pyramid computer. SIAM 
J. Comput. 16 (1987), in press. 

19. Miller, R., and Stout, Q. F. Data movement operations for the mesh-of-trees and hypercube 
networks. Submitted for publication. 

20. Nassimi, D., and Sahni, S. Finding connected components and connected ones on a mesh- 
connected parallel computer. SIAM J. Comput. 9 (1980), 744-757. 

21. Pfrster, G. F., Brantley, W. C., George, D. A., Harvey, S. L., Kleingelder, W. J., McAuliffe, 
K. P., Melton, E. A., Norton, V. A., and Weiss, J. The IBM Research Parallel Processor 
Prototype (RP3): Introduction and architecture. Proc. 1985 Int’l. Conf on Parallel Proc., 
pp. 764-77 1. 

22. Reeves, A. P. Parallel Pascal: An extended Pascal for parahel computers. J. Parallel Distrib. 
Comput. 1(1984), 64-80. 

23. Rosenfeld, A. Fuzzy digital topology. Inform. and Control 40 (1979), 76-87. 
24. Rosenfeld, A. Parallel image processing using cellular arrays. IEEE Comput. 16 (1983) 14- 

20. 
25. Rosenfeld, A. Multiresolution Image Processing and Analysis. Springer-Verlag, Berlin, 

1984. 
26. Schaefer, D. H., Gun, Z. M., Harris, V. J., II, and Wilcox, G. C. The PMMP-A pyramid 

of MPP processing elements. Tech. rep., George Mason University, 1985. 
27. Sedgewick, R. Algorithms. Addison-Wesley, Reading, MA, 1983. 
28. Seitz, C. L. The Cosmic Cube. Comm. ACMU) (1985), 22-33. 
29. Siegel, H. J., Siegel, L. J., Kemmerer, F. C., Mueller, P. T., Jr., Smalley, H. E., Jr., and 

Smith, S. D. PASM: A partitionable SIMD/MIMD system for image processing and pattern 
recognition. IEEE Trans. Comput. C-30 ( 198 I), 934-947. 

30. Snyder, L. Parallel programming and the Poker programming environment. Computer 17 
(1984), 27-36. 

3 1. Stout, Q. F. Broadcasting in mesh-connected computers. Proc. I982 Conf on Inform. Sci. 
and Systems, pp. 85-90. 

32. Stout, Q. F. Topological matching. Proc. 15th ACMSymp. on Theory of Computing, 1983, 
pp. 24-3 1. 

33. Stout, Q. F. Mesh and pyramid computers inspired by geometric algorithms. Proc. Worlc- 
shop on Algorithm-Guided Parallel Arch. for Auto. Target Recog. ( 1984), pp. 293-3 15. 

34. Stout, Q. F. Tree-based graph algorithms for some parallel computers. Proc. 1985 Int’l. 
Conf on Parallel Proc., pp. 727-730. 

35. Stout, Q. F. Properties of divide-and-conquer algorithms for image processing. Proc. Com- 
puterdrch. for Pattern Anal. and Image DatabaseMan., 1985, pp. 203-210. 

36. Stout, Q. F. Meshes with multiple buses, Proc. 27th Found. of Comp. Sci., 1986, pp. 264- 
273. 

37. Stout, Q. F. Pyramids and hypercubes. In Cantoni, V., and Levialdi, S. (Eds.). Pyramidal 
Systemsfor Computer Vision. Springer-Verlag, New York, 1986, pp. 75-89. 



SUPPORTING DIVIDE-AND-CONQUER 115 

38. Tanimoto, S. L., and Klinger, A. Structured Computer Vision: Machine Perception through 
Hierarchical Computation Structures. Academic Press, New York, 1980. 

39. Thompson, C. D., and Kung, H. T. Sorting on a mesh-connected parallel computer. Comm. 
ACMU)(1977),263-271. 

40. Uhr, L. Layered ‘recognition cone’ networks that preprocess, classify and describe. IEEE 
Trans. Comput. C-21 (1972), 758-768. 

4 1. Ullman, J. D. Computational Aspects of VLSI. Comput. Sci. Press, Rockville, MD, 1984. 
42. Voss, K., and Klette, R. On the maximum number of edges of convex digital polygons 

included into a square. Friedrich-Schiller-Universitat Jena, Nr. N/82/6, 1982. 
43. The Connection Machine Supercomputer: A natural fit to applications needs. Thinking 

Machines Corp., 1985. 
44. Ckcam II, Inmos Corp., 1986. 
45. Report of the summer workshop on parallel algorithms and architectures. Supercomputing 

Research Center Tech. Rep., 1986. 


