
JOURNAL OF ALGORITHMS 6, 200-212 (1985)

Pyramid Computer Solutions of the Closest Pair
Problem

QUENTIN F. STOUT*

Muthematicul Sciences, State Universi+ of New York, Binghamton,

New York 13901, U.S.A.

Received March 1982

Given an N x N array of OS and Is, the closest pair problem is to determine the
minimum distance between any pair of ones. Let D be this minimum distance (or

D = 2N if there are fewer than two Is). Two solutions to this problem are given,
one requiring O(log(N) + D) time and the other O(log(N)). These solutions are for

two types of parallel computers arranged in a pyramid fashion with the base of the
pyramid containing the matrix. The results improve upon an algorithm of Dyer that
requires o(N) time on a more pOWerfd COmpUter. 0 19135 Academic Press. Inc.

1. INTRODUCTION

In the field of computational geometry, the (Zdimensional) closest pair
problem is to determine min{ d(x, y): x, y in P, x # y }, where P is a
collection of n points in 2-dimensional space and d is some metric, usually
1, (the “taxi-cab” or “Manhattan” metric), I, (“chessboard” metric), or I,
(“Euclidean” metric). (The lP distance from (a, b) to (c, d) is [(a - c)* +
(b - d)J’]l/J’ for 1 G p < cc, and is max(]a - cl,]b - dl} for p = 00.) For
suitable metrics, including all l,, metrics, this problem can be solved in
e(n*log(n)) time on a random access machine (RAM). (See Bentley and
Shamos [2], Shamos [13], or Yuval [20]. If the floor function can be
computed in unit time then even faster algorithms are possible: see Rabin
[lo] and Fortune and Hopcroft [6].) Dyer [4] has examined a related
problem arising in image processing and pattern recognition: given a metric
d and an N X N array A of OS and Is, find

min{d(p,q):p,qin{l... N} X(1... N},p#q,A(p)=A(q)=l}.

*Current address: Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, Michigan 48109, U.S.A. This research was partially supported by
National Science Foundation Grant MCS-83-01019.

200
0196-6774/85 $3.00
Copyright c’ 1985 by Academic Press. Inc.
All rights of reproduction in any folm reserved.

THE CLOSEST PAIR PROBLEM 201

If A has fewer than two 1s then we arbitrarily say that the answer is 2N,
assuming that the metric is normalized so that its values are less than 2N.
From now on, the term “closest pair problem” will refer to this second
version with the distance measured by the I, metric.

Notice that any RAM program for the closest pair problem must take
a(N *) time since each entry of A must be examined. Dyer showed that
with a log-space pyramid cellular automation (log-space PCA, defined in
Sect. 2) the closest pair problem can be solved in B(N) time using 8(N2)
processors. We introduce two new, faster solutions to the closest pair
problem. Both solutions are for parallel computers arranged in a pyramid
fashion, using O(N*) processors. The first, given in Section 3, takes
@(log(N) + D) time, where D is the answer. This solution uses a primitive
model introduced in Section 2. The second solution appears in Section 4
and takes 8(log(N)) time on a pyramid cellular automation (PCA), also
defined in Section 2.

By simulating the PCA, more powerful computers such as the log-space
PCA or the paracomputer can also solve the closest pair problem in
B(log(N)) time. The paracomputer is a model in which each processor can
transmit a value to any other processor in unit time, with arbitrarily many
of these transmissions occurring simultaneously. It is easy to show that if
write conflicts are prohibited (i.e., no two processors may simultaneously
write to the same processor at the same time), then any paracomputer
algorithm for the closest pair problem must take Q(log(N)) time, no matter
how many processors are used. Therefore our PCA solution is optimal for a
wide range of models.

2. MODELS OF PARALLEL COMPUTATION

We first recall definitions from Dyer [4]. A pyramid cellular automation
(PCA) for an input array of size 2” x 2” consists of a finite state automation
(FSA) which is replicated at each node of a complete 4-ary tree of height n.
The next state of an FSA at height k depends upon its current state and the
current state of nine neighbors: four children at height k - 1, a parent at
height k + 1, and the four adjacent nodes at level k. (For nodes along the
sides of the pyramid, missing neighbors should be thought of as being nodes
permanently in some “side” state.) The leaves form a base array which, if
there were no parents, would be a cellular array. (A cellular array is also
known as an iterative array or cellular automaton. See Cole [3], Levitt and
Kautz [7], Moore [9], or von Neumann [HI.) An input configuration is
specified by defining the initial states of the base array, with all higher
nodes in a quiescent state. A step of computation consists of a simultaneous
state transition at each node. The base array is initialized so that each node

202 QUENTIN F. STOUT

contains the corresponding entry of the matrix. Since we think of each entry
of the matrix as being a pixel (picture element) in a digitized picture, we use
the term pixel to mean a node in the base array. A pixel which is initially 1
will be called an active pixel. PCAs have appeared in Dyer [4], Dyer and
Rosenfeld [5], Sakoda [ll], Stout [15], Tanimoto [16], and Tanimoto and
Klinger [171.

A log-space pyramid cellular automation (log-space PCA) is a PCA in
which each node contains a processor having a fixed number of registers,
each of length 2k, where k is the height of the node.

We introduce a new model of computation, a centrally organized cellular
array (COCA). This is similar to a PCA, having an identical base, except
that

(i) The apex of the pyramid is a RAM.

(ii) All intermediate nodes are simple switching devices connected
only to their parent and four children. They can receive a signal from their
parent and pass it to all four children in the next time unit, and they can
receive signals from all four children and pass up their minimum in the next
time unit.

(iii) The state of a pixel at time t + 1 is determined by its state, the
states of its four adjacent pixels, and the value received from its parent, at
time t.

For all of the models, it will often be more convenient to describe nodes
sending and receiving values, instead of describing how a node’s state
depends upon those adjacent to it.

3. A COCA SOLUTION

We first give a COCA solution to the closest pair problem. Throughout
we let n = log,(N). The algorithm is quite simple.

(i) The apex signals the start, and the signal reaches all pixels at
time n.

(ii) Each active pixel starts a wave which spreads outward, at time
t + n consisting of all pixels at distance t - 1 from the active pixel.

(iii) When two waves collide a signal is sent up towards the apex,
taking n units of time.

The apex determines the solution by timing the period until the first return

THE CLOSEST PAIR PROBLEM 203

W

W W W

W W W W W

IV W W

W

n+2 n+3
time

FIG. 1. A spreading wave for the I, metric.

signal, or noting that no signal has returned by time 2n + N - 1, in which
case there are not two active pixels and the answer is 2N.

To complete the solution we need to specify how the waves propogate and
collide. To propogate a wave we use a state W. At time n the pixels receive
the state signal. At time n + 1 each active pixel goes into the W state and all
others go into a start state. The wave propogates as in Fig. 1. If a pixel is
not dormant at time n + k (k 2 1) and one of its adjacent pixels is in state
W, then the pixel goes into state W at time n + k + 1. Once a pixel reaches
state W, in the next time cycle it goes into a dormant state, remaining
dormant forever.

There are only two ways waves can collide.

(i) At time n + k (k > 1) a pixel and one of its four adjacent pixels
are both in state W. In this case both pass upo an 0 (odd) signal at time
n+k+l.

(ii) At time n + k (k 2 1) a nondormant pixel not in the W state has
an opposite pair of pixels adjacent to it, both of which are in the W state. In
this case it passes up an E (even) signal at time n + k + 1.

Notice that if there are two active pixels at distance one then at time n + 2
they both pass up an 0. If there are two at distance two then at time n + 2
there is a pixel between them which passes up an E, unless it passes up an 0
because it is also active. In general, two active pixels at distance 2k + 1 will
have their waves collide at time n + k + 1 and result in an 0 signal, while
two active pixels at distance 2k + 2 will have their waves collide at time
n + k + 1 and result in an E signal, unless their waves have been involved
in earlier collisions.

Using the ordering 0 < E, at time t + 1 each intermediate node passes
up the minimum of the signals to it at time t. If the apex first receives a
return signal passed to it at time t, then the answer is 2(t - 2n) - 1 if the
signal is an 0, while it is 2(t - 2n) if the signal is an E.

204 QUENTIN F. STOUT

4. A PCA SOLUTION

In this section we assume that the apex of the PCA is connected to some
external computer. We initially give an algorithm which works in O(log(N))
time if each node of the pyramid is a RAM with a fixed number of words
storage, each word having Q(log(N)) bits, and which can perform oper-
ations such as addition, comparison, and sending a word of data, in unit
time. (This is known as the unit cost criterion. See Aho, Hopcroft, and
Ullman [l].) This more powerful model is called the pyramid computer.
Notice that the nodes of a pyramid computer can store the coordinates of
pixels, while the nodes of a PCA cannot.

We use the informal term neighbor to mean a nearby node at the same
height.

4.1 An Algorithm for the Pyramid Computer

The central point of the algorithm is that a node P at height k > 1 is
responsible for determining if there are any active pixels beneath it which
are less than 2k+1 from any other active pixels, and if so is to determine the
minimum distance from any active pixel beneath P to any other active
pixel. Notice that if there are two active pixels beneath P then their distance
must be less than 2k+1. Also notice that if P has active pixels beneath it,
then it must check the active pixels beneath its neighbors to determine if
they are within 2 k + ’ of P’s active pixels.

More precisely, exactly one of the following will occur:

(a) P has no active pixels beneath it and passes up a message saying
so.

(b) At least one of P’s children has determined that it has an active
pixel beneath it which is less than 2k from some other active pixel, in which
case P passes up the minimum such distance received from any child.

(c) P determines that the minimum distance from an active pixel
beneath it to any other active pixel is greater than a distance being passed
up by some other node at P’s level, in which case P passes up a message
that its pixels are irrelevant to the answer.

(d) P determines that the minimum distance between an active pixel
beneath it and any other active pixel is at least 2k, and less than 2k+1, in
which case it passes up the minimum distance.

(e) P has exactly one active pixel beneath it and all other active pixels
anywhere are 2k+’ or further away, in which case P passes up the coordi-
nates of its active pixel. Coordinates are relative so P uses k bits to specify
each component of the coordinates.

THE CLOSEST PAIR PROBLEM 205

1 0 0 0 0 1 0 0
(0.01 N (0.1) N

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
Cl,11 N N d=2

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0
N N N d=Z

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
N N N N

0 0 0 0 0 0 0 0

a) base pixels b) height k=l

X d=2

d=2

N d=?

c) height k=2 d) height k=3

FIG. 2. Values calculated at the nodes. N-no active pixels beneath; X-minimum
distance cannot involve pixels below; (u, h)-one active pixel at relative position (u, h); d = i

-minimum distance from any active pixel below to any other active pixel.

The algorithm proceeds by having all nodes at height 1 compute their
values in stage 1, then all at height 2 compute their values in stage 2, etc.
There is a constant c such that each stage takes c units of time, resulting in
8(log(N)) total time. Figure 2 gives an example which shows the informa-
tion passed up by each node.

Suppose that the correct answer is D. We will show that the algorithm
works properly by showing that the following invariant is maintained: at the
end of stage i, if 2’+l > D then at least one node at height i sends up
distance D, while otherwise every active pixel has its coordinates sent up,
and no distances are sent up. We call this the stage invariant.

4.1.1 The Node Algorithm

To see how each node performs its calculations, suppose P is at height
k > 1. (The pixels at height 0 merely pass up either 0 or 1, corresponding to

206 QUENTIN F. STOUT

FIG. 3. Neighbors above pixels within 2**[height(A) + l] of pixels beneath A.

their initial contents.) Each of P’s children sends it one piece of informa-
tion. If none of them had active pixels, then case (a) holds. If any of them
pass up a type (b) or (d) message, i.e., a distance, then case (b) holds, since
that distance must be less than 2 k. Notice that, because of the stage
invariant, P knows that D was passed up by the previous stage, and has
ensured that if it received D then it has passed D up.

If P receives no distances, but receives a type (c) message from a child,
then it sends up a type (c) message. In this case it also knows that D was
passed up in the previous stage, but it cannot possibly have received it.

Finally, suppose P receives only type (a) and (e) messages, with at least
one child sending up the coordinates of an active pixel. P must determine
whether cases (c), (d), or (e) apply. Any pixel within 2k+1 of a pixel beneath
P must be beneath P or one of the twenty neighbors indicated in Fig. 3.
Each of these neighbors exchanges with P the coordinates of all known
subordinate active pixels. Since a node receives the coordinates of at most
one active pixel from each child, P exchanges at most 4 coordinates with
any other node. This occurs in parallel throughout P’s level, taking a fixed
amount of time independent of the height. P receives at most 80 coordi-
nates from its neighbors, and in a fixed amount of time can compute the
minimum distance between an active pixel beneath it and any other active
pixel received. If this distance is less than 2k+1 then case (d) holds and the
distance is passed up. Otherwise case (e) holds, P has exactly one .active
pixel beneath it, and passes up its coordinates. (Recall that if P has two
active pixels beneath it then they must be less than 2k+’ from each other.)

Actually, it may be that not all of P’s neighbors will agree to exchange
coordinates of active pixels. If one of them had received a distance or type
(c) message from a child, then it knows that the answer was computed at a

THE CLOSEST PAIR PROBLEM 207

previous stage, and so sends a message to P, telling it that its efforts are in
vain. In this situation, P sends up a type (c) message.

4.1.2. Maintaining the Stage Invariant

To see that the stage invariant is maintained, suppose it was true for the
k - 1st stage, and it will be shown to be true for the kth stage. If D < 2k
then at least one of the nodes on the level below sent up the correct
distance. The only way a distance sent at stage k - 1 can fail to be passed
up to the k + 1st level is if it was received by a node which also received a
smaller distance. Therefore the minimum distance D must be passed up to
the next stage. (Since any distance created is correct, distances too small can
never occur.)

If D z 2k+1 then the coordinates of each active pixel were sent up by the
previous stage, and it must be that every node at the previous stage passed
up either a type (a) or (e) message. Further, no node at level k which
received the coordinates of an active pixel received the coordinates of more
than one active pixel, for otherwise they would have been within 2k+1 of
each other. After checking its neighbors, such a node determines that case
(e) holds, and it passes up the coordinates. Therefore every active pixel is
passed up to the next level.

Finally, if 2k Q D < 2kt1 then all nodes of the level below passed up
either type (a) or (e) messages, and all active pixels reach their ancestors at
height k. Since each node at height k which received the coordinates of an
active pixel checked its appropriate neighbors, each active pixel which is
within 2k+1 of another will have its height k ancestor determine its minimal
distance to any other active pixel. Therefore at least one node at level k
computes D and passes it up, and the stage invariant is maintained.

One final technicality is that the first stage must be separately considered,
since the above proof is inductive. For this we note that the pixels sent up
their 0 or 1 values, so all active pixels reached their level 1 ancestors and the
situation is as described in the last paragraph.

4.2 The PCA Algorithm

Using RAMS at each node with unit time operations, the above algorithm
is finished in @(log(N)) time. Since each operation involving a node at
height k uses numbers of at most k + 2 bits, a log-space PCA can also run
the algorithm. If a unit time criterion is used for the log-space PCA
operations, then the algorithm will finish in e(log(N)). If instead one

208 QUENTIN F. STOUT

assumes the nodes at the ith level need O(i) time to perform their calcula-
tions, then it will take f?(i) time to perform the ith stage, and e(log(N)‘)
total time. To convert this to a @(log(N)) algorithm for a PCA without
logarithmic space we need to revise the algorithm so that there is a uniform
bound on the information being stored at any node and on the delay each
level needs before starting to pass information up to the next level. We
transform the algorithm piecemeal to achieve these requirements.

First, each node must compute and pass its answer one bit at a time. If an
FSA is simultaneously given four numbers of equal but arbitrary length, one
bit at a time with the high-order bits first, then it can output their minimum
in a bitwise fashion, high-order bit first. Therefore all distances are passed
up high-order bits first, synchronized so that all distances in the range 2k to
2kil _ 1 (i.e., all distances first computed at stage k) start arriving at a
node before any distances 2k + ’ or greater. Since greater distances arrive
later, they are ignored.

A node may need to compute distances between several pairs of points,
though the number of such pairs does not depend on the node’s height. To
see how such calculations are performed, all in parallel, suppose P is a node
at height k which needs to compute the distance between active pixels at
positions (xi, yi) and (x2, y2). Since each pixel is either beneath P or one of
the neighbors indicated in Fig. 3, only k + 2 bits are needed to specify xi,
yi, x2, and y,. Coordinates will be passed starting with the low-order bit. If
P knew that x2 > xi and y2 > y,, then it could compute the distance
bitwise, low-order bit first. Unfortunately, sometimes P can only be sure of
the relative values of one set of coordinates. For example, if (xi, yi) is
beneath P's lower left child and (x2, y2) is beneath P ‘s right neighbor, then
x2 > xi, but there is no initial knowledge about the ordering of the y ‘s. In
such cases P does two bitwise calculations, one assuming y, 2 yi and the
other assuming y, < y,. Only when P is finished receiving yi and y2 will it
know which calculation was correct.

As each bit is calculated P passes it to its lower left child, which in turn
passes it to its lower left child, and so on. When a bit reaches a base node it
is stored and the pixel sends a signal to its parent to stop passing bits for
this calculation. The next bit is stored by this parent at height 1, which then
informs its parent to stop sending, and so on.

P performs all of its distance calculations in parallel, and when they are
finished it contains the high-order bits for each and, in those cases where
two calculations were being done for the same pair of points, now knows
which is correct. At this point it can determine if case (d) or (e) holds, and if
case (d) holds then it starts computing the minimum of all correct distance
calculations. Notice that the order of the bits has been reversed, so they are
now in the correct order to be passed up as distances. These calculations
introduce a delay of B(height(P)) before P can pass along distance informa-

THE CLOSEST PAIR PROBLEM 209

tion, but such a delay can happen only once on any path from a pixel to the
apex. In particular, no distance expressible in k bits need wait for any
calculations involving distances expressed in k + 1 or more bits, nor for any
calculations involving distances expressed in k - 1 or fewer bits. Therefore
the delays are not multiplicative, and the entire calculation is done in
O(log(N)) time.

There is another detail to consider. If P has two or more active pixels
beneath it, and received no distances or type (c) messages, then P is certain
that it will pass up a distance or type (c) message. However, if it has only
one active pixel beneath it then it is initially unsure wheter cases (c), (d), or
(e) apply. For example, there may be another active pixel beneath one of
P’s neighbors, but only after computing distances can P determine that the
distance is too large and that case (e) applies, meaning that P should have
been passing up the coordinates of its subordinate active pixel. To avoid
introducing delays which would be multiplicative, whenever a node has only
one active pixel beneath it (and receives no distances nor type (c) messages),
it passes up the pixel’s coordinates as it is also calculating distances. (A
node receives the coordinates of an active pixel as k - 1 pairs of bits,
low-order bits first, followed by a signal that they are finished. It passes
these along in the order received, then adds a pair of bits indicating which
child this pixel is under, and then passes the signal that the coordinates are
finished.) If the distances are too large they are ignored, while otherwise
they are starting up at their usual time.

This causes one final problem: since the distance calculations are tempor-
arily stored in subordinate nodes, and since distance calculations could be
proceeding concurrently at several levels on the same path, we need to be
sure that there is a uniform bound on the amount of information any node
is being asked to store. Notice that if a node at height k is computing the
distance between two active pixels then their distance cannot exceed 5*2k.
(See Fig. 3). Even if the distance exceeds 2k+’ - 1, it will be in the correct
range for the node’s parent or grandparent. Therefore no node need store
calculations for more than three levels, which will be the first three trying to
store values. Any later attempts to store information will be ignored, since
they will result in distances no less than the ones previously started.

The complete algorithm for the PCA is quite complicated, and can
probably be simplified considerably. We have tried to outline its develop-
ment in a natural manner, which seems useful for several PCA algorithms.
This consists primarily of first developing an algorithm for the pyramid
computer with RAMS at each node, and then modifying the algorithm to
replace the RAMS with FSA. A similar approach has been used in Stout
[15], where the “clerk” data structure aids in the modification. Using RAMS
one can see a forest, while the FSA model seems to be one knotty tree after
another.

210 QUENTIN F. STOUT

5. CONCLUSION

We have shown that the centrally organized cellular array can solve the
closest pair problem in B(log(N) + D) time, where D is the answer, and
that the pyramid cellular automation can solve this problem in @log(N))
time. Since any parallel computer which prohibits write conflicts must take
a(log(N)) time for this problem, this shows that, among the wide variety of
parallel computers prohibiting write conflicts, the PCA is an optimal
architecture for the problem. It seems to be the “simplest” optimal architec-
ture, although we see no way of proving this, nor even of stating it precisely,
since there does not even appear to be a good way of defining when one
architecture is simpler than another.

Besides our models and Dyer’s log-space PCA, this problem has been
considered for other parallel computers. In Miller and Stout [8] an al-
gorithm taking 8(N) time is given for an N x N mesh-connected computer.
A mesh-connected computer is like a cellular array, except that the nodes
are RAMS with unit time operations. In Stout [14] an algorithm taking
0(N *13) time is given for an N x N mesh-connected computer with broad-
casting. Broadcasting is a feature whereby a node can send a word of
information to all other nodes in unit time, with the restriction that only one
such message at a time can occur. Both of these algorithms are optimal for
their respective models.

Our pyramid computer algorithm can be used to give an optimal al-
gorithm for the uniprocessor RAM. As was mentioned in Section 1, the
uniprocessor RAM must take G!(N *) time. To achieve this lower bound, the
RAM simulates the pyramid computer. Since the pyramid has ($)N * - (f)
nodes, normally the RAM would need 8(T *N *) time to simulate an
algorithm taking T time units on the pyramid computer. However, our
algorithm has the property that only nodes at level i do any calculations
during stage i. Using this, it takes the RAM CN* time to simulate the first
stage for some constant C, CN */4 time to simulate the second stage, and so
on, for t9(N *) total time.

The algorithms in this paper are for the I, metric, but can be easily
adapted to the I, metric. For the COCA, this means that the waves spread
as squares with edges parallel to the sides of the base, instead of the
diamond pattern of the 1, metric. To extend the algorithms to, say, the I,
metric requires more effort. For the pyramid computer algorithm there are
few changes, particularly if one compares the squares of distances, saving
the square root operation until the very end. For the PCA there is additional
difficulty in performing the multiplications, which can be overcome using
clerks [15]. Clerks can also be used to help give a COCA solution to the I,
closest pair problem. Such modifications would add a great deal of com-
plication, and their details are of little value.

THE CLOSEST PAIR PROBLEM 211

Pyramid-like architectures have been discussed for some time (Uhr [19]),
but only recently has it become feasible to build such a structure. One such
machine is already under construction (Schaefer [12]). Pyramids have a
simple, regular structure which offers the potential of logarithmic al-
gorithms, although, as we have seen, it sometimes requires a fair amount of
effort to achieve that potential.

ACKNOWLEDGMENTS

The author would like to thank Bette Warren and the reviewer for several useful suggestions.

REFERENCES

1. A. V. AHO, J. C. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1975.

2. J. L. BENTLEY AND M. I. !&AMOS. Divide and conquer in multidimensional space, in “Proc.
8th ACM Sympos. on Theory of Computing, 1976,” pp. 220-230.

3. S. N. COLE, Real-time computations by n-dimensional iterative arrays of finite-state
machines, IEEE Truns. Comput. C-18 (1969), 349-365.

4. C. R. DYER, A fast parallel algorithm for the closest pair problem, Inform. Process. Lett.

11 (1980). 49-52.
5. C. R. DYER AND A. ROSENFELD, “Cellular Pyramids for Image Analysis,” TR-544,

Computer Science Center, Univ. of Maryland, 1977.
6. S. FORTUNE AND J. HOPCROFT, A note on Rabin’s nearest neighbor algorithm, Inform.

Process. Lett. 8 (1976). 20-23.

7. K. N. LEVITT AND W. H. KLUTZ, Cellular arrays for the solution of graph problems,
Commun. ACM 15 (1972), 789-801.

8. R. MILLER AND Q. F. STOUT, Geometric algorithms for digitized pictures on a mesh-con-

nected computer, IEEE Truns. Pattern And. Mach. Intell. 7 (1985). 216-228.
9. E. F. MOORE, Machine models of self-reproduction, in “Proc. Sympos. in Applied Math.,”

No. 14, 1962, pp. 17-33.

10. M. 0. RABIN, Probabilistic algorithms, in “Algorithms and Complexity: New Directions
and Recent Results” (J. F. Traub, Ed.), pp. 21-39, Academic Press, New York, 1976.

11. B. SAKODA, “Parallel Construction of Polygonal Boundaries from Given Vertices on a

Raster,” Comput. Sci. Dept. Report CS81-21. Penn. State Univ., 1981.
12. D. H. SCHAEFER et uI., “A Pyramid of MPP Processing Elements,” Tech. report, George

Mason Univ., 1984.
13. M. I. SHAMOS, Geometric complexity, in “Proc. 7th ACM Sympos. on Theory of Comput-

ing, 1975,” pp. 224-233.
14. Q. F. STOUT, Broadcasting in mesh-connected computers, in “Proc. 1982 Conf. on Inform.

Sci. Systems,” Princeton Univ., pp. 85-90.
15. Q. F. STOUT, Drawing straight lines with a pyramid cellular automaton, Inform. Proc.

Lett. 15 (1982). 233-237.

16. S. L. TANIMOTO, Towards hierarchical cellular logic: Design considerations for pyramid
machines, Dept. of Comput. Sci. Tech. Report 81-02-01, Univ. of Washington, 1981.

212 QUENTIN F. STOUT

17. S. L. TANIMOTO AND A. KLINGER, “Structured Computer Vision: Machine Perception
through Hierarchical Computation Structures, ” Academic Press, New York, 1980.

18. J. VON NEUMANN, “The Theory of Automata: Construction, Reproduction, and Homo-

geneity,” (A. Burks, Ed.), Univ. of Illinois Press, Urbana, 1966.
19. L. UHR, Layered “recognition cone” networks that preprocess, classify, and describe,

IEEE Truns. Comput. C-21 (1972), 758-768.

20. G. YUVAL, Finding nearest neighbors, Inform. Process. Lett. 5 (1976), 63-65.

