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We consider the relationships between binary search algorithms and binary 
prefix encodings of infinite linearly ordered sets. It is known that each search 
algorithm determines a prefix code, and in three cases we show to what extent 
the converse is true. For sets similar to the natural numbers we show that 
search-related codes are as flexible as all prefix codes, while for general ordered 
sets they are only asymptotically as flexible. 
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1. INTRODUCTION 

This paper  is concerned with the connect ions between near ly  opt imal  
searching in an infinite l inearly ordered set and efficient prefix encodings of  
that  set. Searching and prefix encoding of  finite sets are topics with a long 
his tory and extensive l i terature (see Knuth  (13) or Gallager(8)),  but only 
recently has at tention focused on infinite sets. Efficient prefix encodings of  
the natural  numbers  appear  in Elias, (5~ Even and Rodeh,  {v) Levenshtein,  (ts) 
and Stout, (23) and near ly  opt imal  searches for the natural  numbers  appear  in 
Bentley and Yao, (2) Raoul t  and Vuillemin, (19) and Stout. (24) These codes and 
searches have helped solve problems concerning channel capaci ty ,  (s) message 
separat ion,  ~7) da ta  compression,  (21) and comput ing the dis tance between 
leaves of  a tree. (17) Raoul t  and Vuillemin ~19) consider  searching and 
encoding of  the natural  numbers  and also searching in the posit ive real 
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numbers. Further, Papadimitriou ~ls) and Reiss ~2~ consider searches in finite 
parts of the rationals and show their relevance to linear programming. 

We study both encodings and searchings simultaneously because of 
their strong connections. Any deterministic search algorithm with only 
"yes/no" questions corresponds to a binary prefix encoding of the set being 
searched. This is accomplished by representing the search algorithm by its 
decision tree and labeling each "yes" branch with a 0 and each "no" with a 
1. There is a 1 -- 1 correspondence between the leaves of this tree and the 
elements of the set, and we encode each element of the set with the string of 
the labels along the path from the root to the leaf corresponding to the 
element. For example, Fig. 1 shows a search and its corresponding encoding 
for the set {0, 1, 2,..}. Here the number n is encoded as In~2] l 's followed by 
a 0 followed by n rood 2. We call a code which arises in this manner a 
search eode. We will explore the extent of search codes within the collection 
of all prefix codes. 

0 1 
Code Code 
00 01 0 

Q 

Fig. 1. 

2 3 
Code Code 
100 i01 

A search code. 
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We consider situations where there is no probability distribution on the 
underlying set. When there is one then there may be natural definitions of 
optimal search and encoding, and in some cases results from finite sets can 
be extended to infinite sets. (See Gallager and van Vorhis ~9~ or 
Golomb~~ Without probability distributions one must define new 
notions of efficiency and optimality. Several have proposed such definitions, 
but we will not do so because we are interested in results linking arbitrary 
codes and searches. Nonetheless, the most important applications involve 
efficient codes. Bentley and Yao determined an "almost optimal" algorithm 
for searching the natural numbers and noted that the corresponding search 
code was similar to the "asymptotically optimal" encodings of Elias, Even, 
and Rodeh. The similarities that they had found motivated Bentley and Yao 
to ask "Does there exist a search strategy corresponding to every prefix code 
for the (positive) integers? Does the framework of unbounded searching 
provide any insight into problems in information theory?" 

We answer these questions in section 3. There are many natural ways 
that a search strategy and a prefix code can be compared, and we analyze 
three such comparisons. The nature of the solutions makes it clear that the 
order type of the underlying set plays a critical role, which leads us to 
consider other order types. In section 4 we consider the integers in detail, and 
in sections 5 and 6 we analyze arbitrary order types. 

Our emphasis is on transfering searches and encodings, one to the other, 
through search codes. Besides acting as a gluon between searching and 
coding theory, we believe search codes deserve attention for their inherent 
usefulness. For example, both encoding and decoding are natural for search 
codes, but only decoding is easy for an arbitrary prefix code. Search codes 
preserve the order structure of the set, permitting efficient computation of the 
order relation. Further, we will show that for certain ordered sets, such as the 
natural numbers, there is no loss of flexibility in restricting prefix codes to 
the set of search codes, and for general ordered sets there is no asymptotic 
loss. The applications in ~2'17'18'19'2~ all rely on efficient search codes. 

All theorems except the last are effective in the sense that if one is given 
an encoding known to satisfy the hypotheses, then an algorithm is given to 
find the encoding promised in the conclusion. The last theorem should be 
considered as a purely mathematical result which we hope will point the way 
for further research on effective results. This paper should be considered as 
an initial attempt to study the theoretical underpinnings of infinite search 
and infinite prefix codes, and as such raises more questions than it answers. 
In particular, at some points we have been forced to make choices and 
consider one option among several equally valid ones. 
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2. PRELIMINARIES 

Unless otherwise stated, ordered means linearly ordered, all sets are 
countably infinite, all trees are binary, rooted, and complete, and all prefix 
codes are binary and complete, that is, if P is a prefix code then no new 
codeword may be added to P without destroying its prefix property. To any 
complete binary prefix code there corresponds a rooted binary tree such that 
each interior node has two subtrees, each of which contains at least one leaf. 
Such trees form a proper subset of the rooted complete trees since, for 
example, the rooted complete infinite tree with no leaves corresponds to no 
code. We think of trees as having their roots on top. In the correspondance 
between trees and prefix codes an edge to the left represents a 0 and one to 
the right represents a 1. For example, if P encodes the numbers 0, 1, 2 .... in 
the unary encoding 0, 10, 110 ..... then the tree for P will have an infinite 
branch to the right and a single leaf at each depth. Our convention is that the 
root is at depth 0, which means that a leaf at depth n represents a codeword 
of length n. 

For a node p, R(p)  denotes the set of leaves in the right subtree o f p  
and L(p)  denotes the set of leaves in the left subtree. When L(p)  ~) R(p)  is 
infinite we say that p is a major node. The major nodes form an incomplete 
subtree without leaves. If l and m are nodes or leaves we say that l 
lexicographically preceeds m if the labeled path from the root to ! is 
lexicographically less than the labeled path to m. Equivalently, l 
lexicographically preceeds m if and only if either m E R(I), I E L(m), or 
there is a node p such that l E L(p)  and m E R(p). If  X is an ordered set 
then an encoding P of X is order preserving if for every xl ,  x 2 E X such that 
x 1 < x z, P(x 0 lexicographically preceeds P(x2). 

We use N to denote the natural numbers {1, 2,...}, Z for the integers, 
and co for the first infinite ordinal. For a natural number n we use co + n to 
denote the ordered set { 1, 2 ..... co, co + 1,..., co + n - 1 }. 

For any infinite set X and any prefix code P for X we define a new 
prefix code P* for N by sorting the codewords of P first by length and then, 
among words of the same length, lexicographically. P*(n) is then the n-th 
codeword of P under this ordering. P*  can also be determined by taking the 
tree corresponding to P and encoding n by the n-th codeword appearing in a 
breadth-first, left to right search. For the reader familiar with finite trees it is 
important to keep in mind that in an infinite tree a breadth-first traversal will 
visit the entire tree, but a preorder or inorder traversal may not and a 
postorder traversal cannot. 

For an ordered set X we consider search strategies which use only 
questions of the form "Is  it <x?"  or "Is it ~<x?" for some x in X. If  every 
element x has a successor x + then any question of the form "Is it ~ x ? "  can 
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be rewritten as "Is it <x+?  ' ', and if every element x has a predecessor x -  
then any question of the form "Is it <x?"  can be rewritten as "Is it ~<x-?" 
However, some ordered sets have elements which have neither predecessors 
nor successors, in which case both types of questions are needed. If  x is such 
an element then the only way to find that the answer is x using only a finite 
number of questions is to ask both "Is it ~<x?" and "Is it <x?"  Another 
possibility is to introduce questions of the form "Is it = x?"  However, this 
destroys the order-preserving properties of searches, which are central to 
several of our results. Nonetheless, it is an interesting topic for future 
research. Also notice that certain questions are forbidden. For example, if we 
are searching the rational numbers then "Is it <x/~?" is not allowed. An 
interesting problem is to decide which of our results would change by 
allowing such questions. This would not effect any of our results for rational 
numbers, but the comments following Proposition 10 show that certain other 
results change for trivial reasons. The most interesting problem is to 
determine its effect on extensions of Theorem 4c to other ordered sets. (See 
Stout(25~.) 

For an ordered set X we say a tree T is a search tree for X if the leaves 
of T are labeled with the elements of X in lexicographic order and each node 
is labeled either " < x "  or "~<x" for some x in X such that the tree is 
consistent. That is, if a node p is labeled " < x "  then x must be the minimal 
label of a leaf in R(p), or i fp  is labeled "~<x" then x is the maximal label of 
a leaf in L(p). Search trees, also called comparison trees, capture the 
essential properties of search algorithms. Because of this we regard search 
trees as representing the possible search algorithms. The prefix code 
corresponding to a search tree is called a search code, and the set of all 
search codes for X is denoted Y(X) .  

Lemma 1. Let X be an ordered set, P be a prefix code for X, and T 
be the tree corresponding to P. A necessary and sufficient condition that P 
be a search code for X is that P be order preserving, and for any node p of 
T, L(p) has a lexicographically maximal element and/or R(p) has a 
lexicographically minimal element. 

Proof. The necessity is obvious from the above discussion. To show 
sufficiency we must show how to label the nodes of T. Let p be a node. If  
L(p) has a lexicographically maximal element let x be its label and label p 
as "~<x". Otherwise let x be the label of the lexicographically minimal 
element of R(p )  and labe lp  as "<x" .  II 

We will see that in certain circumstances P being order preserving will 
be sufficient to guarantee that it is a search code. 

The following lemma is just a restatement of the Kraft-McMillan 
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equality for finite codes and its proof will not be given. See, for example, 
Gallager ~8) or Even. (6) 

Lemma 2. a) Let T be a finite complete tree with leaves l~ ..... I n in 
lexicographic order, let p be a node of T, let k (p )  = max{/< n :  l i E L(p)}, 
and let k ' ( p )  = max{/~< n: l i E R(p)}. Then k (p )  < k ' (p ) ,  

k(p) 
S ~ 

i = l  

2 - d e p t h ( i i )  -~  L / 2  - d e p t h ( p )  + 1 

for some odd integer L, and 

k'(p)  

V 
i = 1  

2 -depth(l/) = (L + 1)/2 depth(p)+1 

In particular, ~2~=1 2 - d e p t h ( / i )  ~ 1. 

b) Conversely, let dl,..., dn be a sequence of positive integers. Then 
there is a finite tree with leaves ll ,..., l, in lexicographic order such that d i = 
depth(li) iff whenever Y'~=I 2 - d i = L / 2  M where L is odd and k < n, then 
there is a k < k'  ~< n such that Y~'=I 2-a~ =- (L + 1)/2 M. I 

It is impossible to extend Lemma 2 to infinite trees. Fortunately we only 
need a much weaker extension. We use I [ t o  denote length. 

Theorem 3. (2s) Let P be a complete prefix code for some countably 
infinite set X, and define the function d by d(x) = I P(x)l for x ~ X. Then 

O< ~ 2 -a~i) ~ l 
xEX 

Conversely, let X be a countably infinite set and let d: X ~  N be such that 

0 <  ~ 2-d(x)~<l 
x E X  

Then there is a complete prefix code P for X such that d(x) = I P(x)l for all x 
in X. II 

Given a code P on a set X we call ~x~x 2-tP(x)l the characteristic sum of P. 

3. SEARCH CODES FOR THE NATURAL NUMBERS 

There are several ways in which two prefix codes P and Q for the set X 
could be said to be equivalent. The strongest equivalence is identity, in which 
case P(x)  = Q(x) for all x in X. A commonly used equivalence is to require 
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IP(x)l = I Q(x)l for all x in X. When X has a probability distribution this 
equivalence preserves the expected codeword length. The weakest 
equivalence which is useful is to require that the codes have the same 
number of codewords of each length, or, equivalently, IP*(n)] = I Q*(n)l for 
all n in N. In our opinion this last equivalence is particularly appropriate 
when there is no underlying probability distribution on X. This equivalence 
has been studied in Boyd (3) and Golomb. C~) 

The next theorem answers Bentley and Yao's question concerning 
search codes for N, at least for the three forms of equivalence discussed 
above. 

Theorem 4. Let P be a complete prefix code for of N. Then there is 
a search encoding S and N such that 

1. P(n) = S(n) for all n iff P is order-preserving. 

~n=l  2 -  = L /2  ~ where L 2. lP(n)l=JS(n)l for all n iffwhenever k Im,)l 
is odd and L < 2  v - l ,  then there is a k ' > k  such that 
~.n=lk' 2-1P(n)l = ( L +  1)/2 M. 

3. ]P*(n)l --- I S*(n)l for all n iff the characteristic sum of P is 1. 

ProoL a) By Lemma 1 it suffices to show that if P is order-preserving, 
T is the tree corresponding to P, and p is any internal node of T, then L ( p )  
has a maximal element. Since P is complete, R(p )  is nonempty. If k is a 
label of a leaf in R (p) then the order-preserving property of P shows that the 
labels of the leaves in L ( p )  are a subset of the natural numbers less than k, 
and hence L ( p )  is finite and has a maximal element. 

b) Note that any search tree for N has exactly one infinite path, which 
is the rightmost path of the tree. To show necessity, let S E Y ( N )  and let k 
be any integer. Let p be the node of Ss tree which is the lexicographic 
successor of the leaf corresponding to S(k). Let M = depth(p) + 1. Then by 
Lemma 2a, ~ 2 -Is~"~q ~,=1 = L / 2  M where L is odd. If L < 2 M -  1 then P is 
not the rightmost node at its depth, and hence not major. Therefore R (p) is a 
finite set. If k'  is the maximal label of a leaf in R(p) ,  then k'  > k and 
Z~'=~ 2-1s~")l = (L + 1)/2 "~t. 

To show sufficiency, assume that P has the indicated property. We 
claim that for any l in N there is a number N(I) such that ~N(t) 2-fe( , )S_ z k . a n  = 1 

1 - -2  -t. We define N(0) to be 0. To find N(1), let M =  tP(1)I. If M =  1 then 
2 -Imn)l 1/2 ~t, so by the property of P N(1) equals 1. Otherwise, Y~=I = 

kl tP(n)l there is a kl such that ~ .=1  2 -  = 2/2 M = 1/2 ~-~. Repeated usage of 
the property of P gives a sequence 1 < k l  , ( k  2 . , .  <kM_ 1 such that 

ki - I P ( n ) l  ~ , = ~ 2  = l/2M-i for l <~ i <. M - - 1 .  Set N(1) equal to Kg_  1. Having 
found N(I), let K =  tP(N(I) + 1)]. Then K~> I +  1 and v~u~t)+a 2 -le~")l - / - . . .an = 1 

828/J1/1-5 
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1 - 2 - t  + 2 -K = [2K-t(2 t -  1) + 11/2 K. As before, repeated use of the 
property finds N(l + 1), which completes the claim. 

We will now use the N(I) to build a search tree for N. By Lemma 2b 
there is an S l of Y ( { N ( / -  1 ) +  1,..., N(/)}) satisfying [Sl(n)[ = IP(n)l- l for 
all N(1--1)< n<.N(1). Our tree consists of the tree for the St and extra 
nodes PI, l C N. The root of the tree is Pl .  The left subtree of pl is Sis tree 
and its right subtree is the subtree with root P1+1. The label for Pt is "~-.N(/)". 
If S is the code corresponding to this tree then IS(n)l = IP(n)l for all n. 

c) The necessity of the condition was shown in the proof of b. To 
show sufficiency, we will actually show that if ~.n 2-1mn)l = 1 then there is 
an S C Y ( N )  such that IP*(n)l = IS(n)l for all n, in which case S* = S. To 
do this we merely note that since Y'., 2-1P*(")l = 1 and the codewords of P* 
are ordered by length, P* satisfies b. 1 

Corollary 5. Let P be a prefix encoding, complete or otherwise, of 
some infinite set. Then there is an S in Y ( N )  such that Ie*(n)l >~ IS(n)l for 
all n. 

Proof. If the characteristic sum of P equals 1 then this follows from 
the proof of Theorem 4c. Otherwise there exists a function d: N ~ N such 
that d(n)<~ (P*(n)l for all n and Y~, 2 -a~")=  1. By Theorem 3 there is a 
prefix code Q for N such that [Q(n) l=d(n)  for all n. By the proof of 
Theorem4c there is a search code S for N such that IS(n)[ = IQ*(n)l <~ 
IP*(n)l for all n. | 

There are many conditions on a complete prefix code which guarantee 
that its characteristic sum is 1, and hence that allow Theorem 4c to be 
applied. Two of the simplest are given in the following corollary. 

Corollary 6. Let P be a complete prefix encoding of N. If either 

a) For any n there are only finitely many codewords of P which 
lexicographically precede P(n), or 

b) There is an integer K such that Ps tree has at most K major nodes 
at any depth, 

then the characteristic sum of P is 1 and hence there is a search code 
S@ S(N) such that [P*(n)l-= IS*(n)l for all n. 

Proof. a) Suppose P has two major nodes p and q at the same depth, 
where p lexicographically precedes q. The subtree rooted at p has infinitely 
many leaves, all of which lexicographically preceed each leaf of q. Therefore 
condition a implies condition b with K = 1. b) Assume that the condition 
holds. Let T be the tree for P, and let d be an element of N. If each major 
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node of T at depth d is replaced by a leaf then the characteristic sum of the 
resulting finite tree is 1, and therefore the characteristic sum of T is at least 
1 - K 2  -d.  Letting d-~ oo gives the result. | 

We note that there are simple examples which show that the converse of 
Corollary 6 is incorrect, i.e., there are prefix encodings of N whose Kraft 
sum is 1 but which satisfy neither a nor b. In fact, there are prefix encodings 
of N which fail to satisfy a or b) and yet which satisfy the condition of 
Theorem 4b. On the other hand, any encoding satisfying the condition of 
Theorem 4a must satisfy conditions a and b of Corollary 6. 

4. SEARCH CODES FOR THE INTEGERS 

In this section we provide the integer analogue of Theorem 4. The 
reasons for this analysis are fourfold: first, the integers are an important 
ordered set. Second, the results here provide a useful contrast to the results 
of the last section, showing the extent to which the order properties of N are 
reflected in Y ( N ) .  In fact, one might read Corollary 5 as showing that for 
some purposes there are no differences between search codes and the set of 
all prefix codes, an impression which will be corrected here. Finally, the 
results of this section and the preceding one motivate our consideration of 
omnipotence, a concept introduced and analyzed in the next two sections. 
They also show how the order preserving properties of search codes impose 
restrictions. If  we allowed order destroying questions such as "Is x = 0?" 
then one could have a search encoding S of Z such that IS(0)I = 1, which is 
impossible with our restrictions. 

Theorem 7. Let P be a prefix encoding of Z. Then there is a search 
encoding S C Y ( Z )  such that 

a) P(n )  = S ( n )  for all n in Z iff P is lexicographically ordered. 

b) iP(n)l = IS(n)t  for all n in Z iff whenever k -le(,)j Z ,  = -oo 2 = L / 2  'v* 
where L is odd and L < 2 M -  1, then there is a k '  < k such that 
Z~'---oo 2-1~(")' = (L + 1)/2 M. 

c) lP*(n)l = IS*(n) l  for all n in N iff the characteristic sum of P is 1 
and for any k/> 1, Ps tree has at least two nodes at depth k which 
are not leaves. 

ProoE Let S C Y ( Z )  and let p be the root of S. No matter how p is 
labeled, its right subtree will be a search tree for a translated copy of N and 
its left subtree will be a mirror image of such a tree. We infer that at every 
depth beyond zero there are exactly two major nodes, and there are no leaves 
at depth one. Using this, a and b follow essentially as in Theorem 4 and their 
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proof will not be given here. For c we first prove necessity. The necessity of 
the characteristic sum being 1 follows from b. Suppose there is only one 
node of Ps tree at depth k which is not a leaf. Then it is the only major node 
of Ps tree at that depth. Further, if N is the number of leaves of depth k or 
less, then any prefix code Q such that [P*(n)l = [Q*(n)[ for 1 ~<n ~<N will 
also have only one major node at depth k. Therefore Qs tree cannot be the 
tree of any member of Y ( Z ) .  

To show the sufficiency of c, we need to partition the multiset {IP*(n)[: 
n C N} into two infinite multisets M 1 and M 2 such that ZmeM1 2 - m =  
Y~m~M2 2-m = 1/2. We can then use Theorem 2 to find $1, $2 E Y ( N )  such 
that { [S* (n ) [+ l :  n C N } = M  1 and { I S * ( n ) [ + l :  n ~ N } = M  2. Our tree 
would then have a top node with left subtree a mirror image of S1 s tree and 
right subtree equal to S 2 s tree. To find Mj and M 2 we will iteratively show 
how to allocate [P*(n)[ to either M~ or M 2 in such a way that after all 
IP*(n)[ less than or equal to k have been allocated, then Y~ {2-m: m ~ M 1, 
m ~< k} ~ 1 / 2 -  1/2 k and Y~ {2-m: m E M 2, m ~ k} ~< 1 / 2 -  1/2 k. Assuming 
this has been done for k we show how to do it for k + 1. Since at least 2 
nodes of depth k + 1 are not leaves, ~ {2-1P*(")l: IP*(n)l <~ k + 1 } <~ 1 - 2 k. 
If L is the number of leaves of P of depth k +  1, then allocate 
r a i n ( L , ( 1 / 2 - 1 / 2  k - l - y ~ { 2  '~:m~M~, m ~ < k } ) •  k+l) of them to M r, 
and the remainder, if any, to M 2. ] 

We remark that there are easy examples to show that the two conditions 
in c are independent. In particular, the tree with one leaf at each depth 
greater than zero has characteristic sum of 1, but there is no corresponding 
search code for Z. There is one for N, so in a sense there are ways of 
searching N which have no direct equivalent for Z, and so in the same sense 
Y ( Z )  provides a less versatile collection of codes than does .Y(N). 
However, the fact that no code in Y ( Z )  can have a codeword of length 1 
does not severely limit the asymptotic properties of the search codes. For 
infinite prefix codes P and Q we use the notation IP*I >/]Q*[ to mean that 
IP*(n)l >/]Q*(n)l for all n in N, IP*I = ]Q*I to mean IP*(n)l =[Q*(n)l for 
all n in N, and ]P*]>/alQ*] to mean that ]P*(n)]>~lQ*(n)] for all 
sufficiently large n (the "a"  is for "asymptotically"). 

Corollary 8. Let P be a prefix code for some infinite set. There is an 
S in 5P(Z) such that IP*(n)l >i IS*(n)l for all n sufficiently large. 

Proof. Using Corollary 5, let Q C Y ( N )  be such that I P * I ) [ Q * [ .  
Let T denote Qs tree. We will modify T to produce a new tree U satisfying 
the conditions of Theorem 7c, and such that [P*[ ) a I U* [. (Here we have 
extended our * notation to trees in the obvious way.) Let P0 and Pl be the 
major nodes of T of depth 0 and 1, respectively. Let U1 be any finite tree 
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with as many leaves as L(po)UL(pl) and let U 2 denote the right subtree of 
Pl with every leaf replaced by a node each of whose sons are a leaf. Form U 
by having a root node whose left subtree is U1 and whose right subtree is U 2. 

Each leaf in R(p 0 (i.e., all but finitely many leaves of T) corresponds 
to two leaves in U whose depth is the same as that of the original leaf. If  d is 
the height of U 1 then :for any h > d, U has at least as many leaves at depth h 
or less as does T. For n sufficiently large, ]g*(n)l ~ IQ*(n)l ~ IP*(n)}. 
Finally, to see that at any depth k >~ 1, U has at least two nodes at depth k 
which are not leaves, note that each major node of U has at least two leaves 
in its left subtree, and hence neither the major node of depth k nor the left 
son of the major node of depth k -  1 are leaves. 11 

5. OMNIPOTENT SEARCH CODES 

Corollary 5 shows that if one is only concerned with the rate at which 
codeword lengths grow, then Y ( N )  is as versatile as the collection of all 
prefix codes. In particular, some properties of 5P(N) can be carried over to 
properties of arbitrary codes. Motivated by this, we say a set g- of prefix 
codes is omnipotent (asymptotically omnipotent) if give any prefix code P 
there is a T of g- such that IP*I >/IT*I  ([P*I >/a IT* t). Corollary 5 shows 
that 5 ; ( N )  is omnipotent, while Theorem 7c shows that Y ( Z )  is not, and 
Corollary 8 shows that Y ( Z )  is asymptotically omnipotent. In this section 
we characterize those ordered sets X such that J~(X) is omnipotent, and in 
the next section we characterize the ordered sets whose search codes are 
asymptotically omnipotent. Our theorems are really about order types since 
if X and Y have the same order types then there is a natural isomorphism 
between Y ( X )  and Y(Y) .  

If  (X, <x) and (Y, <y) are two ordered sets then X +  Y denotes the 
ordered set of X followed by Y, i.e., the elements of X + Y are those of the 
disjoint union of X and Y, and the order < is given by e < d iff either e, 
d C X and e <x d, or c, d C Y and c < r d, or e ~ X and d E Y. For example, 
(-co) +co is of the same order type as Z, where by the negative of an 
ordered set we mean the reverse order on the same objects. For another 
example, co + (-co) is the same order type as {•  n C N} with its natural 
order. 

Let X be an ordered set. A eut of X is a partition of X into two sets B 
and C such that b < e for all b ~ B  and e ~ C. Notice that X = B  + C. If 
both B and C are infinite then we say the cut is major. For example, co has 
no major cuts, Z has infinitely many, co + (--co) has one, and co + 1 + (-co) 
has two. (The set co + 1 + (--co) is of the same order type as {•  
n C N} U {0}.) Further details on ordered sets, order types, cuts, etc. can be 
found in Sierpinski ~22) (Chapters XI  and XII)  or Zuckerman (z6) (Chapter 6). 
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Insight into the power and subtlety of cuts can be gained by reading 
Conway {4) or Knuth's novel. {~4) 

Proposition 9. a) The only infinite order types with no major cuts 
are those of co, -co, co + n, and n + (-co) for n E N. b) The only order type 
with exactly one major cut is that of co + (-co). 

Proof. a) Let X be an infinite ordered set with no major cuts. Define 
the perhaps empty set X 1 which consists of the minimal element of X, the 
successor of the minimal element, the successor of that, and so on. Similarly 
define the perhaps empty set X~ which contains Xs maximal element, its 
predecessor, and so on. If X\(XI U X~) is not empty then let x be one of its 
elements. If X\(X I U X2) is infinite then { y E X: y ~ x} and { y E X: y > x } 
forms a major cut, while if it is finite and nonempty then X1 and X2 must 
both be infinite, so again { y ~ X: y ~ x} and { y E X: y > x} forms a major 
cut. Therefore XI Or X2 is finite. If X~ is empty then X has the order type of 
-co, while if X is finite and nonempty then X has the order type of n + (-co) 
for n = card(X~). Similarly, if X2 is finite then X either has the order type of 
co of co + n for some n. b) Let X be an infinite set with exactly one major 
cut, of the form X = X1 + X2. Each of X1 and Xz are infinite sets with no 
major cuts. Trying all possibilities from part a shows that X must have the 
order type of co + (-co). | 

We will show that Y ( X )  is omnipotent iff X has at most one major cut. 
We already know that 5"(co) is omnipotent, and since Y ( X )  is omnipotent 
iff Y( - - X)  is omnipotent, we also know that Y(--co) is omnipotent. We need 
only consider Y(co + n) and .Y(co + (-co)). The following proposition is 
similar to Theorem 4a and its proof will not be given. 

Proposition 10, a) Let P be a prefix encoding of co + n for some 
n C N There is an S in Y(co + n) such that P(k) = S(k) for all k in co + n 
iff P is lexicographically ordered. 

b) Let P be a prefix encoding of co + (-co). There is an S in 
5~(co+ (-co)) such that e(k)=S(k) for all k in co + (-co) iff e is 
lexicographically ordered and Ps tree has only one infinite branch. II 

The extra condition in b is necessary because one could encode {•  
n E N} as follows: let Q be any search encoding of N. Define P(1/n) = 1Q(n) 
and P(-1/n) = 0Q(n), where Q(n) denotes the one's compliment of Q(n). In 
the tree for P, the top node corresponds to asking if the number is positive or 
negative. Our requirement that the labels on search trees must be of the form 
" < x "  or "~<x" does not allow such a question. It is easy to show that if we 
allowed questions of the form "Is x in B?" where B and X - -  B is a cut of the 



Searching and Encoding for Infinite Ordered Sets 67 

ordered set X, then for any prefix encoding P of X there is an S in Y ( X )  
such that P(x) = S(x)  for all x in X iff P is lexicographically ordered. 

Theorem 11. Let X be an infinite ordered set. Then Y ( X )  is 
omnipotent iff X has at most one major cut. 

Proof. Suppose X has at least two major cuts. Then there is an x in X 
with infinitely many elements greater than x and infinitely many elements 
smaller than x. If  S C Y ( X )  then there are infinitely many leaves both to the 
right and to the left of the one labeled x, so there are two infinite branches. 
To show that Y ( x )  is not omnipotent it suffices to show a prefix code P for 
which there is no S in J ( x )  such that [P*[/> IS* 1. Consider the unary code 
P on N such that IP(n)[ = n. If  [P*] >/IS*l  then S can have only one infinite 
branch, and therefore there is no such S in Y(x ) .  

Conversely, suppose that X has no more than one major cut. Let P be 
an arbitrary prefix code. The proof of Corollary 5 showed that we need only 
consider the case where the characteristic sum of P equals 1. By Theorem 4 
there is an S C Y ( N )  such that [P*] = [S*]. Using S, we will show that 
there is a T in Y ( N )  such that IP*I = IT*I and such that infinitely many of 
the major nodes have only a leaf as their left subtree. If p is such a major 
node then rotating Ts tree o f p  and at the major node directly beneath p with 
create a tree with lexical order type co + 1. Doing this n times will give 
co + n and doing it infinitely many times will give co + (-co) if one is careful 
to keep infinitely many leaves to the left of the infinite branch. By 
Proposition6, these will be trees for members of 5P (co+n)  and 
5~(co + (-co)), respectively. To construct T we will take Ss tree and recur- 
sively modify it. Let k be the least integer such that no major node at depth 
k or greater has only a leaf as its left subtree. (If there is no such k then we 
are done.) Let p be the major node at depth k, and let l be any leaf in ps left 
subtree. Let q be the major node at depth one less than that of l. Notice that 
q is a successor of p. Replace l with qs left subtree and make qs new left 
subtree a single leaf. No change has occured in the number of leaves at any 
depth. Repeating this infinitely often will give the required tree. | 

6. SEARCH CODES FOR ARBITRARY SETS 

We know that the ordered sets with omnipotent search codes are the 
ones with no more than one major cut. In particular, we know that .Y(Z)  is 
not omnipotent because no code in it can have a leaf at depth one. On the 
other hand, Corollary 8 showed that ,Y(Z)  is asymptotically omnipotent. It 
will be shown that Y ( X )  is asymptotically omnipotent for any X. Essentially 
we do this by using the fact that Y ( N )  is omnipotent and showing that for 



any S in Y ( N )  there is a T in Y ( X )  such that IS*[ >~ a IT* I. We first need 
the following fact about Y ( N ) .  

that 

! 

Lemma 12. Let P be a prefix code. There is an S in Y ( N )  such 

lira I P * ( n ) l -  I S*(n)l  = oo 

Proof. Let Q C Y ( N )  be such that I P*I ~ [Q* I. Let T be the tree for 
Q, and let q; be its major node of depth i for i = 0, 1 ..... We construct a new 
search tree U using T. U will contain, among others, nodes u0, ul ..... The 
root of U is u 1. The node u2i+l has as its left subtree a finite tree whose root 
node is u2i, and as its right subtree the infinite tree whose root node is u2,.+3. 
The node u2i has as its left subtree a tree isomorphic to the left subtree of 
q2i, and as its right subtree a tree isomorphic to the left subtree of q2;+1. The 
label on u~ is the same as the label on q~. See Fig. 2. 

Let S be the code corresponding to U. If in T the leaf corresponding to 
n is in L(qi), then I S(n)l - I T(n)[ = [i/21 - 1. As n tends to infinity so does i, 
and [ T * ( n ) [ -  [S*(n)l tends to infinity, as does l e* (n ) l -  IS*(n)l. II 

Up to this point all of our results have been effective, but our final 
result will not be. We prove that Y ( X )  is asymptotically omnipotent for any 
ordered set X, but since there are more countable order types than there are 
programs that result cannot possibly be effective. (The cardinality of coun- 
table order types is that of the real numbers.) The following lemma is a fairly 
simple set-theoretic result. Since its proof is nonconstructive we do not give 
it. 

T 
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Fig. 2. Rearranging a tree. 
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Lemma 13. Let X be an infinite ordered set. There is a subset Y of X 
such that exactly one of the following is true: 

I. Y is of the same order type as co and {x: x > y for all y in Y} is 
empty or has a least element. 

2. Y is of the same order type as -co and {x: x < y for all y in Y} is 
empty or has a greatest element. 

3. Y =  Y~ + Y2 where Y~ is of the same order type as co, Y2 is of the 
same order type as -co and {x: Yl < x < Y2 for all y~ in Y1 and Y2 
in Y2} is empty. II 

Theorem 14. Let X be an ordered set. Then 5"~(X) is asymptotically 
omnipotent. 

Proof. Let P be an arbitrary prefix code and let S C Y ( N )  be as in 
Lemma 12. Let Y be as in Lemma 13. We will show that there is a T in 
Y ( X )  such that T is "like" S on Y. The construction of Ts tree depends 
upon the nature of Y. We will proceed for case 2) only, the other cases being 
similar. 

T F 

Fig. 3. Ts tree. 
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Let Y(1), I1(2),... be the elements of Y in order. Let X -  = {x: x < Y(I)} 
and X + = {x: x > Y(n) for all n}, let T_ be a search tree for X -  and T + a 
search tree for X +, and let x + be the least element of X +. Let X(n)= {x: 
Y(n) < x < Y(n + 1)} and let T, be a search tree for X(n). Notice that 
x = Y y x - u x + u U , x ( n ) .  Modify Ss tree to produce a tree S '  as 
follows: let n be such that X(n) is nonempty and let l be the leaf of S with 
label n. Replace l with a node labeled '~<Y(n)' with left branch a leaf labeled 
Y(n) and with T, as its right subtree. Repeat this for all nonempty X(n). 

The tree for T is as in Fig. 3, where if T -  or T + is undefined, both it 
and the node above should be deleted. I T(Y(n))I<~IS(n)I+3, so 
lim n IP*(n)l- IS*(n)l = oo implies lira, IP* (n )} -  IT*(n)l = oo. II 

7. CONCLUSIONS 

Bentley and Yao (2) showed that good search algorithms for the natural 
numbers determine efficient prefix encodings for them, and we have shown 
that the converse is also true. If  the only matter of concern is the number of 
codewords of each length, then the search codes for the natural numbers are 
just as good as general prefix codes. Search codes are therefore a powerful 
mechanism for transferring efficient encoding to efficient searches, and vice 
versa. Further, since search codes have several seductive properties, we 
characterized those ordered sets whose search codes are as good as all prefix 
codes, showing that they were the ones having no more than one major cut. 
Once two or more major cuts are present there are restrictions on the 
number of small codewords. If  one ignores small codewords then for any 
ordered set the search codes are as good as general prefix codes. 

For both N and Z we also characterized those prefix codes for which 
there is a search code which assigns to each element a codeword of the same 
length as that given by the prefix codes. These results are more subtle than 
those mentioned above for they must take into account the small codewords. 
It would be interesting to see the corresponding result for arbitrary ordered 
sets, or even just for the dyadic rationals. 

There is a computationally important ordered set which we have not 
considered here. Let S denote all finite binary strings, ordered 
lexicographically. What is the equivalent of Theorems 4 and 7 for S? This 
result is probably more subtle since S is a more complex ordered set than are 
N o r Z .  

We have considered search codes for only the easiest case, the linearly 
ordered sets. There are many other sets with structure for which this ordering 
is inappropriate. For example, the set may be the integer lattice points in the 
plane and the probes may consist of giving a line and determining which 
half-plane contains the desired point. In this simple case we can take 
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products of search done for Z, but there are probably other interesting 
searches. Since two or more dimensional data is receiving more attention 
(image processing, data compression, array computers, database 
applications, etc.) it may be fruitful to explore these extensions, especially 
since several of these applications involve very large amounts of data. 

One final question. Miller and Rosenberg ~lv) used efficient searching of 
N to find an efficient solution of a particular case of the lowest common 
ancestor (LCA) problem. Aho, Hopcroft, and Ullman (1) showed that LCA is 
an important problem with many applications, and Maier (16) gave a solution 
of the general LCA problem which used less space than the solution of Aho, 
Hopcroft, and Ullman (see also Harel(12)). Let p and q be nodes in a tree 
and let d(p, q) denote the number of edges on the path from p to q. Can 
efficient searches for N be used to give efficient algorithms for the on-line 
lowest common ancestor problem, where the time is measured in terms of 
d(p, q) alone and where the trees are not necessarily finite? 
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