
In Computing Science and Statistics 27 (1995), pp. 347-351.

Statistical Analysis of Communication Time
on the IBM SP2

Theodore B. Tabe1, Janis P. Hardwick2, Quentin F. Stout1

University of Michigan, Ann Arbor, MI 48109

Abstract

For parallel computers, the execution time of communi-
cation routines is an important determinate of users’ perfor-
mance. For one parallel computer, the IBM SP2, all of the
higher-level communications routines show a drop in perfor-
mance as the number of processors involved in the communi-
cation increases. Such a drop is unexpected and does not oc-
cur on most other parallel machines. While a few others have
also recently studied the SP2’s communication performance,
they have reported only average performance, and failed to
comment on the drop in performance or its causes [1, 9].

We generated a distribution of times for these routines
and developed a simulator in an attempt to recreate the ob-
served distribution. By studying distributions of communica-
tion times and by refining the simulator, we were able to dis-
cern that the performance decrease is due to the variation in
the communication times of the lower-level primitives upon
which the higher-level communication routines are built. This
variation is in turn caused by the deleterious effects of in-
terrupts generated by an operating system untuned to high-
performance parallel computing.

Keywords: all-to-all communication, resampling, perfor-
mance evaluation, message passing, operating systems, in-
terrupts, heavy tails

1 Introduction

The IBM Scalable POWERparallel Systems 9076 SP2 is
a distributed memory parallel computer in which POWER2
processors are connected by a fast switch. In this dis-
tributed computing environment, processors each have their
own memory space, work in parallel to compute a result, and
communicate with each other by sending messages. Com-
munication time significantly affects the performance of dis-
tributed memory systems because the cost of communicating
data across the network is usually several orders of magnitude
larger than the cost of computing the same amount of data.
On a high performance computer, such as the SP2, code must

1Department of Electrical Engineering and Computer Science
2Department of Statistics

be optimized to the highest degree if one is to obtain the max-
imum possible performance. Poor optimization of communi-
cation between tasks will adversely affect the scalabilityof a
parallel application. Therefore, it is important to understand
and evaluate factors affecting communication times, and to
improve those that are substandard. Unfortunately, this isa
very complex task.

In most parallel computer performance studies, one tends
to find only mean communication times reported, with an oc-
casional mention of corresponding standard deviations. For
distributed parallel systems, however, knowing only average
behavior, even along with a measure of variation, is not suf-
ficient. The reason for this is that a typical algorithm cycles
work through in stages. At each stage, a set of processors per-
form operations concurrently and a processor cannot send off
the results of its operation until all processors have finished
the stage. Thus, the measure that most affects communication
times is themaximum operation length. Furthermore, the ul-
timate measures of interest here will be nested maxima since
our goal is to describe higher level communication routines.
For the SP2, it is especially important to consider entire dis-
tributions of events as the times of relevant communication
events exhibit startlingly heavy tails.

By using the full distribution of times, we find that the drop
in performance of the higher-level communication routinesis
due to an increase in the average processor idle time, caused
by large variations in the communication times of the lower-
level communication routines.

2 System Configuration

2.1 Hardware

An SP2 can be configured with from 4 to 512 POWER2
processors. The processors used in the IBM SP2 are from the
IBM POWER2 family, and are the same processors found in
the IBM RS/6000 series of workstations. The SP2 configura-
tion used for this study consists of 32 Thin Node 66 proces-
sors, each of which has 256 MB of main memory and no L2
cache.

In an SP2, the POWER2 processors are connected by a
High-Performance Switch (HPS). The HPS is a bidirectional



multistage interconnection network capable of 40 MB/s data
transfers unidirectionally and 80 MB/s bidirectionally [6].

2.2 Operating System

Our SP2 configuration uses the AIX 3.2.5 operating sys-
tem, run separately on each node within the SP2. This is the
same operating system found in the RS/6000, and, as will be
shown, it has not been tuned for this configuration.

The AIX operating system utilizes three different resource
managers. The first is the dispatcher. It is invoked every 10
milliseconds (ms) by a timer interrupt. It is also invoked ev-
ery time a process yields the CPU and after most interrupts.
Therefore, the dispatcher is invoked at least 100 times a sec-
ond. The dispatcher’s job is to execute the process with the
highest priority on the CPU [5].

The process with the highest priority is typically the sched-
uler. Therefore, the scheduler is usually invoked at least 100
times a second. The scheduler’s job is to keep track of the
CPU use of the currently running process. Additionally, once
every second, the dispatcher directly executes the swapper.
The swapper’s job is to recalculate the priorities of all cur-
rently executing processes. The swapper also swaps pro-
cesses in and out of memory [5].

2.3 Message Passing Library

Several communications packages are available on the
IBM SP2, including the Message Passing Library (MPL),
PVM, and MPI. MPL is the most tuned of these, and was
the communication package used for this study. The MPL
is a library of 32 message-passing functions that provide a
programming interface through which tasks in a distributed
environment may pass messages to each other. It is a propri-
etary system, providing functionality very similar to thatof
MPI.

The low-level MPL communication routine used in this
study is calledmp bsendrecv(). This routine allows two
processors to simultaneously send and receive data between
them. It offers better performance than two unidirectional
data transfers.

3 All-to-All Communication

The higher-level communication routine examined here is
known as All-to-All communication. Other high-level rou-
tines exhibit similar phenomena, but there is not sufficient
space to examine them here. A far more extensive examina-
tion of SP2 communication will appear in [7].

All-to-All communication, also known as Complete Ex-
change or All-to-All Personalized Communication, is defined

Step 1 0↔5 1↔4 2↔3
Step 2 1↔5 2↔0 3↔4
Step 3 2↔5 3↔1 4↔0
Step 4 3↔5 4↔2 0↔1
Step 5 4↔5 0↔3 1↔2

Figure 1: All-to-All Pairings for Six Processors

/* num_procs = number of processors */
/* my_proc = id number of processor */
/* (ids numbered 0 to num_procs-1) */

even := (mod(num_procs,2) = 0)
if (even) then

m := num_procs-1
else

m := num_procs
end if

for i := 0 to m-1
if (even .or. (i != my_proc)) then

if (my_proc = m) then
other_proc:=i

else if (my_proc = i) then
other_proc:=m

else
other_proc:=mod(m+i+i-my_proc,m)

end if

call mp_bsendrecv(other_proc)
end if

end for

Figure 2: All-to-All Communication Pseudocode

as the communication that occurs when each processor in a
group of processors wants to send a distinct message to each
of the other processors in the group. It is a very important
higher level communication routine, used, for example, in
computing the transpose of a matrix (if each processor ini-
tially starts with a block of rows of the matrix, then to obtain
a block of rows of the transpose, each processor will need to
receive data from every other processor).

Several papers have been written concerning All-to-All
communication, and a variety of implementations have been
developed for different machines[2, 3, 4]. However, various
limitations of the SP2 hardware prohibit many of these im-
plementations (see [7]). For instance, because the bandwidth
out of a processor is equal to the bandwidth of one message,



All-to-All
Processors Throughput

2 40.991
4 40.928
8 40.533
16 39.436
32 38.970

Table 1: Mean Throughput in MB/s for 1MB Messages

one cannot write an All-to-All communication routine where
a single processor must at some point communicate simul-
taneously with all the other processors in the group. Our
algorithm for All-to-All communication is illustrated in Ta-
ble 1, which shows the communication pattern for six pro-
cessors. The pseudocode in Figure 2 shows in detail how the
All-to-All communication algorithm works. Based on tim-
ing comparisons, we believe that the MPL implementation is
essentially this algorithm, and from now on all references to
All-to-All communication will assume that this algorithm is
being used. (Due to space limitations, we omit the timing
studies comparing the two versions.) The specific exchange
pattern of this All-to-All communication algorithm was ob-
tained from Andrew Poe, who encountered it as a way to pair
up players for chess tournaments.

Table 1 illustrates the basic problem that arises with All-
to-All communication on the IBM SP2, namely,

For a fixed message length, the throughput of the
communication routine drops as the number of pro-
cessors is increased.

Here throughput is the number of megabytes per second
transmitted and received by a given processor. In principle,
such a decrease should not occur because, for any number of
processors, each step of the algorithm should take the same
amount of time.

4 One-to-One Communication

To understand the phenomena for the higher-level All-to-
All communication, we examined the lower-level commu-
nication routine of which it was comprised. This is the
One-to-One communication or ‘pairwise exchange’ routine
mp bsendrecv(). Figure 3 shows the distribution of times
exhibited by this routine. The mean is 173 microseconds, and
the standard deviation is 58 microseconds. For parallel com-
munication, this represents a very high coefficient of variation
of 0.34. On the nCUBE1, for example, the mean for the same
routine was 4.5 milliseconds and the standard deviation was
less than 0.05 milliseconds [8], giving a coefficient of varia-
tion of 0.01. Moreover, on the SP2 the distribution of times

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
re

qu
en

cy

Time (Microseconds)

Frequency Distribution of mp_bsendrecv() with 1K Messages (1000 Samples)

Figure 3: Frequency Distribution of Point-to-Point Exchange
for 1024 Byte Messages

is highly skewed to the right.
The large variation in times observed is caused by the fact

that the communication routines can be delayed by operat-
ing system interrupts since they are not kernel routines. Fig-
ure 4 shows the occurrences of operating system interrupts
on an SP2 node over time. The bottom thick, black line rep-
resents time measurements that were not interrupted. The
row of points above this are the dispatcher interrupts. The
row of points above the dispatcher interrupts is another setof
timer interrupts of unknown origin. The time between these
interrupts has a mean of 6025 microseconds. Finally, the
very large times (greater than 200 microseconds) are prob-
ably page faults of the operating system.

If one simulates one-to-one communication by resampling
from the uninterrupted communication times along with the
interrupts, one can reproduce the empirical distribution of
one-to-one communication. This simulation is discussed
in [7].

5 All-to-All Simulator

To understand why variations in point-to-point communi-
cations cause performance degradation, consider the pairwise
exchanges in Table 1. For the final 4↔5 exchange to occur
in Step 5, the 3↔5 and 4↔2 exchanges of Step 4 must both
be finished, which means that the 4↔5 exchange must wait
for the slower of the two predecessors, not their average. Fur-
ther, each exchange in Step 4 must wait for two exchanges at
Step 3, and so on. If any one of these encounters an operat-
ing system page fault, for example, then all of the subsequent
exchanges will be delayed. The number of predecessors of a
final exchange grows quadratically in the number of proces-



0

200

400

600

800

1000

1200

0 100000 200000 300000 400000 500000 600000

T
im

e 
(M

ic
ro

se
co

nd
s)

Microseconds From Reference Time

Time Series of Timer Measurements

Figure 4: Time Series of Operating System Interrupts on an
SP2 Node

sors, and the number of dependence paths grows exponen-
tially. It is the slowest of these paths that corresponds to the
total time of a All-to-All communication, and thus, it is the
tail behavior of the individual components (the pairwise ex-
changes) that becomes critical.

To test our hypothesis that it was the variation of the pair-
wise exchanges that caused the degradation of all-to-all com-
munication, we constructed a simple simulator. By gathering
a large sample of timings for pairwise exchanges, we hoped to
to create a fairly accurate distribution of the All-to-All com-
munication times. Each simulated All-to-All sample is gen-
erated by assigning a random communication time from the
sample set to each pairwise exchange of data. With this set of
pairwise exchange times, one can calculate the total commu-
nication time for an arbitrary processor and the total idle time
for each processor. (Processorp is idle if it is ready to begin
communication with processorq, but q is not yet ready and
hencep must wait. Typicallyq is not yet ready because it has
not finished its previous communication with a third proces-
sor.) The simulator was written in C and the random number
generator used was therandom() library call.

The timings from the simulator exhibited a distribution
similar to that of the times measured on the SP2 except that
the means did not coincide. It is likely that this is because
our simulator is insufficiently refined. The initial simulator
did not account for the fact that the operating system inter-
rupts on a processor are correlated. If a given processor has
not had a system interrupt recently, then the probability that
it will be interrupted in the near future increases. We are in-
corporating this effect in the simulator that we are presently
developing, using interrupt timing traces.

Peak All-to-All communication performance is achieved
by having all processors have total idle times of 0. Due to

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50

F
re

qu
en

cy

Time (Microseconds)

4 Processor, 1K Message Many-to-Many Idle Times (Simulated Times)

Figure 5: Idle Time for Processor 0, All-to-All Communica-
tion, 4 Processors

operating system interrupts and page faults, there is variation
in the processor-to-processor communication time and, there-
fore, the idle time is much greater than 0. Figure 5 shows the
idle time measured in the simulator for the 4 processor case,
and Figure 6 shows the simulator results for the 32 processor
case. In all simulator cases, 100,000 sample communications
were created. As one can see, the number of communica-
tions where the idle time is 0 drops drastically as the number
of processors increases. Also, the mean and the maximum
size of the idle times increases with the number of proces-
sors. This increase in processor idle time explains the dropin
throughput of the All-to-All Communication.

6 Conclusions

There are a number of conclusions that can reached from
this research. First, it must be emphasized that using only
means to model communications performance of parallel
computers is inadequate. As popular as they are in the per-
formance literature, central tendency measures lack the infor-
mation available in full distributions. Understanding thetail
behavior of relevant distributions is critical to the develop-
ment of good simulators.

Next, we have seen that, to maximize performance of the
All-to-All communication routine, one must minimize the
variation in the processor-to-processor communication time.
Furthermore, it is important to understand the behavior of the
lower-level communication primitives upon which a higher-
level communication is based in order to gain insight into the
behavior of the higher-level communication primitives.

Finally, we believe that the drop in performance of the All-
to-All communication routine is due to the unexpected effects



0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000

F
re

qu
en

cy

Time (Microseconds)

32 Processor, 1K Message Many-to-Many Idle Times (Simulated Times)

Figure 6: Idle Time for Processor 0, All-to-All Communica-
tion, 32 Processors

of creating a parallel machine from general-purpose proces-
sors running a general-purpose operating system. The AIX
operating system was not designed for a high-performance,
single-user parallel processing environment. It has many
more interrupts than are normal for such machines, and their
asynchronous occurrence magnifies the problem. As more
and more parallel machines are built in this manner, we shall
probably see more unexpected phenomena like this where a
drop in performance is caused by the fact that some part of
the parallel computer was not designed to be run in a parallel
environment.

Acknowledgments

Craig B. Stunkel at IBM Thomas J. Watson Research Center
provided a great deal of help in understanding the details of
the inner workings of the SP2 communication layer.

Computing services were provided by the University of
Michigan Center for Parallel Computing, which is partially
funded by NSF grant CDA-92- 14296.

This research is partially supported by NSF grant DMS-
9157715.

References

[1] E. L. Boyd, G. A. Abandah, H.-H. Lee, and E. S. David-
son, “Modeling Computation and Communications Per-
formance of Parallel Scientific Applications: A Case
Study of the IBM SP2”, draft submitted toSupercom-
puting ’95.

[2] S. Hinrichs, C. Kosak, D. R. O’Hallaron, T. M. Stricker,
and R. Take, “An Architecture for Optimal All-to-
All Personalized Communication”, Technical Report
CMU-CS-94-140, Carnegie Mellon University, Septem-
ber 1994.

[3] S. L. Johnsson, C.-T. Ho, “Optimal All-to-All Personal-
ized Communication with Minimum Span on Boolean
Cubes”,Technical Report TR-18-91, Harvard Univer-
sity, April 1991.

[4] K. K. Mathur, S. L. Johnsson, “All-to-All Communica-
tion on the Connection Machine CM-200”, Technical
Report TR-02-93, Havard University, January 1993.

[5] R. Mraz, “Reducing the Variance of Point-to-
Point Transfers for Parallel Real-Time Programs”,
http://ibm.tc.cornell.edu/ibm/pps/doc.

[6] C. B. Stunkel et al., “The SP2 Communication Subsys-
tem”, http://ibm.tc.cornell.edu/ibm/pps/doc/.

[7] T. Tabe, J. Hardwick, and Q.F. Stout, “Performance
Analysis of Communication on the IBM SP2”, in prepa-
ration.

[8] B. A. Wagar, “Practical Sorting Algorithms for Hyper-
cube Computers”, PhD Thesis, University of Michigan,
1990.

[9] Zhiwei Xu, “Is SP2 the best supercomputer?”, posting
to USENET groupcomp.parallel, University of South-
ern California, April 16, 1995.




