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Abstract

The problem of allocating patients in a two treatment clinical
trial with dichotomous response is considered. The trial goal
is to determine the better treatment while incurring as few
patient losses as possible. Several allocation rules are com-
pared and it is found thatbandit strategies perform well on
both criteria in that they achieve nearly optimal power while
keeping expected trial failures nearly minimal. The rules are
also evaluated according to their computational complexity.

1 Introduction

Researchers designing clinical trials often encounter difficul-
ties when trying to determine the best way to allocate patients
to treatments so that trial goals may be achieved and the costs
to all concerned kept at a minimum. Conventional designs,
in which subjects are allocated to groups in equal or predeter-
mined proportions, have good decision making properties but
lack the flexibility to incorporate other desirable design goals.
Adaptive designs, in which allocation strategies may depend
on data observed during the trial, have more flexibility. The
consideration of adaptive techniques raises the question of
what anoptimalallocation rule is for a problem where statis-
tical merit is not the only measure of the quality of a design.
This question is complex and intriguing, and it deserves more
attention than it is given here, where only a simple trial set-up
is examined. What we can show, however, is that adaptive de-
signs based on optimal strategies forbanditproblems perform
well according tomultiplecriteria, which include but are not
restricted to the ability to make a good terminal decision. In
particular, these rules are evaluated according to ethicaland
computational criteria and then compared with standard fixed
allocation techniques.

Now, consider a clinical trial in which we wish to com-
pare two treatments and determine, if possible, which has the
higher efficacy rate. The patients, who enter the trial sequen-
tially, are to be allocated to one of the two therapies in such
a way that trial goals are met as well as possible. While any
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complete description of a clinical trial design should address
all aspects of trial protocol (e.g., eligibility criteria,interpreta-
tion of responses, data analysis, etc.), we focus on the effects
of changing allocation rules within otherwise fully specified
designs.

It is assumed that the sample size for the trial is a fixed
number,n, but that the sample sizes for the treatment groups,
n1 for T1 andn2 for T2, may be random. The response vari-
ables,X andY from T1 andT2 respectively, are independent
Bernoulli random variables such that

X1, X2, · · · ∼ B(1, P1); Y1, Y2, · · · ∼ B(1, P2)(1)

where(P1, P2) ∈ Ω, for Ω = (0, 1) × (0, 1).

An allocation rule, γ, is defined to be a sequence
(γ1, . . . , γn) such that,

γi =

{

0, if T1 is used for patienti;
1, if T2 is used at patienti,

i = 1, ..., n.

It is required that the decision,γi at stagei, depend only on
the information available at that time.

The parameter of interest is the mean difference in re-
sponses,∆ = P2 − P1, andT1 is said to besuperiorto T2

if ∆ > 0, andinferior if ∆ < 0. Theterminal decision rule
depends on the maximum likelihood estimate for∆ which,
aftern observations, is given by

∆̂n = ∆̂n(γ) = Y n2
− Xn1

,
where n1 = γ1 + . . . + γn, n2 = n − n1, and

Xn1
=

1

n1
Σn

j=1 γj Xj ; Y n2
=

1

n2
Σn

j=1 (1 − γj)Yj .

2 Design Characteristics

With the primary goal being to select the better of two com-
peting therapies, the decision rule has been formulated to test
the hypothesis

H0 : ∆ < 0 vs. H1 : ∆ > 0,(2)

and it specifies

Reject H0 if ∆̂n > 0;

No decision if ∆̂n = 0;

Fail to reject H0 if ∆̂n < 0.

(3)



An informative measure of how well a test performs is given
by itspower. For this problem, the power is simply the prob-
ability, as a function ofP ∈ Ω, of correctly identifying the
superior treatment. In practice, a rule allowing theno de-
cision option should not be used without a null hypothesis
of equality and corresponding acceptance region. We would
prefer, in fact, a test that not only recognizes similar treatment
effects with high probability, but also one that has maximum
power at thesmallest clinicallysignificant difference between
the parameters. The testing regions here, however, have been
established so that we may study the behavior of the alloca-
tion rules over the entire parameter space and obtain lower
bounds for the power of (3). In [3], we examine problems
incorporating both type I and II errors.

It is not difficult to show that, for anyP ∈ Ω, the prob-
ability of making an incorrect decision based on (3) is mini-
mized by allocating patients to therapies in equal proportions.
This may be achieved via alternating assignments or by con-
strained or blocked randomization. Since an equal alloca-
tion rule guarantees that fully half of the patients are assigned
to the inferior treatment, designs utilizing them tend to incur
more failures than may be necessary for the decision process.
Our evaluations of allocation rules are based on three criteria:

1. The probability of making a ‘correct’ decision at the end
of the trial,

2. The expected number of failures during the trial,

3. The complexity of the computations required to utilize
the design.

Due to space limitations, the manner in which these criteria
are assessed is quite simplistic. While each of these items
can be viewed from many angles, the results (Section 4) seem
to be representative of the behavior of the allocation rulesin
more general settings as well.

2.1 Bandit Problems

The sampling plans that we propose are based on optimal
rules for multi-armed bandit problems. In a bandit problem,
the goal is to maximize the sum of weighted outcomes aris-
ing from a sequence of experiments fromarmswhose out-
comes follow the laws of a specified Bayesian model. Aban-
dit allocation rule is thus one that utilizes prior information
on unknown parameters together with incoming data to deter-
mine optimal selections at each stage of the experiment. The
weighting of returns is known asdiscountingand it consists
of multiplying the payoff of each observation by the corre-
sponding element of a discount sequence. The properties of
any given bandit allocation rule will depend upon the associ-
ated discount sequence and prior distribution.

Here we have only atwo-armed bandit(TAB), but these
techniques generalize easily to problems with several arms.
Let the outcomes for the two treatment arms be given by (1),
and model the prior information on the success rates,p1, p2,
as independent beta distributions

p1 ∼ Be(a0, b0) and p2 ∼ Be(c0, d0).

At any stagem ≤ n, the posteriors forp1 andp2 are

(p1 | k, i, j) ∼ Be(a, b); (p2 | k, i, j) ∼ Be(c, d)(4)

where k = Σm
i=1γi, i = Σk

i=1Xi, j = Σm−k
i=1 Yi, and

a = i + a0, b = k − i + b0,
c = j + c0, d = m − k − j + d0.

The posterior means ofp1 andp2 atm are simplyEm[ p1 ] =
a/(a + b) and Em[ p2 ] = c/(c + d), whereEm denotes
expectation in the model (4).

Typically, the choice of a prior distribution will depend,
somewhat subjectively, on the knowledge of the investigator
preceding the trial. We use independent uniform priors here,
a0 = b0 = c0 = d0 = 1, because they contain no initial
bias and little information, and because the parameters of the
beta posteriors concisely summarize the relevant study data
to date.

It is worthwhile to note that these allocation rules, which
arise within a Bayesian framework, are being evaluated ac-
cording to frequentist standards. In Section 4, the Bayesian
design is seen to have had little effect on the results of the trial
from this viewpoint. However, if desired, the design may be
set up to impact the trial and its results more heavily, since
investigators can strengthen and/or bias the parameters ofthe
beta distributions to reflect a preferred level of information.

2.2 Ethical Criteria

An advantage of using bandit problems to model clinical tri-
als is that elements of the discount sequence can be selected
to represent an ethical decision regarding the relative impor-
tance of the patient outcomes both during the trial and in the
future. At each stage of the sequential decision process, a
bandit allocation rule is a function both of the effort to gather
information and of the effort to gain immediate reward. Here,
we consider two discount sequences,{1, β1, β2, . . . , βn}: the
n-horizon uniformsequence withβi = 1, i = 1, . . . , n, and
thegeometricsequence,{1, β, β2, β3, . . .}, 0 < β < 1.

In the uniform, finite horizon case, the optimal strategy will
begin by emphasizing the gathering of information with the
result being that the first patients will be treated rather like pa-
tients in an equal allocation trial where one assumes through-
out that the treatments offer the same prognosis. Toward



the end of the study, with a decision imminent, the empha-
sis on immediate reward is increased until, at the last stage,
a completely myopic rule is used. In the geometric case, it
is assumed that that there will always be more patients, so
the need for information is never completely absent as in the
last stage of a finite horizon problem. However, as more and
more patients are treated, the need to sacrifice immediate re-
ward to gain information will decrease. Since the sample size
in the present problem is fixed atn, we truncate the alloca-
tions aftern observations. Thus bandit allocation strategies
for problems with geometric discounting are not exactly op-
timal for the truncated case. As we see, however, these rules
still provide good model strategies for the problem at hand.
See Hardwick [2] for further discussion of the incorporation
of geometric bandit strategies in clinical trial designs.

2.3 Computational Criteria

Ethical attributes aside, an experimental design must be
straightforward to carry out if it is to be useful. For computa-
tional purposes, this means that the rules should use reason-
able amounts of time and space (memory), and be sufficiently
easy to program. We distinguish here between the computa-
tional requirements to set design parameters and those needed
to carry out the trial. In general the former will be signifi-
cantly greater than the latter, but can be carried out on large
computers without significant deadline pressure. The latter
may require timely response, and may often be performed on
personal computers. The latter will be analyzed here in the
next section, while the former will be discussed in [3].

3 Allocation Rules

The following three allocation rules were evaluated with re-
spect to the given criteria:

TAA = Truncated Alternating Allocation,
UB = Uniform Bandit, and
TGLB = Truncated Gittins Lower Bound.

The “truncation” in TAA and TGLB refers to a rule whereby,
if a state is reached such that the final decision can not be
influenced by any further outcomes, then the treatment with
the best success rate will be used for all further patients.

3.1 Uniform Bandit

By definition, then-horizon uniform TAB uses prior and
accumulated information to minimize the number of fail-
ures during the trial. We can determine the optimal strat-
egy for this bandit problem using dynamic programming. Let
Fm(i, j, k, l) denote the minimal possible expected number
of failures remaining in the trial, ifm patients have already

been treated and there werei successes andj failures onT1,
andk successes andl failures onT2. (Note that one parameter
can be eliminated sincem = i + j + k + l.) The algorith-
mic approach is based on the observation that ifT1 were used
on the next patient, then the expected number of failures for
patientsm + 1 throughn would be

FT1

m (i, j, k, l) = Em[ p1] · Fm+1(i + 1, j, k, l) +

Em[1 − p1] · (1 + Fm+1(i, j + 1, k, l))

while if T2 were used then we would get

FT2

m (i, j, k, l) = Em[ p2] · Fm+1(i, j, k + 1, l) +

Em[1 − p2] · (1 + Fm+1(i, j, k, l + 1)).

ThereforeF satisfies the recurrence

Fm(i, j, k, l) = min{FT1

m (i, j, k, l),FT2

m (i, j, k, l)}

which can be solved by dynamic programming, starting with
patientn and proceeding toward the first patient.

For themth patient there areΘ(m3) possible values of
i, j, k, l, so to evaluate all possible combinations ofm, i, j, k,
andl requiresΘ(n4) computations. A clever implementation
might not evaluate all possible values, but a straightforward
implementation, as used here, needs to do so, and empirical
evidence indicates that, in fact,Θ(n4) values must be com-
puted. The space requirements can be kept atΘ(n3) (see [3]).

3.2 Gittins Lower Bound

According to a theorem of Gittins and Jones [1], for bandit
problems with geometric discount and independent arms, for
each arm there exists an index with the property that, at any
given stage, it is optimal to select, at thenextstage, the arm
with the higher index. The index for an arm, theGittins Index,
is a function only of the posterior distribution and the discount
factor β. While the existence of the Gittins Index removes
many computational difficulties associated with other bandit
problems, the only known technique for computing the index
involves an iterated dynamic programming approach which
is computationally intensive whenβ is close to 1 (see [1]).
Unfortunately, these are theβ values needed to produce tests
of suitable power.

Here we show that very good results can be achieved by
utilizing an easily computed approximation. For an arm with
posterior distribution Be(a, b), a lower bound for the Gittins
Index is given by (see [1, 2])

Λr =

Γ(a+1)
Γ(a+b+1) − b

∑r

i=1 βi Γ(a+i)
Γ(a+b+i+1)

Γ(a)
Γ(a+b) − b

∑r

i=1 βi Γ(a+i−1)
Γ(a+b+i)

.

BecauseΛr is a unimodal function ofr, the best such lower
bound isΛr∗ , wherer∗ = min{r : Λr−Λr+1 ≥ 0}. EachΛr



Parameters → ∆ = 0.1 ∆ = 0.3
↓ Criteria TAA TGLB UB TAA TGLB UB

n=20 Power 0.671 0.667 0.647 0.913 0.906 0.874
β = .999 Average Failures 9.947 9.774 9.768 9.505 8.330 8.217

n=50 Power 0.760 0.754 0.708 0.985 0.982 0.947
β = .9999 Average Failures 24.828 24.148 24.117 23.489 19.673 19.214

n=100 Power 0.841 0.835 0.771 0.999 0.996 0.980
β = .99999 Average Failures 49.614 47.779 47.642 46.762 38.051 36.984

n=150 Power 0.890 0.885 0.811 1.000 0.998 0.989
β = .999999 Average Failures 74.393 71.243 70.890 70.031 56.367 54.611

Table 1: Comparisons of Discrimination and Ethical Criteria

can be computed from the previous one in a constant number
of steps, so the total time to compute the best lower bound is
proportional tor∗ + 1.

The computational requirements of the TGLB approach are
difficult to analyze since they depend upon the value ofr∗ and
upon the successes and failures encountered. In the simplest
implementation, the approximate indices for both treatments
are computed at each stage and compared to determine the
best choice. However, computation can be saved by noting
that a “play the winner” property holds, in that if the indices
resulted in treatmenti being chosen for the previous patient,
and the outcome was a success, then they will again choose
treatmenti. Therefore an index needs to be computed only
when a failure has occurred, and then only for the treatment
that failed since the posterior distribution of the other treat-
ment is unchanged.

4 Results

The results of our investigations are summarized in Tables
1 and 2. The computational techniques used are explained
in [3].

Table 1 shows that TAA, which is optimized to make the
correct selection, incurs a large ethical cost, while UB, which
is optimized to minimize failures, has a poor discrimination
ability. The TGLB rule is a compromise with nearly the
power of TAA and nearly the ethical behavior of UB. Note
that TGLB has an extra parameter,β, which must be adjusted
to optimize its performance. One can show thatβ must con-
verge to 1 asn increases in order to obtain increasing power.
The specific values ofβ used have been indicated.

Table 2 compares UB and TGLB on computational
grounds. TAA was not included since the total computation
time is merely proportional ton, i.e.,Θ(n). For UB, the value
presented is the number of evaluations ofF which occur, each
of which takes a constant amount of time. Thus the com-
putational time for a clinician to utilize UB is proportional

Parameters UB TGLB
n β ∆ = 0.1 ∆ = 0.3

20 0.999 8,855 180 174
50 0.9999 292,825 611 597

100 0.99999 4,421,275 1,705 1,687
150 0.999999 21,947,850 4,124 4,109

Table 2: Comparisons of Computational Time

to the value presented and may be prohibitive. For TGLB,
the value also represents a quantity which is proportional to
the total computational time needed to utilize TGLB during
a trial. The value presented is the average, over all trials,of
the total number ofΛr values which must be computed for
index calculations throughout the trial. While space require-
ments were not tabulated, recall that UB needsΘ(n3) space
and TGLB needs onlyΘ(1) space.

References

[1] Berry, D. and Fristedt, B. (1986),Bandit Problems: Se-
quential Allocation of Experiments.Chapman and Hall,
New York.

[2] Hardwick, J. (1986),The Modified Bandit: an approach
to ethical allocation in clinical trials. Ph.d. thesis, Uni-
versity of California at Los Angeles.

[3] Hardwick, J. and Stout, Q. F. (1991), Computational as-
pects of sequential allocation for testing with multiple
criteria. In progress.




