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Abstract—A 3-D parallel adaptive mesh refinement (AMR)
scheme is described for solving the partial-differential equations
governing ideal magnetohydrodynamic (MHD) flows. This new al-
gorithm adopts a cell-centered upwind finite-volume discretization
procedure and uses limited solution reconstruction, approximate
Riemann solvers, and explicit multi-stage time stepping to solve
the MHD equations in divergence form, providing a combination
of high solution accuracy and computational robustness across
a large range in the plasma ( is the ratio of thermal and
magnetic pressures). The data structure naturally lends itself to
domain decomposition, thereby enabling efficient and scalable
implementations on massively parallel supercomputers. Numer-
ical results for MHD simulations of magnetospheric plasma flows
are described to demonstrate the validity and capabilities of the
approach for space weather applications.

Index Terms—Adaptive mesh refinement, magnetohydrody-
namics, numerical simulations, space weather.

I. INTRODUCTION

SPACE weather is of growing importance to the scientific
community and refers to conditions at a particular place

and time on the Sun and in the solar wind, magnetosphere, iono-
sphere, and thermosphere that can influence the performance
and reliability of space-borne and ground-based technological
systems, and can effect human life or health. It has been
established that adverse conditions in the space environment
can cause disruption of satellite operations, communications,
navigation, and of electric power distribution grids, thereby
leading to broad socioeconomic losses. These influences on
the geospace environment have prompted renewed efforts
to enhance our understanding of space weather and develop
effective tools for space weather prediction.
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Global computational models based on first principles math-
ematical descriptions of the physics represent a very important
component of efforts to understand space plasma phenomena
associated with space weather including the large-scale solar
corona, the solar wind, the solar wind interaction with plane-
tary magnetospheres, and the initiation, structure, and evolu-
tion of solar wind disturbances. Presently, and in the foreseeable
future, numerical models based on the equations of magneto-
hydrodynamics (MHD) are the only self-consistent mathemat-
ical descriptions that can span the enormous distances associ-
ated with large-scale space weather phenomena. Although pro-
viding only a relatively low-order approximation to the actual
behavior of plasmas, MHD models have been used successfully
to simulate many important space plasma processes and provide
a powerful means for significantly advancing the understanding
of such processes.

Global MHD simulations have been used for a long time to
simulate the global magnetospheric configuration and to inves-
tigate the response of the magnetosphere-ionosphere system to
changing solar wind conditions. The first global-scale 3D MHD
simulations of the solar wind-magnetosphere system were pub-
lished in the early 1980s [1]–[4]. Since then, MHD models have
been used to study a range of processes. Global MHD models
of the magnetosphere are listed in Table I. A recent focus of
MHD investigations is the study of magnetospheric “events.”
In these simulations, the observed upstream solar wind con-
ditions to are used to “drive” the magnetosphere-ionosphere
system and numerical predictions are compared with ground
based or satellite observations [14]–[16]. In addition to studies
of the terrestrial magnetosphere, there have been several appli-
cations of MHD models to the study of coronal and solar wind
plasma flows. In this paper, however, we limit ourselves to the
discussion of global magnetosphere models (even though the
issues we raise here also apply to the solar MHD models, as
well).

In this paper, we discuss some of the fundamental physicsal
and numerical issues related to constructing modern numerical
MHD codes for global, multiscale simulations of space weather
in the near-Earth environment. As an example, we apply the
model to the interaction of the terrestrial magnetosphere with
the solar wind under nominal interplanetray magnetic field
(IMF) conditions (when the magnetic field direction is along
the nominal Parker spiral).
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TABLE I
GLOBAL MHD MODELS OF THEMAGNEETOSPHERE

II. BASIC SOLUTION METHODS

The numerical approaches taken in the models listed in
Table I vary in a number of details. Models 1, 3, and 4 are
based on relatively simple central differencing methods. The
Models 2, 5, 6, 7, 8, and 9, however, are based on relatively
similar numerical techniques. Models 4, 5, and 7 are based on
a high-resolution approach, in which a high-order scheme is
a blended with a first-order scheme, by means of a nonlinear
switch, or limiter [17]. In models 2, 5, 8, and 9, a limited ap-
proximation is combined with an approximate Riemann solver.
Models 2 and 8 use an approximate Riemann solver based on
the five waves associated with the fluid dynamics system, and
treats the electromagnetic effects using the constrained-trans-
port technique [18]. Model 6 is similarly structured, but without
the use of a Riemann solver; a finite-difference scheme that is
conservative for the fluid dynamics system is combined with
the constrained-transport technique. Models 5, 7, and 9 use ap-
proximate Riemann solvers based on the waves associated with
the full magnetohydrodynamic system [19]. Models 2, 5, 6, 8,
and 9 are, due to the high-resolution approach, second-order
accurate in smooth regions, and locally first-order accurate in
discontinuous regions. Model 7 is first-order accurate.

In this paper, we outline the basic elements of a modern, solu-
tion adaptive MHD code which is being used for space weather
related simulations.

This code (Model 9 in Table I), as explained above, shares
many characteristics with other global MHD models. Two fea-
tures that set it apart are the use of an adaptively refined mesh,
and its near-perfect scaling on massively parallel computers.
These two features allow the model to be run at dramatically
higher resolution than has been achieved to date in global MHD
models.

III. FUNDAMENTALS OF BATS-R-US

A. Finite-Volume Schemes for Systems of Conservation Laws

A coupled system of conservation laws can be written in the
form

(1)

where is the vector of conserved quantities (e.g., mass,-mo-
mentum, mass fraction of a particular species, magnetic field,
etc.), is the convective flux, and is the source term mod-
eling diffusion, chemical reactions and other effects. We note

that the transport of radiation can also be included in this frame-
work if necessary. Systems of conservation laws lend them-
selves well to finite-volume discretization. The computational
domain is divided into “cells,” typically hexahedra or tetrahedra,
and the system of partial differential equations given in (1) is in-
tegrated over each cell in the resulting grid. This leads to a set of
coupled ordinary differential equations in time, with the cell-av-
eraged values of the conserved quantities as the unknowns. The
rate of change of a conserved physical quantity is simply the sum
of all fluxes through the faces defining the cell, plus the volume
integral of the source terms. This leads to the following ordinary
differential equation for the cell volume averaged vector of con-
served physical quantities :

(2)

where is the volume of the cell, is the surface area of a given
cell face multiplied by the normal vector of the face (the normal
vector always points outward of the cell), whileis the volume
average of all source terms. Equation (2) provides an inherently
three-dimensional update of and it does not separate different
directions into different steps (as it is done in operator splitting
methods).

The result is a very physical one; each cell in the grid is a small
“control volume,” in which the integral form of the conservation
laws hold. For example, the time rate of change of the average
mass in the cell is expressed in terms of flux of mass through the
faces of the cell. In this approach the “quality” of the solution
is fundamentally determined by the level of sophistication used
in computing the fluxes accross cell boundaries.

One distinct advantage of this conservation-law based
finite-volume approach is that discontinuous solutions can be
achieved, with the proper jump conditions being obeyed, even
at the discrete level. For example, any shocks in a flow will
satisfy the Rankine–Hugoniot conditions. While this property
can be achieved using a scheme derived from a finite-dif-
ference approach, it is a natural consequence of adopting a
finite-volume point of view.

B. Weakly Coupled and Strongly Coupled Formulations

Since the governing equations of both magnetohydronamics
and compressible fluid dynamics can be written in the form
given in (1), they can be implemented in a unified framework as
long as the left hand side of the equation system is hyperbolic.
The hyperbolicity of the system is determined by examining the
eigenvalues of the matrices , , and that arises from
rewriting (1) in the quasi-linear form

(3)

where is the vector of primitive variables (such as density,
velocity, pressure) and is the appropriate source term.

If the eigenvalues of ( ) are all real (they need
not be distinct, and are typically not in systems of conservation
laws), the system is hyperbolic. The eigenvalues and eigenvec-
tors resulting from the decomposition of are used to con-
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struct the “Riemann solver” that is the heart of modern numer-
ical schemes (Riemann solvers will be discussed later). Both
the ideal MHD equations and the equations of compressible
fluids are hyperbolic. The coupled system is therefore also hy-
perbolic, but the eigenvalues and eigenvectors of the coupled
system need to be derived to construct the Riemann solver. Thus,
the characteristic matrix is at the very heart of all numer-
ical schemes, yielding insight into the wave-like character of
the coupled equations.

The physical nature of the corresponding eigenvectors (which
represent the waves in the system) and eigenvalues (which rep-
resent the wave speeds) have a fundamental effect on the quality
and robustness of the resulting numerical scheme. This can be
demonstrated by considering the following formulation of the
equations of ideal MHD (neglecting all external source terms):

(4)

(5)

(6)

(7)

Here , , and are the plasma mass density, bulk velocity and
total pressure, respectively. In addition,is the magnetic field
vector and is the permeability of vacuum. The source term in
(5) is the term, while in (7) we separated the
term into a convective term for the magnetic field and a source
term describing magnetic field distortion.

It can be seen that in (4)–(7) the fluid and electromagnetic
equations are coupled through the source terms (no magnetic
field effects appear on the left-hand side of the fluid equations).
Any corresponding characteristic matrix, , has only one
nonzero wave speed, the ion-acoustic speed ( ).
This formulation of the MHD equations corresponds toweak
electromagnetic coupling, since the charactersitic structure of
the equation system is the same as that of the fluid equations
alone.

An alternative way of writing (4)–(7) is to move all terms
to the left-hand side. This formulation results in a character-
sitic wave structure which stongly couples electromagnetic and
fluid effects and the eigenvalues of matrix describe fast
and slow magnetosonic and Alfvén waves. This formulation is
calledstrong electromagnetic coupling, and, in general, it makes
it possible to construct more robust and powerful numerical
methods.

The numerical framework used in BATS-R-US is based on
the strongly coupled formulation of the full equation system and
it is very appropriate for constructing accurate and robust solu-
tion methods spanning the vastly different parameter ranges en-
countered in space environment models.

C. Symmetrizable Formulation

Modern numerical methods take full advantage of the
mathematical structure of the underlying conservations laws.
A particular property of some conservation laws which leads

to increased robustness and accuracy issymmetrizability.
Symmetrizability means that one can find a suitable variable
transformation so that the charactersitic matrices , ,
and all become symmetric. It was shown by Godunov
[20] some 25 years ago that symmetrizable systems (andonly
symmetrizable systems) are formally Galilean invariant and
that they admit an additional conservation law. Godunov [20]
showed that the equations of compressible fluid mechanics
are symmetrizable, and the entropy, , becomes
the additional conserved quantity (in addition to the explicit
conservation laws for mass, momentum and energy). In this
seminal paper, Godunov [20] also showed that in their usual
form the equations of magnetohydronamics are not symmetriz-
able, and consequently, they are not mathematically Galilean
invariant. In a Gallilean invariant system, characteristic wave
speeds (with respect to the fluid) are the same in all frames of
reference: this is not true for the MHD system in its traditional
form.

It was pointed out by Godunov [20] and later by Powell [13]
that a more careful formulation of Faraday’s law can be used to
avoid the loss of mathematical Galilean invariance. This formu-
lation is based on the recognition that Faraday’s law itself does
not specify the value of : its value is specified by indepen-
dent observation (that there are no magnetic monopoles in our
Universe). It is shown in advanced textbooks of classical elec-
trodynamic theory [21], [22] that the for an arbitrary vector field
the proper form of Faraday’s law is the following (this form is
Galilean invariant):

(8)

This equation ensures that the initial value of is conserved
at all later times. This can be seen by taking the divergence of
(8)

(9)

Here the term was dropped since the divergence of
a curl is identically zero. Introducing the scalar ,
(9) can be written as

(10)

Equation (10) shows that is a passively convected scalar
which preserves its initial value at all later times (along flow
lines). Since at the initial condition is enforced,
the magnetic field vector remains divergenceless everywhere at
all later times. This is valid even in closed circulation regions,
since in numerical simulations, no portion of the flow is totally
cut off from the rest of the flow; even across a theoretically
closed streamsurface, numerical dissipation connects the flow
on one side to the flow on the other side. In fluid dynamics,
there used to be a concern that the vorticity in closed regions of
flow simulations was not defined, and could take on arbitrary
values. In practice, that did not happen. Similarly, we see that in
plasma simulations, even closed streamsurface regions interact
with the flow outside them, and there is no accumulation of
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in the rare cases in which closed streamsurfaces occur.
Dropping the term in (8) over contstrains Faraday’s law
and it results in the loss of formal Galilean invariance.

Using the Galilean invariant form of Faraday’s law (8) results
in a symmetrizable set of MHD equations. This formulation not
only ensures formal Galilean invariance, but it also results in
an additional conservation law for the thermodynamic entropy,

. This symmetrizable form is particularly suitable for
the unified treatment of MHD and neutral gas equations to be
outlined below.

There are alternative methods to handle the solenoidity of the
magnetic field. The most widely used ones are the constrained
transport method [18] and the projection scheme suggested by
Brackbill and Barnes [23]. All these methods have been been
use with considerable success for magnetospheric simulations.

D. High-Resolution Upwind Schemes

Early work in numerical methods for convection-dominated
problems showed that results were highly dependent on how
the spatial derivatives were numerically calculated. The most
straightforward methods, obtained by using symmetric centered
differences, led to schemes that were numerically unstable. The
most successful schemes were those that used the convection di-
rection to “bias” the numerical representation of the derivatives.
These biased schemes are called upwind schemes, because the
data used in the update step is biased toward the upwind direc-
tion. The simplest upwind scheme for the convection equation

(11)

is

(12)

where is an index denoting discrete spatial location andis
an index denoting discrete temporal location.

For systems of conservation laws, use of the upwinding idea
relies on:

• doing some type of characteristic decomposition to deter-
mine which way is upwind for each of the waves of the
system;

• constructing an interface flux based on this characteristic
decomposition, using upwind-biased data.

The first step above makes the scheme stable; the second step
makes it conservative. There are many ways to carry out the two
steps; various approaches lead to a variety of upwind schemes.

Before the development of modern high-resolution upwind
schemes, researchers solving hyperbolic systems of conserva-
tion laws had a choice between schemes such as Lax–Friedrichs
or Rusanov, that were extremely dissipative, or schemes such as
Lax-Wendroff, that was much less dissipative but could not cap-
ture even weakly discontinuous solutions (e.g., shock waves)
without nonphysical and potentially de-stabilizing oscillations
in the solutions.

Following the early work of Lax and coworkers [24], [25],
Godunov [26], Lax [27], van Leer [28]–[31], [17] Harten [32],
Roe [33], Osher [34] and others developed a rich class of
schemes for conservation laws. The basic building blocks were:

• Godunov’s concept of using the solution to Riemann’s ini-
tial-value problem as a building-block for a first-order nu-
merical method;

• Van Leer’s insight that Godunov’s original scheme could
be extended to higher order by making the scheme non-
linear;

• Work by Roe, Van Leer, Osher and others on “approximate
Riemann solvers,” which led to a wide array of schemes
that were much less computationally expensive than Go-
dunov’s original scheme.

The original Godunov [26] scheme was for a finite-volume
scheme for solution of the equations of inviscid, compressible
flow of a gas. The seminal idea in this scheme was that, at each
time step, the fluxes of mass, momentum and energy through
the face connecting two cells of the grid were computed by a
solution to Riemann’s initial value problem—the early inter-
action between the fluid states in two neighboring cells were
computed numerically from the nonlinear, self-similar problem
of the wave interactions between the two fluids. This procedure
was carried out for a time at each cell–cell interface in the
grid; that constituted one iteration.

This scheme, though computationally expensive and only
first-order accurate, turned out to have a huge impact on
computational methods for conservation laws. First, the scheme
proved to be extremely robust, even for very strong shocks. It
was also proven to be much more accurate than the few other
schemes that were similarly robust. Also, researchers soon
realized that the concept could be carried over to other systems
of conservation laws.

Van Leer, who helped popularize Godunov’s work in the US,
showed that Godunov was unduly pessimistic in his famous
theorem that so-called monotonicity-preserving schemes (ones
that could capture discontinuous solutions without fear of
nonphysical overshoots/undershoots) were inherently limited
to first-order accuracy. Van Leer showed that this was true if
the scheme was linear, but allowing schemes to depend on
the data relieved this constraint, so that schemes that were
monotone could also be higher-order. It was this insight that
led to schemes like monotone upwind scheme for conservation
laws (MUSCL) [29], [17], piecewise-parabolic method (PPM)
[35] and essentially nonoscillatory (ENO) [36] in use for
conservation laws. All of these methods can be classed as
“limited-reconstruction” techniques—interpolation is done
to extend the scheme to higher order, but the interpolation is
limited in the vicinity of discontinuities, in order to maintain
the monotonicity/robustness property.

A number of researchers refined on Godunov’s scheme by re-
placing the exact solution of the Riemann problem with approx-
imate solutions that were cheaper, and had certain nice proper-
ties.

One of these “approximate Riemman solvers” that is partic-
ularly known due to its high accuracy is Roe’s scheme [33]. It
will be described briefly here for a one-dimensional system of
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conservation laws; its extension to multiple dimensions is rela-
tively straightforward.

Roe’s scheme computes the fluxes at a cell interface, based
on the states to the left and right of the interface. It does this by
looking for simple-wave solutions to the system of conservation
laws, and constructing a numerical flux that treats each of these
waves in an upwind manner. If the relation

(13)

is substituted into the conservation law

(14)

the eigenvalue problem

(15)

results, where is an identity matrix. Roe’s scheme is based
on the eigenvalues and right and left eigenvectors and

that arise from this eigenvalue problem. In general, for a
system of conservation laws, there will beeigenvalues, each
with a corresponding left and right eigenvector. The Roe flux is
expressed in terms of the states and just to the left and
right of the interface. It can be written as:

• the flux calculated based just on the left state, plus a cor-
rection due to waves that are traveling leftwards from the
right cell, or

• the flux calculated based just on the right state, plus a
correction due to waves that are traveling rightwards from
the left cell,or

• a symmetric form that arises from averaging the above two
expressions. This last is given by

(16)

Research into approximate Riemman solvers led to robust and
low dissipation schemes for gasdynamics, like Roe’s scheme
[33], Osher’s scheme [34], [37], and their extension to other
systems of conservation laws (such as magnetohydrodynamics).
These algorithmic advances yielded methods that had the min-
imum dissipation necessary to provide stability—they provided
robustness nearly equal to that of the Lax–Friedrichs scheme
in conjunction with accuracy near that of the Lax–Wendroff
scheme. These schemes, when coupled with the limited-recon-
struction techniques described above, provided the accurate, ro-
bust, efficient schemes that can generally be classed as high-res-
olution methods.

Our approach takes advantage of these advances in approxi-
mate Riemann solvers and limited reconstruction. The limited
reconstruction approach ensures second-order accuracy away
from discontinuities, while simultaneously providing the sta-
bility that ensures nonoscillatory solutions. Modern limiters will

be used, to ensure these properties. The approximate Reimann
solver approach ensures correct capturing of discontinuous so-
lutions, and a robustness across a wide range of flow parameters.

Diffusive fluxes can be handled with a Galerkin-based ap-
proach,to ensure accurate discretization of those terms. Source
terms are handled point-implicitly to help alleviate stiffness due
to differences in time scales between reactive and convective
processes.

E. Building “Smart” Codes through Use of Solution
Adaptation

A solution-adaptative grid is a virtual necessity for resolving a
problem with disparate length scales. In order to avoid under-re-
solving high-gradient regions in the problem, or, conversely,
over-resolving low-gradient regions at the expense of more crit-
ical regions, solution adaptation is a powerful tool, saving sev-
eral orders of magnitude in computing resources for many prob-
lems. Length scales in spaceweather simulations range from a
few kilometers to km; time scales range from a few sec-
onds to s. These problems cry out for solution-adaptive
schemes—a simple nonadapted mesh would grossly underre-
solve much of the problem, while overresolving relatively unin-
teresting regions. To demostrate this point we mention that to re-
solve the sun–earth distance with a uniform resolution of 10 km
in three dimensions would require about computantional
cells. To carry out such a simulation is clearly beyond anyone’s
computational capabilities for a long time to come.

Typical calculations have 10–15 levels of refinement; some
calculations have more than 20 levels of refinement. In the
case of 20 levels of refinement, the finest cells on the mesh are
more than one million times smaller in each dimension than the
coarsest cells on a mesh.

F. Harnessing the Power of Massively Parallel Computers

Massively parallel machines entice users with a factor of
512, or 1024, or even more in CPU and memory resources
than single-processor machines. Capitalizing on the promise
of these resources is, however, not always straightforward.
In general, researchers have had very poor luck with “auto-
matically parallelizing” their codes, or, more generally, with
porting legacy codes to this class of machines. For most codes
based on solving PDEs that model physical processes,domain
decomposition, i.e., partitioning the problem by dividing the
computational domain into sections, and farming the separate
sections off onto separate processors, is the most practical
approach. However, codes that were designed with single-pro-
cessor computing in mind, may have inherent limits as to their
scalability, and may, for example, achieve a speed-up for 16, or
32, or 64 processors, with added processors not only failing to
speed the code up further, but actually slowing down the code.
These inherent limitations can arise from a variety of sources:

• underlying basic algorithms that are global in nature, re-
sulting in high communication costs;

• underlying data structures that are expensive to partition
or to update in a parallel fashion;

• underlying processes that are inherently serial.
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Fig. 1. Parallel performance (on a linear scale) of BATS-R-US on a
Cray-T3E-1200 supercomputer.

In order to avoid any of these limitations, the approach taken
in BATS-R-US is designed with parallelism in mind. The un-
derlying basic algorithm is highly local in nature, resulting in
low communication overhead. The data structures on which the
code is built allow easy, natural partitioning of the data, and
greatly facilitate load-balancing, a crucial element of truly scal-
able computing. The design was carried out in such a way that
even the adaptation of the grid could be carried out in parallel.
A detailed description of the code is given by Powellet al.[13],
and by Grothet al.[38], [39]. The application of BATS-R-US to
space weather research is discussed in a companion paper [40].

The performance of the code on a massively parallel machine
is shown in Fig. 1. As can be seen from the plot, the code scales
nearly perfectly; that is, doubling the number of processors al-
lows one to run on twice as fine a mesh in the same amount of
time.

The underlying numerical scheme of the model has been val-
idated on some general benchmark problems [13], and the full
adaptive parallel code has been validated on a number of space-
physics problems by comparison to observation [41]–[45] and
by a grid-convergence study [46].

IV. A PPLICATION TO THEMAGNETOSPHERE

The BATS-R-US code has been successfully applied to the
simualtion of a broad range of space plasmas ranging from solar
coronal expansion [47], [39], [48], to the interaction of the helio-
sphere with the interstellar medium [49], to the magnetospheres
of Mercury [50], [51], Venus [43], Earth [52], [53], [45], Mars
[54], and Saturn [55], [50]. In addition, we successfully sim-
ulated the interaction of comets with the solar wind [41], [56]
including the emission of cometary x-rays [42], the interaction
of Io [44], Europa [57], and Titan [58] with the high speed mag-
netospheric plasma. Here we present an example describing the
interaction of the solar wind with the terrestrial magnetosphere
when the IMF is along the nominal (Parker spiral) direction [53].

A. Intrinsic Magnetic Field

The simulation of the interaction between the solar wind and
a strongly magnetized planet represents several computational
challenges. One of the difficulties arises from the large dynamic
range of the magnetic field. The typical magnitude of the inter-
planetary magnetic field (IMF) is about 10 nT, while the mag-

netic field magnitude near the magnetic pole of Earth (at 1)
is about nT. The magnetic terms (stress and energy)
in (5) are quadratic, therefore the dynamic range of magnetic
field effects can reach eight orders of magnitude. In addition,
the intrinsic magnetic field is not far from a dipole field, there-
fore the radial dependence of the magnetic terms in the mo-
mentum and energy equations is very steep in the near Earth
region ( ). It is very difficult to resolve such steep
gradients in 3-D numerical simulations.

The difficulty of the numerical solution can be significantly
reduced by separating the magnetic field into an “intrinsic” and
a “deviative” component as suggested by [9]. It should be em-
phasized that the deviative component does not have to be small:
we simply separate the contribution of the known intrinsic mag-
netic field from the total field. The method does not neglect any
of the terms describing describing the nonlinear interaction be-
tween the intrinsic and deviative magnetic fields: it only analyt-
ically assures cancellations of large terms (which numerically
may not cancel exactly due to the finite accuracy of computers).
The advantage of this method is that the high spatial gradients of
the known terrestrial magnetic field can be treated analytically
at the differential equation level.

B. Ionosphere-Magnetosphere Coupling

Coupling between the magnetosphere and ionosphere is ac-
counted for by using a height-integrated electrostatic model of
the ionosphere, in which closure of the field-aligned current
system arising from the MHD solution is modeled at the iono-
spheric boundary by applying the principle of current conser-
vation. In particular, Ohm’s law is applied to a thin spherical
shell [59], [60]. An elliptic equation for the ionospheric elec-
tric potential on the spherical shell involving height-integrated
conductivities (conductances) is solved and the resulting poten-
tial solution is used to prescribe the plasma convection velocity
at the ionospheric boundary (i.e., the ionospheric potential so-
lution provides boundary conditions for plasma velocity of the
MHD solution at the magnetosphere-ionosphere interface). The
field-aligned current from the magnetosphere solution and the
resulting electric field from the ionosphere solution are mapped
along the dipole field lines between the inner boundary of the
magnetosphere and the ionospheric surface, thereby providing
coupling between the magnetosphere and ionosphere.

C. Boundary Conditions

Boundary conditions are enforced with the help of “ghost
cells” which are either cells just outside the simulation box,
or just inside the magnetosphere-ionosphere boundary. Our
boundary procedure prescribes the values of physical quan-
tities in the ghost cells, and the approximate Riemann-solver
self-consistently calculates the fluxes accross the interface.
This method not only provides a physical way to implement
boundary conditions, but is also numerically robust and capable
of correcting some inconsistencies (the fluxes carry only the
physically necessary information from the ghost cell into the
simulation domain).

At the upstream boundary a free streaming solar wind enters
the computational domain. At the other five outer boundaries the
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ghost cells contain free-streaming solar wind conditions. Since
these boundaries are far enough away so that the plasma flow
is supersonic and superalfvénic at these locations, the physical
parameters in the ghost cells are greatly flexible, as long as as
all eight characteristics point outward of the simulation domain.
Our boundary conditions ensure this property.

The inner boundary of the simulation was at 3 . At the
inner boundary the boundary conditions described no mass
flux accross the boundary. Reflective boundary conditions
were used for the mass density and kinetic pressure. Neumann
conditions were applied for the tangential components of the
deviative magnetic field (the difference between the dipole
magnetic field and the actual field) and Dirichlet condition for
the normal component.

D. Results for Parker Spiral IMF Conditions

The input parameters used in the present simulation are based
on the GGCM Phase-1 parameter suite and they differ only in
the IMF direction. The GGCM Phase-1 steady-state simulation
suite input parameters describe a steady solar wind flow along
the sun–earth line, a nontilted terrestrial magnetic dipole located
at the center of the Earth, and a uniform, constant conductance
tensor in the ionosphere ( S, , and ).
The IMF magnitude was chosen to be nT, which is one
of the GGCM Phase-1 cases (the other value is 5 nT). The IMF
direction was assumed to be along the nominal Parker-spiral,
therefore the IMF vector is given by nT
(the axis points toward the Sun, theaxis points to north and

axis makes the coordinate system right handed).
The computational domain extends from to

along the sun–earth direction and from to
in the and directions. The smallest cells are

near the inner boundary, while the largest cells are . We
used 7 levels of refinement in the simulation. The large distance
between the upstream boundary and Earth was chosen to ensure
that all boundaries are far from the physically most interesting
regions.

The inner boundary of the simulation is at 3 . The MHD
simulation domain is connected to the height integrated iono-
sphere (located at 1 ) by unperturbed dipole field lines. Field
aligned currents (FACs) are mapped along undisturbed dipole
field lines between the MHD magnetosphere and electrostatic
ionosphere. This procedure is described in detail by Goodman
[59]. Plasma flow is not allowed through the inner boundary,
and the field aligned current is allowed to freely penetrate into
the electrostatic ionosphere.

1) Last Closed Field Lines:Our simulation uses quite sim-
ilar conditions to those used in the recently published simulation
of Whiteet al. [12]. The main difference is that [12] considered
a pure nT IMF, while our simulation also includes a

component ( ) and uses a stronger total magnetic
field. The reason for the inclusion of a component is that this
IMF direction is closer to the observed average conditions and
therefore comparison with observed magnetospheric topologies
is somewhat easier. In spite of the difference in input param-
eters the simulated magnetospheric configuration and topology
are quite similar to those reported by Whiteet al.[12], including
the formation of the magnetospheric sash.

Fig. 2. Three-dimensional representation of the last closed field lines. Also
shown is the equatorial plane with the computational grid. The grayscale
represents the normalized thermal pressure of the plasma.

Fig. 2 shows a three-dimensional rendering of the last closed
field lines (on the dayside this is essentially the magnetopause).
The figure also shows the equatorial plane with the computa-
tional grid. The grayscale represents the normalized thermal
pressure of the plasma. One of the most interesting features of
the magnetopause is the counterclockwise twist of the symmetry
plane from . This twist is a consequence of the positive
IMF component [61].

It is interesting to note that for IMF the magneto-
spheric topology is very similar to the southward IMF config-
uration. Magnetic reconnection takes place along the “sash” as
described by Whiteet al.[12]. The reconnected field lines move
downstream and form the open magnetic topology of the magne-
totail. A near-earth neutral line is formed at around 17down-
stream behind earth. At this line the reconnected IMF field lines
“disconnect” from the geomagnetic field lines and form highly
draped IMF field lines. These field lines play an important role
in determining the topology of the magnetotail.

2) Magnetotail Topology:The left panel in Fig. 3 shows
simulated two-dimensional “magnetic streamlines” in a cross-
sectional plane in the magnetotail. These magnetic streamlines
are generated by drawing the two-dimensional field lines de-
fined by the and components of the three-dimensional
magnetic field vector. Real three-dimensional magnetic field
lines come out of (and go into) the plane, due to the (gener-
ally) nonzero component. Thus, the magnetic streamline
topology in tail cross sections does not fully characterize the
magnetic structure of the tail. The advantege of using these
streamlines is that they are relatively easy to visualize and there
is a new body of observational evidence which can be compared
with the simulation results [62].

The left panel in Fig. 3 shows simulated magnetic streamlines
in a tail cross section (located around the middle of the closed
magnetotail), while the right panel is the magnetic streamline
pattern synthetized from four years of IMP 8 observations for
IMF conditions [62].

Cross-sectional patterns like those in Fig. 3 are typically char-
acterized by the critical points [63], i.e., points at which

. These critical points can be classified as stable or un-
stable nodes, saddles, centers, or stable or unstable spirals; the
classification depends on local values of and .
While it is easy to misinterpret these critical points, since the
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Fig. 3. Magnetic streamlines in a cross-sectional plane of the magnetotail for IMFB > 0 conditions. The left panel is from the present simulation (the
background grayscale characterizes the logarithm of the normalized pressure), while the right panel is a synthesis of four years of IMP 8 observations [62].

component is ignored, they do correspond to certain phys-
ical situations. For example, a node corresponds to the magnetic
fields lines turning from a three-dimensional orientation to one
parallel to the sun–earth axis.

The similarity between the simulated (left panel of Fig. 3)
and observed (right panel of Fig. 3) magnetic streamlines is
striking. The two patterns are topologically identical, with both
exhibiting two saddles and two nodes: a stable node in the upper
half plane (the magnetic streamlines converge on the node) and
an unstable node in the lower half plane (the magnetic stream-
lines leave the node). Even the location and orientation of these
critical points is quite similar. The radius of the simulated mag-
netotail is smaller than the observations indicate, due to the
stronger than average IMF magnitude (10 nT) used in the simu-
lation. However, this small difference does not effect the excel-
lent agreement between the simulated and observed magnetotail
topologies.

There are three types of magnetic streamlines in Fig. 3: fully
open, reconnected and closed. Fully open streamlines pass com-
pletely through the plot without connecting to a node or a saddle.
These streamlines correspond to interplanetary magnetic field
lines. Some of these streamlines pass through the bow shock
and exhibit a kink, some of them are located above or below the
shock and they pass through the Figure without any distortion.
Reconnected interplanetary magnetic field lines either enter the
figure from the left and connect to the stable node on the north,
or originate from the unstable node on the south and leave the
figure to the right. These streamlines correspond to interplan-
etary magnetic field lines which reconnect to the geomagnetic
field in the northern (stable node) or southern (unstable node)
cusp. Finally, closed magnetic streamlines originate from the
southern (unstable) node and go into the northern (stable) node.
These correspond to closed geomagnetic field lines.

The three-dimensional magnetotail topology corresponding
to the streamline topology shown in Fig. 3 describes an open
magnetotail as discussed by Kaymaz and Siscoe [62]. The sep-
aratrix between reconnected and closed field lines corresponds

to the magnetopause. The two saddle points correspond to the
magnetospheric sash [12] characterized by low magnetic field
magnitudes. The nodes correspond to sun–earth aligned mag-
netic field lines connecting to the cusps.
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