
In Handbook on Parallel Computing and Statistics(2006)
E. Kontoghiorghes, ed., Marcel Dekker, pp. 347–373.

Parallel Programs for Adaptive Designs

Quentin F. Stout∗ and Janis Hardwick∗
∗University of Michigan, Ann Arbor, Michigan 48109 USA

Abstract

We discuss the role of parallel computing in the design and analysis of adaptive sampling
procedures, and show how some efficient parallel programs were developed to allow one to analyze
useful sample sizes. Response adaptive designs are an important class of learning algorithms for
a stochastic environment and apply in a large number of situations. As an illustrative example,
we focus on the problem of optimally assigning patients to treatments in clinical trials. While
response adaptive designs have significant ethical and costadvantages, they are rarely utilized
because of the complexity of optimizing and analyzing them.Computational challenges include
massive memory requirements, few calculations per memory access, and multiply-nested loops
with dynamic indices. We analyze the effects of various parallelization options, showing that,
while standard approaches do not necessarily work well, with effort an efficient, highly scalable
program can be developed. This allows us to solve problems thousands of times more complex
than those solved previously, which helps make adaptive designs practical.

1 Introduction

In situations where data are collected over time, adaptive sampling methods often lead to more
efficient results than do fixed sampling techniques. When sampling or “allocating” adaptively,
sampling decisions are based on accruing data. In contrast,when using fixed sampling procedures,
the sample sizes taken from different populations are specified in advance and are not subject to
change. Using adaptive techniques can reduce costs and time, or improve the precision of the
results for a given sample size. For example, in many financial situations one tries to optimize re-
wards by constantly adjusting decisions as information is collected. In a pharmaceutical setting one
may initially sample several different compounds to estimate their efficacy, and then concentrate a
second round of testing on those compounds deemed most promising. When buying a present one
may look at many options and stop when one has found somethingthat seems sufficiently nice. In
this latter case, which is an optional stopping problem, we assume some cost for looking time and
a reward for appropriateness of the gift.

Fully sequential adaptive procedures, in which one adjustsafter each observation, are the most
efficient. For example, OECD TG 425 [21] contains guidelinesfor determining acute toxicity of
potentially hazardous compounds. Since experiments are conducted on rats, there has been a strong
motivation to develop experimental designs that expose as few animals as possible. Whereas in
the past test guidelines had recommended predetermined sampling rules calling for approximately

30 rats per compound, the standard has changed, and TG 425 recommends adaptive procedures
requiring far fewer, typically 8 to 12. Unfortunately, fully sequential procedures are rarely used
due to difficulties related to generating and implementing good procedures as well as to complica-
tions associated with analyzing the resulting data. For example, they assume immediate responses
and the ability to rapidly switch between alternatives, andthey can involve designs which greatly
reduce average sample size but increase the maximal sample size.

A long-term goal of this research program has been to increase access to adaptive designs by
creating a collection of algorithms that optimize and analyze a variety of sequential procedures.
In particular we have focused on developing serial and parallel algorithms that allow researchers
greater flexibility to incorporate diverse statistical objectives and operational considerations. Some
of these techniques and applications are detailed in [12, 13, 14, 23].

We differentiate between the design and the analysis of sampling procedures. The design phase
might generate optimal or nearly optimal sampling procedures, while the analysis phase may be
applied to an arbitrary sampling procedure and may involve awide range of operational char-
acteristics. The analysis itself may be either exact or approximate. In some situations, optimal
procedures may not be used because they are complex or difficult to employ and explain. Still,
they provide a basis of comparison to establish the efficiency of suboptimal designs. If one can
show that the relative efficiency of a sampling procedure is high compared with the optimal one,
then investigators may be justified in implementing a simpler and, typically, more intuitive subop-
timal option. Since this collection of algorithms also allows for the optimization of strategies that
are constrained to have desirable operational characteristics, the likelihood that investigators can
incorporate such goals and still achieve statistical efficiency is increased.

Historically, it has been not only analytically, but also computationally, infeasible to attain exact
solutions to most adaptive allocation problems. As an example, in [5] the authors argue that if, for
a specific problem, the optimal sequential procedure were “practically obtainable, the interest in
any other design criteria which have some justification although not optimal is reduced to pure
curiosity.” They immediately add, however, that obtainingoptimal procedures is not practicable.
Then, as an illustration of the “intrinsically complicatedstructure” of optimal procedures, the
authors detail the first step of the optimal solution to a simple sequential design problem involving
only three Bernoulli observations. During this same year, 1956, it was pointed out in [4] that
problems of this nature could, in principle, be solved via dynamic programming. However, such
solutions are still typically viewed to be infeasible. Thirty five years later, in [32], when addressing
a variation of the problem in [5], the author reiterates that“In theory the optimal strategies can
always be found by dynamic programming but the computation required is prohibitive”.

This situation motivated us to work on greatly extending therange of problems that could be
analyzed and optimized computationally. While some of the gains can be attributed to the ever
increasing power of computers, much is due to algorithms andimplementation, as will be shown.
To state that a problem can be “solved via dynamic programming” is as vague as saying that one
need only “do the math”. Careful implementations of complexdynamic programming variations,
along with new algorithmic techniques such as path induction, have been necessary to achieve
the results reviewed here. While the models for which optimal solutions can be computed are
often, albeit arguably, deemed to be “too simplistic”, it isnevertheless the case that the insight one
garners from evaluating these models is likely to lead to better heuristics that apply as well to more

2

complex scenarios.
The remainder of this chapter is organized as follows. In Section 2 there is a discussion of

the basic types of parallel computers available and some useful computing paradigms for working
with adaptive designs. In Section 3 we introduce the multi-arm bandit model, which will be used
to illustrate the steps used to obtain an efficient parallel algorithm. Section 4 gives a naive serial
algorithm for the 3-arm bandit, and then an improved version. Sections 5 and 6 show increasingly
more efficient (and complex) parallel algorithms for the same problem, and Section 7 transfers
this to a different type of parallel computer. Section 8 gives some illustrative results showing how
the optimal 3-arm bandit design is superior to simpler alternatives. Section 9 explains the paral-
lelization of a related but more complex problem, namely 2-arm bandits with delayed responses.
Section 10 has some concluding remarks.

2 Parallel Computing Models and Paradigms

In this section we discuss parallel computing platforms andtheir basic characteristics, along with
some computing paradigms that are used in conjunction with adaptive designs.

2.1 Parallel Computing Platforms

Most of our parallel algorithms are developed fordistributed memory, or message-passing, com-
puters, in which data is stored with processors and all communication and access to data is via
the exchange of messages between processors. Conceptuallythese machines are similar to a stan-
dard network of computers, where all communication is via basic read and write operations. Dis-
tributed memory machines are the most common form of parallel computer, especially since the
wide-spread introduction ofclusters. These relatively inexpensive systems consist of commodity
processor boards interconnected by commodity communication systems, typically utilizing open
source software.

In Section 7, the distributed memory algorithm is modified into a form written explicitly for a
shared memory parallel computer. Such a computer has its memory organized so that any processor
can directly access any data, without messages. In general,shared memory machines are preferable
since they simplify the process of converting a serial program into a parallel one. While small
shared memory machines are increasingly becoming commodities for departmental computing,
larger machines require specialized, more expensive, components, and hence are far less common
than distributed memory clusters.

By far the most common way to create a parallel program for distributed memory systems is to
use MPI, Message Passing Interface. MPI has an extensive collection of operations for exchang-
ing messages and collecting information. Furthermore, because it is a well-developed standard
available for most platforms, it helps one develop programsthat can be run on a variety of sys-
tems. MPI is available for shared memory machines as well, but for them there is an additional
standard, OpenMP. This provides compiler directives for automatically parallelizing many loops,
which simplifies the parallelization process.

Various timing results are presented throughout to illustrate the performance improvements
achieved through various means. Note that the absolute values of the numbers are of little interest

3

since processor performance rapidly improves over time. Relative performance, however, is a
useful measure. Further, the basic techniques remain applicable no matter how fast the system is.
The distributed memory results presented were obtained using MPI on an IBM SP2, where each
processor was an 160 MHz POWER2 Super Chip (P2SC) processor with 1 GB of RAM and 1
GB additional virtual memory. The shared memory results were obtained on a 16 processor SGI
Origin with 12 GB RAM, where each processor was a 250 MHz MIPS R10000. Throughout, all
times are elapsed wall-clock time measured in seconds. Rerunning the same problem showed very
little timing variation, so we merely report average time.

2.2 Farming

There is a simple form of parallelization for adaptive designs that is widely used. It is sometimes
calledfarming, and the resultant algorithms are often referred to as beingembarrassingly parallel.
As an example, suppose we have an adaptive design and wish to determine certain of its operating
characteristics. It may be infeasible to do this exactly, even with the aid of parallel computers,
and hence it is done via simulation. One way to accomplish such simulations, especially if each is
itself rather lengthy, is to have several different processors do their own collection of simulations,
and then to combine them at the end. As long as one takes care toinsure that the random number
generators on the processors are independent, this method is quite simple and extremely efficient.
There is no communication among the processors except at start-up and in the final collection
of data. Thus, even a low-cost distributed memory system with slow communication channels
imposes very little overhead and can achieve high efficiency.

A variation on this theme is to do parameter sweeps to tune performance. Many adaptive de-
signs have a variety of adjustable components, such as start-up, stopping and decision rules. For
example, with staged sampling, one collectsk observations deterministically before any adapta-
tion is employed. However, the most suitable value ofk may be unclear, and hence a suite of
evaluations, using different values ofk, may be required to determine the optimal one. Here too,
the parallelization is trivial, since different processors can work on different values ofk. Note
that this approach is applicable whether the evaluations for a singlek are exact or are obtained via
simulation.

When farming is possible, it is almost always the most efficient form of parallelization. That
is, one may be able to parallelize the evaluation of a single simulation or exact evaluation, but it is
usually more efficient to run different ones in parallel and then combine results rather than run each
in parallel. This is because the parallelization of a singletask typically adds communication and
other overhead, and thus while a single task will be completed most quickly if it is run in parallel,
the total set of tasks will be completed quickest if the tasksare run serially.

In a few cases of, say, parameter sweeps, the optimal performance is obtained by a mixture of
the embarrassingly parallel and standard parallelization. This occurs when a single task, such as
exact evaluation for a specific value ofk, runs most efficiently on a small number of processors,
rather than on a single one. Examples of this, shown in subsequent sections, can easily occur if the
memory requirements exceed the memory available on a singleprocessor. In this case, it is best to
find the number of processors that runs a single evaluation atthe highest efficiency. If this value is,
saype, and there arep total processors, then the total time to complete all evaluations is optimized

4

by runningp/pe evaluations simultaneously.

2.3 Exact Optimization

At the opposite end of the spectrum, in terms of the programming effort required, lies the problem
of determining optimal adaptive sampling designs. While there are a variety of techniques needed
for different problem types, we concentrate here on the problem of optimizing an objective func-
tion. Suppose the objective functionO is defined on the terminal states of the experiment, and the
goal is to maximize the expected value ofO. We assume that the sampling options available, and
responses obtained, are discrete.

During the experiment, suppose we are at some stateσ and can sample from populations
P1, . . . , Pk. For populationPi, suppose that at stateσ there arer(i) possible outcomes,oi0, . . . , o

i
r(i)−1,

and that these occur with probabilityπi0(σ), . . . , πir(i)−1(σ), respectively. Letσ+oij denote the state
whereoij has been observed by samplingPi. LetEopt(σ) denote the expected value of the objective
function attained by starting at stateσ and sampling optimally, and letE iopt(σ) denote the expected
value of the objective function attained by starting at state σ, observingPi, and then proceeding
optimally.

The important recursive relationship, sometimes called the principle of optimality, is that

E iopt(σ) =
r(i)−1∑

j=0

πij(σ) Eopt(σ + oij) (1)

Since the only actions available are either to stop with valueO(σ) or sample one of the populations,
we thus have

Eopt(σ) = max
{
O(σ),max{E iopt(σ) : i = 1, . . . , k}

}

where the maximum is restricted to those options that are permissible atσ.
Note that not all adaptive designs are for problems with objective functions satisfying such

recursive equations. For example, many mini-max objectives cannot be presented this way because
they are not defined in terms of expectations with respect to adistribution on the populations, but
rather a maximum or minimum over the populations. Thus they do not have the additivity property
used above. As an example, in Section 8, we compute a criterion known asmin P(CS), which is
the minimum probability of correctly identifying the best arm at the end of the experiment. To do
this, we use path induction [13], which is described in the next section.

When recurrences such as (1) do hold, then there is a very powerful technique,dynamic pro-
gramming, for obtaining the optimal design. One starts at the terminal states, and then for each of
their predecessor states, determines the population to sample that will optimize the expected value.
The optimal action, and the resulting optimal expected value, are recorded for each of these states.
Then the optimal actions at predecessors of these states aredetermined and so on until the initial
state is reached.

One important limiting factor of dynamic programming is theneed to determine the value and
optimal action of every state that can be reached. As will be shown in Section 3, the state space
can be exceeding large. This fact is one of the reasons for utilizing parallel computing, since

5

the computational demands of dynamic programming can be more than are feasible with a single
processor.

Note that in order to be able to employ dynamic programming, not only does one need for the
recursive equations to hold, but one also needs the transition probabilities,πij(σ), at each stateσ.
Thus, dynamic programming requires a Bayesian statisticalframework in which theπij are random
variables whose distributions are updated as data are observed. Technically, this means that one
begins with a jointprior distribution,Γ, on theπij and proceeds to calculate aposteriordistribution,
which is simply the prior conditioned on the outcomes observed so far. In the calculations, one
then uses the posterior meanEΓ(πij | σ) as the value ofπij(σ).

2.4 Exact Evaluation

Since exact analytical evaluations of design operating characteristics are rarely accessible for com-
plex adaptive designs, they are typically obtained computationally. These characteristics can be
estimated via simulation or they can be calculated exactly.Often a serial program can be used to
generate simulations, or farming can be used to exploit multiple processors. On the other hand,
exact evaluations are typically far more complex and may require more sophisticated parallel al-
gorithms.

One well-known technique isbackward induction, in which the calculations are performed
just as in dynamic programming, moving from the end of the experiment towards the beginning.
However, to determine the expected value of a state, one usesthe, possibly random, choice the
design would make at that state, rather than considering allchoices and choosing the best. Thus,
backward induction can be as computationally challenging as dynamic programming. In some
cases, however, it may considerably simpler, such as when itis known that most of the states can
never be reached by the given design. Note that such evaluations can be carried out regardless
of how the design was created. They may involve either an evaluation for a specific Bayesian
distribution, or a collection of evaluations for robustness studies or a frequentist overview.

If many evaluations are needed, then it may be more efficient to usepath induction. With
path induction, there is a preliminary pass from the beginning of the experiment towards the end,
and then repeated evaluations are performed on the terminalstates. A detailed explanation of this
approach appears in [13]. For the purposes of this work, however, the most important feature is
that the calculations for the preliminary pass proceed in the opposite order of those for dynamic
programming. Hence the same parallelization techniques can be applied to path induction as for
dynamic programming, and similar efficiencies can be obtained. Calculations for the evaluations
are typically expected values summed over terminal states,and hence these are similar to farming,
in that each processor sums over its terminal states and thena global sum is computed. Thus it is
quite easy for a parallel computer to perform each evaluation efficiently.

Since backward induction and path induction are so similar to dynamic programming, only the
parallelizations for dynamic programming will be discussed in detail.

6

3 Example: Bandit Models

In clinical trials, there are multiple goals that must be considered when designing an experiment.
One of these goals is to treat all patients as well as possible, but there are differing viewpoints
as to the relevant patient population. For example, if you were a patient, you’d like to be given
the treatment currently deemed the best. Physicians sometimes use this viewpoint as well. This
is known asmyopicallocation, since there is no attempt to allocate you with the hope of gaining
information from your result to help treat patients in the future. A second viewpoint is that it is
all the patients in the clinical trial that are important, inwhich case one tries to maximize the total
number of successful outcomes by the end of the trial. A thirdviewpoint emphasizes “future”
patients who will be treated as a result of the decision made at the trial’s termination. Addressing
the optimal treatment of this last group has long been considered the classical goal of clinical
trials. Still, the need to optimize the well-being of the subjects in the trial itself, be they humans
or animals, has drawn increasing attention. Ultimately, the best designs will balance the needs
of trial subjects and future patients, although, unfortunately, there is no design that can optimize
these goals simultaneously. One way to approach this problem is to attempt to find a design that is
optimal from each viewpoint (as is tackled here), and then todevelop methods that utilize heuristics
from each optimal design. For discussion of the latter approach see [9].

In this section, we describe the design for allocating patients to treatment options such that, on
average, the maximal number of positive outcomes is obtained for trial patients. (See Section 8
for discussion of the immediate and future patient criteria.) This objective can be modeled as a
bandit problem[3]. Such models are important in stochastic optimization as well as in decision
and learning theory. In ak-arm bandit problem one can sample from any ofk independent arms
(populations) at each stage of the experiment. (Here, “arm”= “treatment option”.) Statistically
speaking, bandit problems are usually presented within a Bayesian decision theoretic framework.
Thus, associated with each arm is an initial or prior distribution on the unknown outcome or “re-
ward” function. After sampling from an arm (e.g., allocating a patient to a treatment) one observes
the outcome and updates the information to get the posteriorfor that arm. The goal is todetermine
how best to utilize accruing information to optimize the total outcome for the experiment.

For our example, the outcome functions are Bernoulli randomvariables such that, from state
σ and using the notation of Section 2.3,o0 = 0 represents a treatment failure that occurs with
probability 1 − pi(σ) = πi0(σ), ando1 = 1 represents a success that occurs with probability
pi(σ) = πi1(σ), i = 1, . . . , k. Our goal is to maximize the number of successes inn observations.

At each stage,m = 0 . . . n − 1, of an experiment of lengthn, an arm is selected and the
response is observed. At stagem, let (si, fi) represent the number of successes and failures from
armi. Then the state(s1, f1, . . . , sk, fk), is a vector of sufficient statistics.

Figure 1 illustrates a simple 2-arm bandit design withn = 4. The rate of success of each arm
has a uniform or “flat”, uninformative, prior distribution.Using a non-adaptive design, one would
expect to achieve 2 successes. With the optimal adaptive design one expects 2.27 successes. The
advantages of adaptation become more pronounced the longerthe trial is and the more arms there
are. For example, withn = 100 and uniform priors on each arm, non-adaptive allocation will
average 50 successes no matter how many arms there are. However, the optimal 2-arm bandit will
average 65 successes, and the 3-arm bandit averages 72.

7

1/5
4/5

2/5
3/5

1/3
2/3

1/2
1/2

1/4
3/4

1/2
1/2

1/2
1/2

2/3
1/3

1

2

1

1

1

1

1

1

1

2

2

2

2

2

2

3/4

1/4

1/2

1/2

2/3

1/3

1/3

2/3

2/3

1/3

1/2

1/2

1/2

1/2

1/54

1/203

1/203

1/302

1/183

1/362

1/242

1/241

1/83

1/242

1/242

1/241

1/242

1/241

1/181

1/90

Node: arm sampled; Right cols: successes achieved and prob.reaching that outcome.
Upward line: success; Downward line: failure; Line label: prob. of outcome.

Figure 1: A 2-arm bandit, withn = 4 and uniform priors on each arm.

Optimal designs for the bandit problem can be obtained via dynamic programming, but the
number of states, and hence the time and space required to evaluate them all, have the formidable
growth rate ofΘ

(
n2k/(2k)!

)
. We concentrate on the 3-arm version, which hasΘ(n6) complexity.

Note that the state space grows exponentially in the number of arms. This “curse of dimen-
sionality” often makes exact solutions infeasible. As a result, approximations may be used and the
quality of the solution reduced.

Even when parallel computing is employed, major difficulties include:

• Time and space grow rapidly with the input size, so intensiveefforts are needed to obtain a
useful increase in problem size.

• The time/space ratio is low, making RAM the limiting factor.

• There are few calculations per memory access.

• The nested loops have dynamic index dependencies (see Algorithm 1).

Performance is further exacerbated by the interaction of these aspects. Table 10 illustrates, for
example, the dramatic limitations imposed by space constraints and imperfect load balance caused
by the loop structure.

8

3.1 Previous Work

The 3-arm problem had never previously been solved exactly because it was considered infeasible.
As noted earlier, researchers have long indicated frustration with the far simpler2-arm bandit
problem. In particular, in [17], the authors remark that “the space and time requirements for this
computation grow at a rate proportional ton4 making it impractical to compute the decision even
for moderate values of sayn ≥ 50”. Previously, the largest exact 2-arm bandit solution utilized a
IBM 3090 supercomputer with 6 processors to solven=320 [8]. Here, we solve a problem more
than 300 times harder, namely the 3-arm bandit withn = 200. Further, because to obtain operating
characteristics we must evaluate this design many times, the total work is at least 10,000 times
harder than that done earlier; since, had it been feasible, researchers would have used methods
available at the time rather than the path induction exploited here.

While there has been scant previous work on the parallel solution of bandit problems, in the
computer science community there has been more work on the parallel solution of similar re-
currences. Most of this concentrates on theoretical algorithms where the number of processors
scales far faster than the input size [15, 20, 25, 26, 27], or where special purpose systems are cre-
ated [18, 28]. Others [19, 30] look at dynamic programming difficulties when the subproblems are
not as well understood.

4 Serial Implementation

The goal of a bandit problem with dichotomous responses is todetermine, at each state, which
arm should be selected so as to maximize the expected number of successes over the course of
the experiment. To solve this via standard dynamic programming (Algorithm 1), first the values
of each terminal state (those withn observations) are computed. Then, the optimal solution is
found for all states withm observations based on the optimal solutions for all states with m + 1
observations, form = n− 1 down to 0.

The recurrence at the heart of this dynamic programming algorithm is in the center of the loops.
At stateσ = (s1, f1, s2, f2, s3, f3), one may sample any of the three arms. If armi is sampled, then
the resulting state will be eitherσ+ ŝi or σ+ f̂i, whereŝi andf̂i denote a single additional success
or failure, respectively, on armi. Given the prior distribution on the success rate for armi, along
with the observations inσ on armi, one can then compute the probability of these two outcomes.
Let the probability of observing a success be denoted bypi(si, fi). In the previous stage of the
dynamic programming, the expected values of these states, assuming one proceeds optimally to
the end of the experiment, have been determined. Thus the expected value of sampling from armi
and proceeding optimally, i.e.,V i(σ) = E iopt(σ), is given by

V i(σ) = pi(si, fi) · V (σ + ŝi) + [1 − pi(si, fi)] · V (σ + f̂i)

Choosing the arm that yields the highest expected value is the optimal decision atσ.
For the purposes of efficient implementation and parallelization, the specific recurrence used

to combine values is less important than the indices of the values being referenced, since they
determine the memory accesses and communication required.We have a stencil of dependencies,
whereby the value at stateσ depends only on the neighbor values atσ + ŝ1, σ + f̂1, σ + ŝ2,

9

Algorithm 1 Serial Algorithm for Determining Optimal Adaptive 3-Arm Allocation

{ŝi, f̂i: one success, failure on armi }
{si, fi: number of successes, failures armi }
{m: number of observations so far}
{n: total number of observations}
{|σ|: number of observations at stateσ }
{V: the value of the optimal design starting at stateσ, i.e.,Eopt(σ).

V(0) is the value of the optimal design starting at the beginning.}
{pi(si,fi): prob of success on arm i, if si successes and fi failures have been observed}

for all statesσ with |σ|=n do {i.e. for all terminal states}
V(σ)=number of successes inσ

for m=n-1 downto 0do {compute for all states of size m}
for s3=0 to mdo

for f3=0 to m-s3do
for s2=0 to m-s3-f3do

for f2=0 to m-s3-f3-s2do
for s1=0 to m-s3-f3-s2-f2do

f1 = m-s3-f3-s2-f2-s1
σ = 〈s1,f1,s2,f2,s3,f3〉
V(σ) = max{(p1(s1,f1)·V(σ + ŝ1) + (1-p1(s1,f1))·V(σ + f̂1)) ,

(p2(s2,f2)·V(σ + ŝ2) + (1-p2(s2,f2))·V(σ + f̂2)) ,
(p3(s3,f3)·V(σ + ŝ3) + (1-p3(s3,f3))·V(σ + f̂3)) }

σ + f̂2, σ + ŝ3, andσ + f̂3, along with the priors andσ itself. With minor changes to this equation
(and no change in the dependencies), the same program can also perform backward induction (see
Section 2.4) to evaluate the expected number of successes for an arbitrary 3-arm design. This
allows one to evaluate suboptimal designs which may be desirable for reasons such as simplicity
and intuitiveness. The same stencil of dependencies can also be used to optimize and evaluate
designs for 2 Bernoulli arms with randomly censored observations [23].

Note that the recurrences involve extensive memory accesses, with little computation per ac-
cess. There are

(
n+6

6

)
= Θ(n6) states, and the time and space complexities are alsoΘ(n6).

4.1 Space Optimizations

Given the vast space requirements needed to solve these problems, good algorithms must incorpo-
rate a number of space reduction techniques. The first of these results from the observation that
values ofV for a givenm depend only on the values form + 1, so only the states corresponding
to these two stages need to be kept simultaneously. This reduces the working space toΘ(n5), and
by properly arranging the order of the calculations, the space can be further reduced to only that
required for one stage’s worth of states, i.e., we gain another factor of 2. This corresponds to the

10

n first collapsed naive comp best
10 .009 .004 .082 .004
20 .18 .1 3.2 .092
30 1.4 35 .71
40 4.1 186 3.9
50 15 689 13
60 2024 35
70 5047 86
80 11242 185
90 22756 362

100 42900 659
110 1225
120 1922
130 34961

maxn 27 54 100 135
limitation memory memory time time
prog len 193 193 282 419

maxn: Maximum problem solvable with 1 GB and time≤ 64,400 sec. (18 hr.)

Table 1: Serial versions, time (sec.) to solve problem of sizen.

collapsedcolumn in Table 1. In this table,maxn shows the maximum problem solvable by a 1 GB
RAM machine with a time limit of 18 hours,limitation shows which limit was reached, andprog
len is the size of the version in lines of source code. Note that the collapsed version allows us to
solve problems substantially larger, and also results in a slight speedup.

Another significant space reduction results from the fact that, due to the constraint
s3 + f3 + s2 + f2 + s1 + f1 ≤ n,

only a corner of the 5-dimensionalV array is used (approximately 1/5! = 1/120 of the total). To take
advantage of this, the 5-dimensionalV array is mapped 1-1 onto a linear arrayVℓ. Unfortunately,
this mapping also requires that all array references be translated from the original five indices into
their position in the linear array. From a software engineering viewpoint, the best way to implement
this translation is to use a function which takes as input thefive indices and yields their position in
the array, i.e., a mapping of the form

V(s1,s2,f2,s3,f3) 7→ Vℓ(T(s1,s2,f2,s3,f3))
Unfortunately, this is extremely costly as the translationfunctionT is a complicated5th degree
polynomial which must be evaluated for every array access. This version, thenaive compin
Table 1, can solve larger problems, but is significantly slower than thecollapsedversion. For the
bestversion, we broke the translation function into a series of offset functions, where each offset
function corresponds to a given nested loop level., i.e.,

T (s1, s2, f2, s3, f3) = Ts3(m) + Tf3(m−s3) + Ts2(m−s3−f3) + Tf2(m−s3−f3−s2)

+Ts1(m−s3−f3−s2−f2) + s1

11

An offset function only needs to be recalculated before its corresponding loop is entered, and the
more expensive offset functions correspond to the outermost loops.

This method dramatically reduces the translation cost downto a usable level, but greatly in-
creases program complexity, as is shown by the increase inprog len.

The simplified Algorithm 1 ignores the fact that in order to utilize the design, one needs to
record the arm selected at each state. Unfortunately these values cannot be overwritten and the
storage required isΘ(n6). Fortunately, this too involves only values in one corner, allowing a
reduction by a factor of 1/6! = 1/720. These values are storedon disk and do not reduce the
amount of memory available for calculation. Using run-length encoding or other compression
techniques would likely reduce this toΘ(n5), but so far this has not been necessary. Note that if
one only needs the value of the optimal design, but not the design itself, then this storage is not
needed. Such a situation arises, for example, when the optimal design is only used to gauge the
performance of simpler designs.

5 Initial Parallel Algorithm

To parallelize the recurrence, we first address load balancing. In the initial parallelization the
natural step of dividing the work among the processors was taken. The outermostm loop behaves
very much like “time” in many simulations and cannot be parallelized, so instead one parallelizes
the second outermost loop,s3. At stagem, processorPj is assigned the task of computing all
values wheres3 is in the rangestart s3(j,m) . . .end s3(j,m).

Because the number of states corresponding to a given value of s3 grows as(m-s3)4, deter-
mining the range ofs3 values assigned to each processor is nontrivial. Thus, simply assigning all
processors an equal number ofs3 values would result in massive load imbalance and poor scaling.
We evaluated two solutions to this problem. Optimals3 partitioning is itself a small dynamic
programming problem which takes time and spaceΘ(mp). However, it was easy to develop a fast
Θ(m) greedy heuristic which was nearly optimal, and it is this heuristic which was used in the
initial program.

5.1 Communication

The communication needed can be divided intoarray redistributionandexternal neighbor acquisi-
tion. Array redistribution occurs because, as the calculation proceeds, the number of states shrinks.
To maintain load-balance, thes3 range owned by a processor changes over time. At stagem, pro-
cessorPj needs the states withs3 values in the rangestart s3(j,m) . . .start s3(j,m+1)-1
from Pj−1. Redistribution includes the cost of moving the states currently on the processor to cre-
ate space for these new states.

External neighbor acquisition occurs because the calculations for a state may depend on its
neighbors in other processors. To calculate states withs3=end s3(j,m) during stagem, Pj
needs to obtain a copy of the states withs3=end s3(j,m)+1 from Pj+1. Note that external
neighbor acquisition negates round-robin or self-scheduling approaches to load-balancing thes3
loops, as this would result in a dramatic increase in the communication requirements. This does not
necessarily hold for shared memory systems, however, as canbe seen from the OpenMP version

12

Algorithm 2 Scalable Parallel Algorithm
{Pj: processor j}
{startσ(j,m), endσ(j,m): range ofσ values assigned toPj for this m value,
with startσ(j+1,m)=endσ(j,m)+1}

{For all processorsPj simultaneously, do}

for σ=startσ(j,n) to endσ(j,n) do {i.e. for all terminal states}
V(σ)=number of failures inσ

for m=n-1 downto 0do {compute for all states of size m}
for σ=startσ(j,m) to endσ(j,m) do

determine s1, f1, s2, f2, s3, f3 fromσ
compute V as before

{Array redistribution}
Send needed V values to other processors
Receive V values from other processors

{External data acquisition}
Send needed V values to other processors
Receive V values from other processors

in Section 7. Shared memory computers are able to utilize these approaches because their much
faster communication systems reduce the latency to a tolerable level.

6 Scalable Parallel Algorithm

The initial load-balancing approach is simple to implementand debug because it makes minimal
changes to the serial version. Unfortunately, it has imperfect load and working space balancing
and this severely limits scalability (see Table 2) and solvable problem size (see Table 10).

For a more scalable version (Algorithm 2), instead of partitioning the states using the coarse
granularity of thes3 values, we partition them as finely as possible, i.e., by individual states. The
assigned states are specified bystart σ andend σ. However, this leads to numerous difficulties.
The first is that a processor’sV array can now start or end at arbitrary values ofs3, f3, s2,
f2, s1, andf1, so one can no longer use a simple set of nested loops to iterate between the start
and end value. Our first attempt to solve this problem had nested if-statements within the innermost
loop, where the execution rarely went deep within the nest. While logically efficient, this turned
out to be quite slow because it was too complex for the compiler to optimize. A solution that the
compiler was able to cope with was to use a set of nested loops with if-statements in front of each
loop so that it starts and stops appropriately. This solution was almost as fast as the original serial
nested loops.

13

Another difficulty was that the offset calculations are not uniformly distributed along the range
of the V array, and this leads to a noticeable load imbalance. Storing the results of the offset
equations in arrays significantly decreases the cost of eachoffset calculation and reduces the load
imbalance to a more acceptable level. However, there is still some slight load imbalance that could
be addressed by including the cost of these array lookups in the load balancing.

6.1 Communication

The move to perfect division of theV array also caused complications in the communication portion
of the program. The main complication was that data needed for either external or redistribution
aspects was no longer necessarily located on adjacent processors. This resulted in a considerable
increase in the complexity of the communication portions ofthe program.

Our initial version of the communication functions used a natural strategy when space is a
concern: each processor sent the data it needed to send, shifted its remaining internal data, and
then received the data sent to it. Blocking sends were used toinsure that there was space to
receive the messages. Unfortunately, this serialized the communication, because the only processor
initially ready to receive was the one holding the end of the array, i.e., the only processor which
does not redistribute to any other processor. The next processor able to receive was the second
from the end, because it sent only to the end processor, and soon. The performance of this
version was unacceptable. The next version removed the interaction and performed adequately but
synchronization costs became more of a problem. To remove these, we switched to non-blocking
communication wherever possible. This made communicationfairly efficient, although there may
still be room for some slight additional improvement.

Unfortunately, non-blocking communication requires additional buffers to accommodate in-
complete sends and receives. In general there is a serious conflict between extensive user space
requirements and minimizing communication delays. The communication buffers needed to over-
lap communication and calculation, and to accommodate non-blocking operations, can be large.

6.2 Scalable Timing Results

Table 2 shows the efficiency,e(p), of the initial and scalable parallel versions as the numberof
processorsp increases. Table 3 shows the effect on timing and scaling of each of the major changes
detailed in Section 6, contrasting 1 processor and 8 processor versions, wheret(p) is the time. Note
that the improvements reduced the serial time, and increased the parallel efficiency relative to the
reduced serial time.

Table 4 contains the percentage of the total running time taken by different parts of the scal-
able program as the number of processors increases.Calc is the percentage of time taken by the
dynamic programming calculations,file is the cost of writing the decisions to disk, andmisc is
the part of the time not attributed elsewhere. Underarray redist, we show the cost of shifting
data among the processors to maintain load-balance, wherecommis the cost of calculating the
redistribution and communicating the data between the processors, andshift is the cost of moving
the data on the processor. Belowexternal commis the cost of getting neighbor states from other
processors, including the cost of determining which processor has the data, where to put it on the

14

p efficiencye(p)
initial scalable

1 1.00 1.00
2 .96 .96
4 .93 .94
8 .81 .91

16 .64 .86
32 .48 .81

Table 2: Scaling results,n = 100.

version t(1) t(8) e(8)
first scalable 1044 178 .734

improved loops 775 143 .678
offsets in array 766 134 .715
scalable comm 762 106 .903

non-blocking comm 760 104 .913

Table 3: Stepwise improvements in scalable ver-
sion,n = 100, 1 and 8 processors.

array redist external
p calc file misc comm shift comm
1 98 1.9 0.1 0.0 0.0 0.0
2 94 1.6 0.9 1.9 1.2 0.4
4 88 1.6 0.1 4.5 2.0 3.8
8 84 1.4 0.2 6.5 2.0 5.9

16 73 1.2 0.7 11.0 2.1 12.0
32 57 1.1 0.0 16.1 1.7 24.1

Table 4: Percentage distribution of time within scalable version,n = 100.

current processor, and the cost of communicating the data.
Table 5 presents the running times of the scalable program for n = 200 for 16 and 32 proces-

sors. Note that the speedup is more than a factor of two. This occurred because on 16 processors
the program must make extensive use of disk-based virtual memory. A similar effect can be seen in
Table 1 asn increases from 120 to 130. This illustrates an often overlooked advantage of parallel
computers, a bonus increase in speed simply because dividing a problem among more processors
allows it to run in RAM instead of in virtual memory. However,this can be successful only if the
parallelization load-balances the memory and computationrequirements.

7 Shared Memory Implementations

To measure the performance of the 3-arm bandit code on a shared memory machine we imple-
mented four separate versions.

The first version, which we call MPI, uses the shared memory implementation of the MPI
libraries. Aside from a few changes due to differences in theversions of Fortran on the two ma-
chines, this version is identical to the scalable version ofthe code previously described.

The next version, OpenMP, uses OpenMP directives to implement a shared memory version
of the code. This version is very similar to that in Algorithm1, except for the addition of a

15

p t(p)
16 10463
32 1965

Table 5: Timing results,n = 200, scalable version.

second copy of theV array. This second copy is necessary because, while using a shared memory
implementation the sameV array is shared among all the processors, which may be actingon
different sections of it at arbitrary times. This means there is no longer a guarantee that every
calculation that uses a state will have read the state’s value before it is overwritten. Thus, we need
to have a second array to hold the current stage’s inputs while the current stage’s outputs are being
stored. After a stage is completed its output array is copiedinto the input array for the next stage.

To convert the code, OpenMP parallel-do directives were used around the outermost loop,s3,
of the dynamic programming setup, and thes3 loop in the dynamic programming. Both of these
loops use OpenMP dynamic scheduling, where each processor grabs a user defined chunk size
number of iterations, performs them, and then, when completed, grabs another set. This process
continues until all the iterations of the loop have been completed.

To compute the chunk size for each stage, we first determine the average amount of work per
processor at that stage. The chunk size is then the maximum number of initial iterations whose
combined work is no greater than the average work. Note that this will not be the number of
iterations divided by the number of processors since the work per iteration varies dramatically.
This will create many chunks with diminishing amounts of work which will be taken by under-
loaded processors as they complete their tasks, helping to insure approximately even load balance.
Such a dynamic scheduling approach is not useful for distributed memory systems because of the
increase in complexity that would result from tracking the location of the states and synchronizing
access to them, and the cost of moving so much state information among processors.

The third version of shared memory code, Auto, was generatedby using the SGI Fortran auto-
parallelizer on the serial version of our code. Unfortunately, due to the dependencies inside theV
array described above, the auto-parallelizer was only ableto parallelize the innermost,s1, loop of
the dynamic programming setup.

The final version of shared memory code, Auto+Copy, again used the auto-parallelizer, but
this time on the doubleV array code described above for OpenMP. The reduction in dependencies
allowed it to do slightly better. It parallelized the innermost,s1, loops of both the setup and the
main body of the dynamic programming.

Table 6 shows the results of our measurements on these four versions. As can be seen, the
hand parallelized versions perform far better than those done automatically. In fact, Auto has
almost no discernible increase in speed as the number of processors increases. Auto+Copy does
slightly better, but is still far inferior to the others. Thewinner clearly is OpenMP, which was to
be expected as it has far less overhead than MPI. Note, however, that OpenMP’s scalability will
degrade as the number of processors increases because it cannot allocate less than ones3 loop per
processor. (Because we had only 16 nodes on our SGI Origin, wecan not provide numbers for
more processors). Implementing a fully scalable code usingOpenMP would be difficult, and in the

16

MPI OpenMP Auto Auto+Copy
p t(p) e(p) t(p) e(p) t(p) e(p) t(p) e(p)
1 439 1.00 406 1.00 471 1.00 454 1.00
2 290 .76 209 .97 473 .49 419 .54
4 155 .70 113 .90 465 .25 404 .28
8 90 .61 72 .70 473 .13 403 .14

16 73 .38 59 .43 470 .06 397 .07

Table 6: Efficiency of shared memory implementations,n=100

end would probably result in something quite similar to the MPI version.

8 Illustrative Results for 3-Arm Bandit

To illustrate the use of the parallel algorithm in Algorithm2, it was applied to the problem of
comparing three sequential allocation procedures involving 3 arms. We continue with the example
of designing a clinical trial to address the ethical obligation to optimize patient treatment. In
Section 3, three interpretations of treating patients optimally were offered. We examine one design
for each interpretation and then look to see which of these designs seems to address all three
interpretations the best. Computationally, the intent is to show that the parallel program provides
heretofore unattainable exact evaluations of these procedures and their operating characteristics for
practical sample sizes. The procedures are:

Bandit The fully sequential design that maximizes the expected number of successes within the
experiment. It is determined via dynamic programming.

Myopic A fully sequential design that chooses, at each state, the arm that has the highest probabil-
ity of producing a success. For the current patient, this is the desirable “personal physician”
approach.

Equal Allocation (EA) A commonly used fixed sampling approach, in which each arm receives
n/3 pulls. This is the classical allocation procedure that is expected to perform well with
respect to choosing the best treatment to apply to future patients once the trial has terminated.

As noted, to optimize the bandit procedure, a Bayesian approach is taken in the design phase.
Myopic allocation also utilizes a Bayesian approach. Recall, however, that the procedures can be
analyzed from either a Bayesian or frequentist perspective. To illustrate this, the allocation schemes
were compared (analyzed) according to two criteria — one Bayesian and the other frequentist.

The first is the Bayesian criterion,expected number of failures, “EΓ(F)”. For this example, the
prior distribution,Γ, on the treatment means was the product of independent uniform, Beta(1,1),
distributions. Since we use the sameΓ throughout the example, we drop the superscript to simplify
notation. Recall that E(F) is the criterion minimized by thebandit procedure. Myopic allocation,
on the other hand, assumes that the next observation is the last one, and as such it calls for allocation

17

to the treatment that presently looks the best. For clinicaltrials with small sample sizes, this goal is
virtually the same as trying to minimize E(F) among then trial patients. Note that while dynamic
programming is needed to determine E(F) for bandit allocation, backward induction is used to
determine the E(F) for myopic allocation. For equal allocation, E(F) is simply the sum ofn/3
times the prior probabilities of failure for each arm. In theuniform case, this sum is simplyn/2.

To address the third interpretation, which is to optimize future patient well-being, we focus on
correctly identifying the best treatment arm at the end of the trial. The decision rule is to select the
arm with the highest observed rate of successes, with the intent to treat all future patients with the
selected therapy. In case of ties, the winner is selected randomly, as is standard. We wish to do this
with high probability, so we examine theprobability of correct selection, P(CS)=P(CS| p1, p2, p3),
where(p1, p2, p3) ∈ Ω = [0, 1]3.

There exists no allocation procedure that maximizes P(CS) for all combinations of(p1, p2, p3) ∈
Ω. While one can carry out a pointwise comparison of two designs, assessing P(CS) overΩ for
each, in general it is more tractable to utilize a summary measure to assess overall performance.
As with the E(F) criterion, one could work with a Bayesian version of P(CS), and integrate with
respect to a prior distribution on the treatment success rates. Optimizing this measure can be done
via dynamic programming. A different approach is needed, however, if a frequentist measure is
desired. First, let(p(1), p(2), p(3)) be the order statistics for(p1, p2, p3). In other words,p(1) is the
smallest success rate,p(2) the second smallest, andp(3) the largest. Fix aδ > 0, and say that a
selection of armi is correct to withinδ, denoted CSδ, if pi > p(3) − δ. (In the examples,δ = 0.1.)
Let Ψ be the class of all allocation designs of lengthn (notation for length suppressed). Forψ ∈ Ψ
define

Pδ(ψ) = min
(p1,p2,p3)∈Ω

P(CSδ | ψ; p1, p2, p3)

Then, a popular optimization goal is to locateψ∗ ∈ Ψ such that

Pδ(ψ
∗) = max

ψ∈Ψ
Pδ(ψ)

Unfortunately,ψ∗ is unknown when there are three or more arms. Standard dynamic programming
approaches cannot be used to solve this problem because of the nonlinear nature of the minimum
operation in the definition ofPδ(ψ). However, whenk = 2, the optimal procedure is to allocate
equally to each arm. Thus, while for 3 or more arms there existadaptive procedures that are better
than equal allocation on this measure, EA has the potential to be a very good suboptimal procedure.

For an arbitrary allocation algorithm, it is not known whichvalues of(p1, p2, p3) yield the
minimum overΩ, and it is not possible to determine this exactly through backward induction.
This indicates that a search throughout the parameter spaceis needed to determinePδ(ψ). Pδ(ψ)
is an example of a criterion for which an allocation design needs to be evaluated multiple times.
Because of these multiple evaluations, path induction was used to search forPδ for the bandit and
myopic designs. For 2 arms it can be shown that the minimum always occurs whenp(1) = p(2) − δ,
reducing the dimension of the relevant search space. Here the search was over arm probabilities
such thatp(1) = p(2) = p(3) − δ. While for 3 or more arms there are contrived designs where Pδ is
not attained in this region, for the designs considered hereit seems to be a reasonable assumption.

In Figure 2, E(F) for each procedure is plotted as a function of the sample size. Similarly,Pδ

versus sample size is presented in Figure 3. As noted, uniform priors have been used throughout.

18

All arms have uniform priors.

B = Bandit;E = Equal;M = Myopic

0 50 100 150 200
Sample Size

0

20

40

60

80

100

E
xp

ec
te

d
N

um
be

r
of

 F
ai

lu
re

s

BB
B

B
B

B

B

B

MM

M
M

M

M

M

EE
E

E

E

E

E

E

Figure 2: Sample Size vs. E(Failures)

0 50 100 150 200
Sample Size

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

of
 C

or
re

ct
 S

el
ec

tio
n

BB

B

B

B

B

B

B

MM M M M M M ME

E

E

E

E

E

E

E

Figure 3: Sample Size vs.Pδ, δ = 0.1

These were used mainly because they are a common basis for comparison across the literature.
Naturally, had other priors been used then the results wouldbe somewhat different. The program
can easily handle a wide range of prior distributions.

Note that the bandit allocation comes very close to achieving the highPδ of equal allocation,
while incurring far fewer failures. Myopic allocation alsoincurs few failures, but has a very poor
ability to correctly locate the best arm. Thus, we find that the bandit design seems to be the
preferred design overall since it performs optimally on E(F) and also attains high values ofPδ.

For the indifference region ofδ = 0.1, the minimum P(CSδ) for myopic allocation occurs when
one arm has a success probability of 1 and the others have probability 0.9. In this situation, there
is greater than a60% chance that the trial will never even try the superior arm. This is largely due
to the prior assumption that the average success rates for the different arms are1/2. The myopic
rule randomizes in the first stage and if a success is obtained, the parameter estimate for the arm
selected is updated to2/3, while the other arm estimates remain at1/2. This procedure selects
the next observation from the arm with the expected success rate of2/3. With the true parameter
having a value≥ 0.9, the outcome is again likely to be a success. This result inclines the rule even
further in favor of the arm already sampled. There are simpleways to alter myopic allocation so
thatPδ significantly improves with very little increase in failures; however, a discussion of this is
beyond the scope of this work.

19

9 Delayed Response Problem

An interesting dilemma that arises with adaptive designs isthat information may not accrue at
the rate of allocation. In this case, new questions that arise are (a) how to optimize an experi-
mental design knowing that responses will be delayed and (b)how to model the response delay.
Delayed responsesare a significant practical problem in clinical trials, and are often cited as a dif-
ficulty when trying to apply adaptive designs [1, 29]. We haveapplied our scalable parallelization
approach to a version of this problem in which there are 2 Bernoulli arms. Moreover, like the 3-
arm problem, no nontrivial delayed response problem has been fully optimized previously, either
analytically nor computationally. Again, determining theoptimal design has been seen as being
intractable, although some special cases have been analyzed. These include 2-stage designs where
the first stage is equal allocation [6], and designs where onearm has a known success rate and the
problem is to decide when to stop trying the unknown arm [7, 31].

There are many different models of the delay, appropriate for varying circumstances. Here we
assume that the response times for each arm are exponentially distributed, and that patients arrive
according to a Poisson process. We call the optimal design for this problem thedelayed 2-armed
bandit, D2AB. In this setting, the natural states are of the form(s1, f1, u1, s2, f2, u2), whereui is
the number of patients assigned to treatmenti but whose outcomes are unknown.

As before, we have the condition thats1+f1+u1+s2+f2+u2 ≤ n, which allows compression,
and all nonnegative values ofs1, f1, s2, f2, s3, f3 satisfying this constraint are valid, just as they
were for the 3-arm bandit. However, a critical difference isthat the recurrence forV (σ) depends
uponV (σ+ û1), V (σ+ ŝ1− û1), V (σ+ f̂1 − û1), V (σ+ û2), V (σ+ ŝ2 − û2), andV (σ+ f̂2− û2).
That is, either a patient is assigned a treatment and the outcome is initially unknown, or we have
just observed the outcome of a treatment. See [11] for the detailed form of the recurrence and its
derivation.

While the recurrences for the delayed response model again have a stencil of neighbor de-
pendencies, they are much more complicated. To go through the calculations systematically, one
needs the appropriate notion of “stage”, corresponding tom in the 3-arm program. In general, the
stage of a stateσ should be the maximum path length to the state from the initial state0. In the
3-arm problem, all paths toσ from 0 took the same number of steps, which was the sum of the
entries. Here again all paths have the same length, but it is2(s1 + f1 + s2 + f2) + u1 + u2, i.e., the
components do not contribute uniformly.

Because all the paths fromσ from 0 are the same length, states at stagek (i.e., at distancek)
depend only on states at stagek + 1, which allows one to store only 2 stages at a time. Further,
as in the 3-arm problem, by carefully analyzing the dependencies and going through the loops
in the correct order, this can be reduced down to 1 stage. However, there are now2n stages for
the outermost loop, as opposed to then used previously. This has the negative effect of doubling
the number of rounds of communication, which significantly reduces the parallel efficiency. It
does have a positive effect, however, of slightly reducing the memory requirements since the same
number of states are spread over more stages. The nonuniformroles of the indices make the array
compression calculations somewhat more complex, and make it harder to determine the indices of
the states depended on.

An additional complication comes from the fact that for the 3-arm problem, any combination

20

array redist external
p e(p) calc misc comm shift comm
1 1.00 95.8 0.0 0.0 4.2 0.0
2 .93 89.5 0.0 3.7 3.8 3.0
4 .79 75.7 0.0 12.4 3.6 8.3
8 .67 61.9 0.1 18.4 2.8 16.8

16 .41 41.5 0.2 28.2 2.0 28.1
32 .27 25.8 0.2 31.8 1.2 41.0

Table 7: Analysis of delay program on new system,n=100.

of nonnegative entries having a sum ofm was a valid state at stagem ≤ n. Now, however, there
can be a valid stagem ≤ 2n, and a combination of nonnegative entries having that weighted sum,
but the combination does not correspond to a state. For example, if n = 100, then (0, 0, 75, 0, 0, 75)
is not a valid state, even though it is at stage 150. The reasonis that it violates the constraint that
s1 + f1 + u1 + s2 + f2 + u2 ≤ n. Previously this constraint was automatically satisfied, but this is
no longer true. This situation complicates the compressed indexing and access processes. Details
can be found in [22].

Table 7 contains the timing and scaling analysis of the program, which incorporates all of the
features of the most scalable 3-arm program. This was run on anewer version of the computer
system where policies had been adjusted to improve disk usage but which had the unintended
effect of reducing scalability. Hence we would expect the performance to be degraded somewhat,
but the drop in efficiency is rather significant, caused by thecomplex indexing and extra rounds
of communication. Perhaps further tuning would have improved this, but it was sufficient for our
purposes. This is an important aspect of parallel computing, in that improving parallel performance
can be a never-ending process, and hence one needs to assess the tradeoffs between programmer
effort and time versus computer time.

9.1 Randomized Play-the-Winner

One popular ad hoc sampling rule is known as the randomized play the winner (RPW) rule, which
first appeared in [33]. The RPW is an urn model containing “initial” balls that represent the treat-
ment options. Patients are assigned to arms according to thetype of ball drawn at random from the
urn. Sampling is with replacement, and balls are added to theurn according to the last patient’s
response.

An advantage of urn models like RPW is the natural way in whichdelayed observations can
be incorporated into the allocation process. When a delayedresponse eventually comes in, balls of
the appropriate type are added to the urn. Since sampling is with replacement, any delay pattern
can be accommodated. We call this design thedelayed RPW rule(DRPW). A DRPW strategy,
in which responses occur with a fixed delay, is mentioned in [16]. In [2] the authors consider a
slightly altered version of this rule for a related best selection problem. However, only asymptotic
results have been obtained for these cases. These results are consistent with ours when the delay is

21

not large compared to the arrival rate, but they do not correctly predict behavior when the delay is
comparable to the sample size times the arrival rate (see Figure 4).

9.2 Sample Results

We carried out exact analyses of the exponential delay modelfor both the D2AB and DRPW.
Here we present results forn = 100. For the DRPW the urn is initialized with one ball for each
treatment. This particular initial urn may be thought of as having roughly the effect of the uniform
priors used in the bandit design. If a success is observed on treatmenti then another ball of typei
is added to the urn, while if a failure is observed then another ball of type3 − i is added,i = 1, 2.

For comparative purposes, we look at base and best case scenarios. The best fixed-in-advance
allocation procedure is the base case, i.e., the optimal solution when no responses will be available
until after alln patients have been allocated. To maximize successes one should allocate all patients
to the treatment with the higher expected success rate. We denote the expected number of successes
in the base fixed case by Ebf [S]. Here, we consider only uniform priors on the treatment success
ratesp1 andp2, in which case any fixed allocation rule works equally well, yielding an expected
return of Ebf [S] = n/2.

The best possible case arises when all responses are observed immediately (full information).
In this situation, DRPW is simply the regular RPW and the D2ABis the regular 2-armed ban-
dit. Recall that the regular 2-armed bandit optimizes the problem of allocating to maximize total
successes. Letting Eopt[S] represent expected successes in the best case, Eopt[S] = 64.9 for this
example. Using the difference Eopt[S] − Ebf [S] as a scale for improvement, one can think of the
values on this scale, (0, 14.9), as representing the “extra”successes over the best fixed allocation
of 100 observations. For an allocation ruleψ define

Rψ =
Eψ[S] − Ebf [S]

Eopt[S] − Ebf [S]

to be therelative improvementover the base case. While Rψ also depends onn, the prior parame-
ters, and the response and arrival rates, these are omitted from the notation.

Note that, for fixed arrival and delay rates, RD2AB → 1 asn → ∞. However, this is not true
for RDRPW, since asymptotically the urn contains a nonzero fraction of balls corresponding to the
inferior arm. If the arm probabilities arep1, p2, let q(i) = 1− p(i), i = 1, 2 (using the order statistic
notation introduced in Section 8). Then RDRPW(p1, p2) → (q(1) − q(2))/(q(1) + q(2)). For uniform
priors, RDRPW → 0.545. However, this asymptotic behavior gives little information about the
values for practical sample sizes, and exact solutions for fixed values ofn are not known. Hence
their performance must be determined computationally.

Tables 8 and 9 contain the expected successes for the D2AB andthe DRPW rules, respectively.
Patient response rates,λ1 andλ2, vary over a grid of values between10−5 and101, and the patient
arrival rate is fixed at 1. Note that, for both rules, whenλ1 = λ2 = 10−5, E[S] ≈ 50. When
λ1 = λ2 = 10, the delayed bandit rule gives E[S]=64.9 as one would expect. Note that in the best
case scenario for the DRPW, E[S] = 57.9, which gives an R of 0.53. With the RPW, we can expect
to gain only 7.9 successes as compared to the 14.9 for the optimal bandit.

Moving away from the extreme points, consider the case whenλ1, λ2 andλs are all the same
order of magnitude. The D2AB rule is virtually unaffected, with an R value of 0.99. This is

22

λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.1
10−4 51.2 51.2
10−3 55.4 55.4 55.8
10−2 59.3 59.4 59.9 61.5
10−1 60.9 61.0 61.6 63.1 64.1
100 61.3 61.3 61.9 63.5 64.5 64.8
101 61.3 61.3 62.0 63.5 64.6 64.8 64.9

Table 8: Bandit: E[S] as (λ1, λ2) vary,n = 100, λs = 1, uniform priors

λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.0
10−4 50.2 50.4
10−3 51.6 51.7 52.6
10−2 54.8 54.8 54.9 55.7
10−1 56.5 56.5 56.5 56.7 57.3
100 56.9 56.9 56.9 57.1 57.6 57.8
101 57.0 57.0 57.0 57.2 57.6 57.8 57.9

Table 9: RPW: E[S] as (λ1, λ2) vary,n = 100, λs = 1, uniform priors

true because, on average, there is only one allocated patient whose outcome hasn’t been observed
throughout the trial. For the DRPW, RDRPW = 0.52, which is only slightly smaller than the non-
delayed case. Both rules seem quite robust to mild to moderate delays in adaptation. It is only
whenboth response rates are at least three orders of magnitude below the arrival rate that results
begin to degrade seriously. Whenλ1 = λ2 = 10−3, for example, RD2AB is only 0.40, and RDRPW

is a dismal 0.17. It is also interesting to note that even whenthe response rate is only 1/100th the
arrival rate, the D2AB does better than the RPW with immediate responses. Figure 4 illustrates the
expected successes for DRPW and D2AB when the response ratesare both one but the arrival rate
varies between10−5 and105.

When we consider scenarios in which only one treatment arm supplies information to the sys-
tem, we see an interesting result. For example, using uniform priors, whenλ1 = λs = 1 but
λ2 = 10−5, the relative improvement is 0.76 for the D2AB and 0.47 for the DRPW. This is an
intriguing result for the DRPW since its R-value is 89% of thebest possible RPW value. Still, one
clearly prefers the D2AB since there is only a 24% loss over the optimal solution while excluding
half the information.

One way to view this problem independently from the allocation rules is to examine the ex-
pected number of allocated but unobserved patients when a new patient allocation decision must

23

-5 -4 -3 -2 -1 0 1 2 3 4 5
log(Arrival Rate)

50

54

58

62

66

E
(S

uc
ce

ss
fu

l R
es

po
ns

es
)

B B B B B B
B

B

B

B
B

R R R R R R R

R

R

R R

λ1 = λ2 =1D2AB

DRPW

Uniform Priors

N = 100

Figure 4: Expected successes for D2AB and DRPW,λ1 = λ2 = 1

be made. As noted, when the response delay rate is 1, at any point in time one expects only a sin-
gle observation to be delayed, and the impact on performanceis minimal. Whenλ1 = λ2 = 0.1,
once approximately 20 patients have been allocated there isa consistent lag of about 10 patients.
Connecting this value to the results in Tables 8 and 9, one finds that a loss of roughly 10% of the
total information at the time of allocation of the last patient (and a significantly higher loss rate for
earlier decisions), corresponds to a loss of only about 5% interms of the improvement available
from D2AB, and about 8% from DRPW.

When the response rate is about 100 times slower that the arrival rate, asymptotically there will
be approximately 100 unobserved patients at any point in time. Fortunately, for a sample size of
100, one is quite far from this asymptotic behavior, and approximately 37% of the responses have
been observed by the time the last allocation decision must be made. This allows the D2AB to
achieve 77% of the relative improvement possible, while theDRPW rule attains only 38%. Note
that this is an example where asymptotic results would be quite misleading, and thus a computa-
tional approach is required to determine the true behavior.

While for space reasons this work has only analyzed problemsin which both treatments have
uniform priors, similar results hold for more general priors.

10 Conclusions

There is considerable interest in using adaptive designs invarious experiments because they can
save lives (human or animal), time, cost, or other resources. For example, for a representative
delayed response problem withn = 100, uniform priors, and response delay rates 10 times patient
arrival rates, simple equal allocation averages 50 successes. The most commonly suggested adap-
tive technique, randomized play the winner (RPW), achievesonly a 14.7% improvement, while
the newly obtained optimal solution (D2AB) achieves a 28.4%improvement (see Figure 4). In
fact, the optimal solution is nearly as good as the optimal solution for the case where there are no

24

n uncompressed initial scalable
100 100 1 1
200 ∞ 21 16
300 ∞ ∞ 173

Max problem solvable: uncompressed: 105; initial: 231; scalable:∞.

Table 10: Min. processors (p) needed to solve problem of sizen, using 1 GB per processor.

delays. Note that this is also the first exact evaluation of RPW in this setting, accomplished via
backward induction. Its improvement over equal allocation, as well as its degradation relative to
the results obtained by the optimal design, were not known. The former could have been estimated
via simulation, while the latter could not have been.

Note that a Bayesian approach was needed for dynamic programming to create the optimal
designs. However, analysis phases, such as the evaluation of RPW or the myopic rule in Section 8,
can be done on any design, whether it is ad hoc, Bayesian, or frequentist. The analyses may
evaluate a mix of Bayesian or frequentist criteria, independent of the design. This point is pursued
further in [12].

However, overall the complexity of adaptive designs has proven to be a major hurdle impeding
their use. Our goal is to reduce computational concerns to the point where they are not a key issue
in the selection of appropriate designs. This chapter has concentrated on the parallel computational
aspects of this work, while other papers analyze the statistical and application impact of new serial
algorithms [12].

Unfortunately, the recurrences involved have attributes that make it difficult to achieve high
performance and scalability. Memory requirements tend to be the limiting factor, and trying to
ameliorate this causes overhead and a significant increase in program complexity. As noted in Sec-
tion 6, increases in program complexity can cause severe performance problems when the compiler
is unable to optimize the inner-most loops, and hence one must select alternatives with the com-
piler’s limitations in mind. Space constraints, and low calculation to communication ratios, also
complicate the ability to reduce the effects of communication latencies and overhead. However,
by working diligently, it is possible to achieve significantspeedups and scalable parallelizations,
although this comes at a cost of increased program length andmore complex program maintenance.

In Table 10, the effects of memory limitations on the 3-arm problem, using 1 GB per processor,
are illustrated.Uncompressedrefers to a parallel program using load-balancing as in the initial
parallel version, but without compressing to a 1-dimensional array. Note how the scalable version
needs fewer processors to solve large problems, and that it can solve arbitrarily large problems,
while the other versions cannot go beyond a fixed problem sizeno matter how many processors
are available. This is due to the imperfect load balancing inthe earlier versions which were unable
to allocate less than a singles3 loop per processor.

Besides being able to compare alternative parallelizations, we can also compare to the work
of others. Using only 16 processors of an IBM SP2 we solved the3-arm,n=200 problem. This
is approximately 500,000 times harder than the problem called “impractical” in [17], and more

25

than 300 times harder than that solved in [8] on a parallel IBM3090 of approximately the same
computational power. Further, the more than 100 evaluations used for determining Pδ would have
taken these authors a 100 fold increase in time, while by using path induction it only roughly tripled
the time required to find the design.

Similar parallelization steps can be used to solve problemsinvolving 4 or more arms, arms
with more than two outcomes, designs with staged allocation, and so forth. However, since the
computational requirements of these problems grow more rapidly than those of the problems con-
sidered here, the largest problems solvable with the same resources will be smaller. Note that
the parallelization process described applies much more broadly than adaptive designs for clin-
ical and preclinical trials, although this in itself is an important application. The bandit model
is widely used in areas such as operations research, artificial intelligence, economics and game
theory. Further, our work generally applies to neighbor recurrences using stencils. This common
class of recurrences includes many dynamic programming problems such as the generalized string
matching used in some data mining and bioinformatics applications.

Despite some successes, it is important to realize the limitations of parallel computing. Parallel
computing can only do a little to overcome the curse of dimensionality that plagues many uses of
dynamic programming (and relatives such as backward induction and path induction) for adaptive
designs. When computational time increases asΘ(n6), as is true for determining the optimal design
for the 3-arm bandit and 2-arm bandit with delayed response problems, then doubling the sample
size results in a 64-fold increase in computational time. Thus to double the size of the largest
problem solvable on a serial computer, yet solve it in the same amount of time, would require 64
processors with perfect efficiency, or even more processorswith more realistic efficiency. One
may have access to such a computer and program, and the doubled problem size may be what is
needed to solve a specific problem. However, if another doubling is needed then it is unlikely the
researcher will have access to suitable parallel resourcesand hence other methods will have to be
employed.

Finally, merely throwing a parallel computer at a problem isunlikely to be of much help. For
farming-like applications this is a relatively simple process and likely to attain the desired improve-
ments, but for many other problems the process is far more complicated. As was shown, extensive
work was needed to achieve useful problem sizes and reasonable efficiency. Often it is easiest to
utilize shared memory systems, but typically only modest performance will be achieved without
significant work. One important aspect of the parallelization process that should be kept in mind
is that to make the most of the programming effort, one shouldemphasize the use of software
standards. MPI is the dominant message-passing system, andis widely and freely available. Sim-
ilarly, OpenMP is the dominant parallelization method for shared-memory machines. By using
these, porting code to new, typically more powerful, platforms is greatly simplified. Since signifi-
cant effort may have been put into the parallelization process, one would like to be able to use the
resulting program for an extended period of time.

26

Acknowledgments

The parallel programming was done by Robert Oehmke, and further details of algorithm improve-
ments and parallelization aspects can be found in his thesis[22]. This research was partially sup-
ported by NSF grant DMS-0072910. Parallel computing support was provided by the University
of Michigan’s Center for Advanced Computing. Most of the material presented here first appeared
in [10, 11, 24].

References

[1] P Armitage, The search for optimality in clinical trials. Int Statist Rev 53:1–13, 1985.

[2] U Bandyopadhyay, A Biwas. Delayed response in randomized play-the-winner rule: a deci-
sion theoretic outlook. Calcutta Statist Assoc Bul 46:69–88, 1996.

[3] DA Berry, B Fristedt. Bandit Problems: Sequential Allocation of Experiments. Chapman and
Hall, 1985.

[4] R Bellman. A problem in the sequential design of experiments. Sankhya A 16:221–229, 1956.

[5] R Bradt, S Karlin. On the design and comparison of certaindichotomous experiments Ann
Math Statist 27:390–409, 1956.

[6] H Douke. On sequential design based on Markov chains for selecting one of two treatments
in clinical trials with delayed observations. J Japanese Soc Comput Statist 7:89–103, 1994.

[7] S Eick. The two-armed bandit with delayed responses. AnnStatist 16:254–264, 1988.

[8] J Hardwick. Computational problems associated with minimizing the risk in a simple clinical
trial. In: Contemporary Mathematics: Statistical Multiple Integration, ed.’s N Flournoy & R
Tsutakawa, American Math Assoc 115:239–257, 1989.

[9] J Hardwick. A modified bandit as an approach to ethical allocation in clinical trials. In: Adap-
tive Designs, ed.’s N Flournoy & W Rosenberger, IMS Lecture Notes – Monograph Series
25:65–87, 1995.

[10] J Hardwick, R Oehmke, QF Stout. A program for sequentialallocation of three Bernoulli
populations. Comp Stat and Data Analysis 31:397–416, 1999.

[11] J Hardwick, R Oehmke, QF Stout. Optimal adaptive designs for delayed response models:
exponential case. In: MODA6: Model Oriented Data Analysis,A Atkinson, P Hackl, W
Müller, eds, Physica Verlag, 2001, pp. 127–134.

[12] J Hardwick, QF Stout. Flexible algorithms for creatingand analyzing adaptive sampling pro-
cedures. In: New Developments and Applications in Experimental Design. IMS Lec Notes–
Mono Series 34:91–105, 1998.

27

[13] J Hardwick, QF Stout. Using path induction to evaluate sequential allocation procedures.
SIAM J Scientific Computing 21:67–87, 1999.

[14] J Hardwick, QF Stout. Optimal few-stage designs. J Statist Plan and Inf 104:121–145, 2001.

[15] OH Ibarra, H Wang, T Jiang. On efficient parallel algorithms for solving set recurrence equa-
tions. J Algorithms 14:244–257, 1993.

[16] A Ivanova, W Rosenberger. A comparison of urn designs for randomized clinical trials of
k > 2 treatments. J Biopharm Statist 10:93–107, 2000.

[17] R Kulkarni, V. Kulkarni. Optimal Bayes procedures for selecting the better of two Bernoulli
populations. J Stat Plan and Inf 15:311–330, 1987.

[18] A Lew, A Halverson Jr. Dynamic programming, decision tables, and the Hawaii parallel
computer. Computers and Mathematics with Applications 27:121–127, 1993.

[19] G. Lewandowski, A Condon, E Bach. Asynchronous analysis of parallel dynamic program-
ming algorithms. IEEE Trans Parallel and Distributed Systems 7:425–438, 1996.

[20] B Lokuta, M Tchuente. Dynamic programming on two dimensional systolic arrays. Inf Proc
Letters 29:97–104, 1988.

[21] Test Guideline 425: Acute Oral Toxicity — Up-and-Down Procedure, Organization for Eco-
nomic Cooperation and Development (OECD),
www.epa.gov/oppfead1/harmonization/docs/E425guideline.pdf, 2001.

[22] R Oehmke. High-Performance Dynamic Array Structures on Parallel Computers. PhD dis-
sertation, University of Michigan, Ann Arbor, MI, 2003.

[23] R Oehmke, J Hardwick, QF Stout. Adaptive allocation in the presence of censoring. Com-
puting Science and Statistics 30:219–223, 1998.

[24] R Oehmke, J Hardwick, QF Stout. Scalable algorithms foradaptive statistical designs. Sci-
entific Programming 8:183–193, 2000.

[25] S Ranka, S Sahni. String editing on a SIMD hypercube multicomputer. J Parallel and Dis-
tributed Computing 9:411–418, 1990.

[26] W Rytter. On efficient parallel computations for some dynamic programming problems. The-
oretical Computer Science 59:297–307, 1988.

[27] D Tang. An efficient parallel dynamic programming algorithm. Computers and Mathematics
with Applications 30:65–74, 1995.

[28] R Sastry, N Ranganathan. A systolic array for approximate string matching. Proc IEEE Int’l
Conf on Computer Design, pp 402–405

28

[29] R Simon. Adaptive treatment assignment methods and clinical trials. Biometrics 33:743–744,
1977.

[30] SA Strate, RL Wainwright, E Deaton, KM George, H Bergel,G Hedrick. Load balanc-
ing techniques for dynamic programming algorithms on hypercube multicomputers. Applied
Computing: States of the Art and Practice, pp 562–569, 1993.

[31] X Wang. A bandit process with delayed responses. Stat and Prob Letters 48:303–307, 2000.

[32] Y-G Wang. Sequential allocation in clinical trials. Comm in Statist: Theory and Meth 20:791–
805, 1991.

[33] LJ Wei, S Durham. The randomized play the winner rule in medical trials, J Amer Stat Assoc
73:840–843, 1978.

29

