
In Proc. 3rd Symp. Frontiers Massively Parallel Computation (1990), pp. 75–78.

Practical Hypercube Algorithms for Computational Geometry

Preliminary Version

Philip D. MacKenzie1 and Quentin F. Stout2

Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI

Abstract

Many problems in computational geometry can be solved on the hypercube using a simple and practical

technique, which we call cross-stitching. Given n inputs distributed one per processor on a hypercube with

n processors, the cross-stitching paradigm runs in Θ(log2 n) time with very low constants. We illustrate this

form of 2-dimensional divide-and-conquer, consider some of its many applications, and show its practicality

by computing exact communication constants for our algorithms.

1 Introduction

The field of parallel computational geometry has seen rapid growth in recent years, especially on regular

architectures, such as the mesh and the hypercube, and on Parallel Random Access Machines (PRAMs).

Most of this has been theoretical work, in which asymptotic running times have been lowered at the expense

of enormous constant factors and extremely complex algorithms. Even if someone were able to implement

these algorithms, the constant factors would make them impractical except in the case of a staggeringly

huge input set, much larger than the size of any parallel machine in the foreseeable future. In this paper, we

focus on simple, practical algorithms, which can be implemented on parallel hypercube computers which

are available today, such as the Connection Machine.

These algorithms are all able to a technique which we call cross-stitching. This is a form of 2-dimensional

divide-and-conquer which runs in the following manner. We take n objects (points or line segments) as in-

put and sort them by x coordinate. The sorted set is divided in half, and the problem is recursively solved

on both halves. Then the solutions to the halves are stitched together to solve the whole problem. One

can think of this as stitching the solution together along the vertical dividing line between the halves. By

keeping the recursive solutions sorted by y coordinate, solutions can be stitched together by using prefix and

merge operations, instead of slower sort operations. We call this cross-stitching because problems are split

horizontally, but solutions are stitched together vertically.

The cross-stitching technique has been used in limited cases previously, but we wish to exhibit its gen-

erality and practicality through a multitude of examples and exact communication time analyses. Cross-

stitching is well matched to the communication capabilities of the hypercube, and provides a systematic

solution to many 2-dimensional geometric problems.

1Research supported by an AT&T Fellowship.
2Research partially supported by a joint NSF-DARPA grant.

1

Given two points p and q in d-dimensional space, p is said to dominate q if each coordinate of p is larger

than the corresponding coordinate of q. We will solve the following computational geometry problems using

the cross-stitching technique.

2-Dimensional Dominance Counting Given a set S of n points in the plane, find for each point p ∈ S the

number of points in S dominated by p.

2-Set Dominance Counting Given a set S of m points and a set T of k points, where n = m+ k, find for

each point p ∈ S the number of points in T dominated by p. Similarly, find for each point q ∈ T the

number of points in S dominated by q.

3-Dimensional Maxima Given a set S of n points in 3-dimensional space, determine all points p ∈ S such

that no other point of S dominates p.

Closest Pair Given a set S of n points in the plane, determine a pair of points in S which are closest to

each other in the Euclidean metric.

All Points Nearest Neighbors Given a set S of n points in the plane, for each point p ∈ S find a point in

S − {p} that is closest to p in the Euclidean metric.

Iso-oriented Segment Intersection Given a set S of n iso-oriented segments, determine for each segment

in S whether or not it is intersected by another segment in S.

Rectangle Area Given a set S of n iso-oriented planar rectangles, find the area covered by the union of

these rectangles.

Rectangle Intersection Given a set S of n iso-oriented planar rectangles, determine for each rectangle in

S whether or not it is intersected by another rectangle in S.

The following problem can be solved with the same general method, except that solutions are not stitched

using a vertical merge.

Visibility from a Point Given n non-intersecting line segments and a point p, determine that part of the

plane visible from p if all segments are opaque. An interesting special case of this problem is to

determine the Skyline of a set of n rectangles resting on a horizontal line. In this case, the line

segments are the upper edges of the rectangles and the point p is (0,∞).

Stojmenovic [6] gives algorithms which use the cross-stitching technique for Convex Hull, Closest Pair,

2-Set Dominance Counting, and 3-Dimensional Maxima. Boxer and Miller [2] give an algorithm similar

to cross-stitching which can be used to solve Visibility from a Point with intersecting line segments in

Θ(log2 n) time using nα(n) processors, where α(n) is the inverse Ackermann function.

Throughout we assume that we are using an n processor hypercube with the following characteristics.

Each processor has a unique log2(n)-bit ID (a number from 0 to n − 1), and two processors are neighbors

(share a communication link) if their IDs differ in exactly one bit. We will consider a communication time

step as a processor sending a short message to its neighbor, where short will mean less than 12 words. We

will assume that this is the dominant cost in our system and thus calculate the constants on communication

time. If we considered time steps, instead of communication time steps, then the computed constants would

be slightly larger.

2

We also assume each processor has a constant amount of memory, except in the algorithm for Visibility

from a Point with intersecting line segments, in which we assume each processor has a memory of size

Ω(α(n)), where α(n) is the inverse Ackermann’s function, a very slow growing function of n. This is

necessary because the output in this case can be of size Θ(nα(n)).

2 Cross-Stitching

The cross-stitching technique is outlined in Figure 1. It is assumed that initially each processor has at most

one data item. Because the stitching is a combination of prefix and merge operations, it takes Θ(log n) time

on a hypercube and therefore the whole algorithm takes Θ(log2 n) time.

In a more careful analysis, if we assume that the constant factor in the stitch is k, then we see that at

level i, the stitching operation takes k(log n− i) time. Thus the total communication time is

logn−1∑

i=0

k(log n− i) = (k/2) log2 n+ (k/2) log n .

3 Useful Hypercube Algorithms

The following are some useful algorithms and their communication times. See [5] for detailed implementa-

tions.

Prefix Assume each processor i contains the value Ai. Then the prefix operation (parallel prefix, scan)

results in processor i containing value Si = A0 ⊕ A1 ⊕ . . . ⊕ Ai, where ⊕ is any associative or

Π-quasi-valid (defined later) operator. This can be done in 2 log n communication time. Using a

prefix operation one can count the number of marked items stored at processors of lower rank, find

the maximum of the values stored at processors of lower rank, or perform a segmented prefix (a prefix

within disjoint consecutive groups of processors). A prefix operation is called by Si = Prefix(⊕, Ai).

Compress Given m out of n marked records stored one per processor on an n processor hypercube, com-

press sends these records to the first m processors in the hypercube, keeping their relative order, in

3 log n communication time, where m need not be known in advance. This involves a prefix to count

the number of marked records in front of each record, followed by a monotonic route. A compress is

called by Compress(B,R), where B is a boolean value which is true if the record R is marked.

Increment Route Given a record at each processor in a hypercube, for all i such that 0 ≤ i < n − 1,

incremental route sends a copy of the record at processor i to processor i + 1. This can be per-

formed in log n time, but can also be performed using the prefix operation Prefix(maxp, R), where

maxp is given two records which came from different processors and returns the record from the

larger numbered processor. Thus it usually will be combined with a previous prefix operation to

save communication time. An increment route (decrement route) is called by IncrementRoute(R)
(DecrementRoute(R)), where R is the record to be sent to the next higher (lower) processor.

Merge Two sorted lists of size n/2 stored one item per processor can be merged in 2 log n communication

time. If one of the lists is stored in reverse order, they can be merged in log n communication time

[1]. In our algorithms, we assume that at each level of recursion, the lists in the odd subcubes are kept

3

in reversed order, so all the merges we use will take log n communication time. A merge is called by

Merge(≺,K,R), where ≺ is the relative operator used to compare keys K of the records R.

Sort A list of n items stored one per processor can be sorted in 0.5 log2 n + 0.5 log n time using Bitonic

Sort [1]. A sort is called by Sort(≺,K,R) where ≺ is the relative operator used to compare keys K
of the records R.

4 Examples

We will assume each processor starts with a record p which contains the fields px (the x-cooordinate), py
(the y-coordinate), pm (which is false (0) for records in the lower half of the processors, otherwise true (1))

and some others depending on the problem. Then, in accordance with the cross-stitching idea of sorting

by x coordinate and merging by y coordinate, each procedure will first call Sort(≤, px, p), and then call

CrossStitch(n). We will assume that during the recursive cross-stitch procedure, each processor knows the

x coordinates of the left, middle, and right vertical lines of the two sets of points to be merged. These will

be denoted xl, xm, and xr, respectively.

The easiest example of a cross-stitching algorithm is the solution to 2-Dimensional Dominance Count,

given in Figure 2. Note that here and elsewhere we are actually performing merge and prefix operations on

subcubes with processors from i to j, so these calls should include parameters for i and j. We leave these

off to make the algorithm more readable. We also will not be concerned with the trivial change to keep the

records in each odd numbered subcube in reverse order. Again this is done for clarity and readability.

This stitch operation consists of a merge and a prefix operation, so the stitch constant is 3. The total

communication time of this cross-stitching is 1.5 log2 n+ 1.5 log n. When added to the initial sorting time

of 0.5 log2 n+ 0.5 log n, we see that this algorithm takes 2 log2 n+ 2 log n communication steps.

The stitch procedure for the 2-Set Dominance Count algorithm is similar, but with two prefix opera-

tions. These prefix operations can actually be performed together, however, and thus the total communica-

tion time will still be 2 log2 n+2 log n. The stitch procedure for 3-Dimensional Maxima is also similar, but

instead of counting the number of points below and to the left, we find the maximum of the z coordinates of

the points above and to the right. This can also be done in 2 log2 n + 2 log n communication time. Due to

space restrictions, these algorithms are omitted.

Willard and Wee [7] showed that All Nearest Neighbors can be solved with an algorithm similar to

dominance counting, but using a Π-quasi-valid operator instead of plus. A Π-quasi-valid operator is defined

as follows. First, a Π-quasi-valid response to a search query is a set which is a superset of the answer

to the search query and satisfies a constraint Π. A binary operator which is Π-quasi-valid will take two

Π-quasi-valid responses to search queries and return a Π-quasi-valid response to the union of the search

queries.

The Π-quasi-valid operator used in All Nearest Neighbors is defined as follows. Let R designate a

region, x0 be the smallest x coordinate of a point in S ∩R, and y0 be the smallest y coordinate of a point in

S ∩R. Let r = (x0, y0). Then let V (r) be the points in S ∩R which are as close to r as to any other points

in S ∩R. Define a query QR which returns V (r). The constraints Π which a quasi-valid response A to QR

must meet will consist of A ⊂ S ∩ R and |A| ≤ 3. The definition of the Π-quasi-valid operator follows

from the definition of the Π-quasi-valid response to the query QR.

The Π-quasi-valid operator over searches below and to the left of a point (x, y) will be denoted πx,y,

and the stitch procedure is shown in Figure 3. Candidate points in all quadrants can actually be found at

the same time in order to save communication time. After the candidates are found, they can be sorted, and

4

procedure CS(i, j)
(* Recursive procedure called to work on items i . . . j *)

begin

In parallel call CS(i, (i+j−1)/2) and CS((i+j+1)/2, j)
Stitch(i, j) (* stitch solutions together *)

end

procedure CrossStitch(n)
(* Main procedure to solve the problem on 0 . . . n− 1 *)

begin

Sort the data by x coordinate

Call CS(0, n− 1)
end

Figure 1: The Cross-stitching Procedure

procedure Stitch(i, j) (* 2-d Dominance Count

Each processor contains a point record p = (px, py, pm, pc).
At the end of the stitch, pc will contain the correct dominance

count for the points in processor i through j, and these points

will be sorted by y coordinate. *)

begin

pm = id > (i+ j − 1)/2
Merge(≤, py , p)
s =Prefix(+, 1− pm) (* count points from the left half *)

if pm then pc = pc + s
(* add to dominance counts in the right half *)

end

Figure 2: Stitch procedure for 2-d Dominance Count

5

a segmented prefix with the minimum operation within groups of candidates will find each point’s nearest

neighbor. Another prefix can place one record per processor containing a point and its nearest neighbor,

and, using a minimum operation, find the closest pair of points. Thus both algorithms will use two sorts, a

cross-stitch with a stitch constant of 3, and two prefix operations. Therefore the total communication time

is 2.5 log2 n+ 6.5 log n.

For Iso-oriented Segment Intersection, we create a record for each endpoint, and initially sort these

endpoints. The cross-stitching procedure will determine which horizontal line segments cross a vertical line

segment. For each that does, at least one of its endpoint records will be marked. Then the same procedure

is performed with the coordinates reversed to determine which vertical line segments cross horizontal seg-

ments. These can be done at the same time to reduce communication time. The stitch procedure is given

in Figure 4. Each stitch consists of a merge and a prefix, and thus the stitch constant will be 3. Thus cross-

stitching will take 1.5 log2 n+1.5 log n communication time. With the initial sort, the total communication

time will be 2 log2 n+ 2 log n.

For Rectangle Intersection and Rectangle Area (see Figure 5) we create a record for each corner of

the rectangle, and use these to solve the problems. By combining prefix operations and increment routes

wherever possible, Rectangle Area can be solved in 5 log2 n + 3 log n communication time, and Rectangle

Intersection can be solved in 2 log2 n + 2 log n communication time. Note however that Rectangle Area

does not exactly follow the cross-stitch outline since it must perform some calculations before making the

recursive calls to the procedure CS(). Therefore we have given the whole CS() procedure for Rectangle

Area. The algorithm for Rectangle Intersection has been omitted due to space restrictions.

Visibility from a Point can be solved by merging lists of visible line segments together in 1.5 log2 n+
1.5 log n total communication time. The stitch procedureis not exactly a cross-stitch, since the segments

need not be initially sorted and the stitch is not a vertical merge, but it follows the basic cross-stitch outline.

Due to space limitations, the algorithm is omitted.

From the above examples, we obtain the following theorem.

Theorem 4.1 The following problems can all be solved using cross-stitching in Θ(log2 n) time with the

following communication times:

2-Dimensional Dom. Counting 2.0 log2 n+ 2.0 log n
2-Set Dominance Counting 2.0 log2 n+ 2.0 log n

3-Dimensional Maxima 2.0 log2 n+ 2.0 log n
Closest Pair 2.5 log2 n+ 6.5 log n

All Points Nearest Neighbors 2.5 log2 n+ 6.5 log n
Iso-oriented Segment Intersec. 2.0 log2 n+ 2.0 log n

Rectangle Intersection 2.0 log2 n+ 2.0 log n

Rectangle Area 5.0 log2 n+ 3.0 log n
Visibility from a Point 1.5 log2 n+ 1.5 log n

Additional problems which can be solved using cross-stitching techniques on the hypercube include:

Convex Hull Given a set S of n planar points, find vertices of the smallest convex polygon containing S.

All Iso-Oriented Rectangles Nearest Neighbors Given a set S of n iso-oriented planar rectangles, for

each rectangle r ∈ S find a rectangle in S − {r} that is closest to r in the Euclidean metric.

6

procedure Stitch(i, j) (* Nearest Neighbors and Closest Pair

Each processor contains a point record (px, py, pm, pa, pb, pc, pd).
pa, pb, pc, and pd are sets of points which could have p
as a nearest neighbor. They are split by quadrant. *)

begin

pm = id > (i+ j − 1)/2
Merge(≥, py , p)
if pm then s =Prefix(πxm,py , pa)

else s =Prefix(πxm,py , NULL)
(* find candidates in the left half *)

if pm then pa = πpx,py(pa, s)
(* check if points are candidates for points on right*)

(* Now compute similarly for the other 3 quadrants *)

end

Figure 3: All Nearest Neighbors and Closest Pair

procedure Stitch(i, j) (* Iso-Oriented Segment Intersection

Each processor contains a segment record (px, py, px′ , py′ , pm, pi).
(px, py) is this endpoint, (px′ , py′) is the other, of a segment.

pi will be set to TRUE if and only if this segment intersects

another segment. Initially pi is FALSE. *)

begin

pm = id > (i+ j − 1)/2
Merge(≤, py , p)
(* First set lower endpoints of vertical lines in the left half

to +1, and their upper endpoints to −1 *)

k = 0
if px = px′ and (not pm and py < py′ then k = +1
if px = px′ and (not pm and py′ < py then k = −1
s =Prefix(+, k)
if s > 0 and pm and px′ < xl then pi = TRUE

(* If a horizontal line crosses the left half and

intersects a vertical line, mark it *)

(* Perform a similar procedure for the right half *)

(* Now repeat the whole procedure with coordinates reversed *)

end

Figure 4: Iso-oriented Segment Intersection

7

procedure CS(i, j)
(* CrossStitch procedure for Rectangle Area.

Each processor contains a record p = (px, py, px′ , pe, pm).
(px, py) is this endpoint, (px′ , py) is the other endpoint of the

horizontal edge.

pe will be TRUE if the edge is a lower edge, else FALSE. *)

begin

pm = id > (i+ j − 1)/2
Merge(≤, py , p)
k = 0
if px′ ≤ xl and pm and pe then k = +1
if px′ ≤ xl and pm and not pe then k = −1
s =Prefix(+, k)
q =IncrementRoute(p)
if s > 0 then k = py − qy

else k = 0
s =Prefix(+, k)
k′ = 0
if px′ ≥ xr and not pm and pe then k′ = +1
if px′ ≥ xr and not pm and not pe then k′ = −1
s′ =Prefix(+, k′)
q =IncrementRoute(p)
if s′ > 0 then k′ = py − qy

else k′ = 0
s′ =Prefix(+, k′)
if pm then py = py − s′

else py = py − s
a = k(xm − xl) + k′(xr − xm)
s =GlobalPrefix(+, a) (* over all n processors *)

if id = n− 1 then T = T + s (* Total in processor n−1 *)

In parallel call CS(i, (i+j−1)/2) and CS((i+j+1)/2, j)
end

Figure 5: CrossStitch procedure for Rectangle Area

8

Visibility from a Point with Intersections Given n possibly intersecting line segments and a point p, de-

termine that part of the plane visible from p if all segments are opaque.

Convex Hull can be solved using a stitch which merges line segments of two convex hulls by slopes to

obtain support lines [6]. All Rectangles Nearest Neighbors can be solving using a stitch that is similar to

the stitches of All Nearest Neighbors and Rectangle Intersection put together. Visibility from a Point with

intersecting line segments can be done using a cross-stitching technique similar to the one for Visibility

from a Point with non-intersecting line segments. More care must be taken in merging however, and the

interested reader is referred to [3, 4] for details.

5 Conclusion

Cross-stitching is a systematic approach for producing simple and uniform hypercube algorithms for compu-

tational geometry that have very low communication constants and are very practical. All of these algorithms

run in at most 5.0 log2 n + O(log n) communication steps and thus will outperform the known asymptoti-

cally faster algorithms [4] on any feasible data sets. We note that while we have only given an exact analysis

of communication times, the local processing times of all algorithms is also Θ(log2 n), and again involves

small constants.

References

[1] K. Batcher, “Sorting networks and their applications”, Proc. AFIPS Spring Joint Computer Conf. 32,

307–314, 1968.

[2] L. Boxer and R. Miller, “Dynamic computational geometry on meshes and hypercubes”, Proc. 1988

Intl. Conf. on Parallel Proc., 323–330.

[3] J. Hershberger, “Finding the upper envelope of n line segments in O(n log n) time”, Info. Process. Lett.,

33(4):169–174.

[4] P.D. MacKenzie and Q.F. Stout, “Asymptotically optimal hypercube algorithms for computational ge-

ometry”, Proc. 3rd Frontiers of Massively Parallel Proc., 1990.

[5] R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures, MIT Press, 1990.

[6] I. Stojmenovic, “Computational geometry on a hypercube”, Proc. 1986 Intl. Conf. on Parallel Proc.,

100–103.

[7] D.E.Willard and Y.C. Wee, “Quasi-valid range querying and its implications for nearest neighbor prob-

lems”, Proc. 4th ACM Symp. on Comp. Geom., 34–43, 1988.

9

