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Abstract

We present new hypercube algorithms which solve many fundamental computational geometry problems.

These algorithms use decomposition techniques which enable them to asymptotically outperform the fastest

previous algorithms for these problems. Previous algorithms all run in Θ(log2 n) time, even when using a

sorting method which runs in o(log2 n) time. The algorithms herein are able to use a recently discovered

o(log2 n) time sorting method to improve their asymptotic speed to o(log2 n). If sorting runs in Θ(Sort(n))
time, our algorithms for 2-Set Dominance Counting, 3-Dimensional Maxima, Closest pair, and All Points

Nearest Neighbors run in Θ(Sort(n) · log log n) time, and our algorithms for Triangulation and Visibility

from a Point run in Θ(Sort(n)) time.

1 Introduction

The field of parallel computational geometry has seen rapid growth in recent years, both on distributed

memory architectures such as the mesh and the hypercube, and on shared memory computers, or Parallel

Random Access Machines (PRAMs). For the mesh and the PRAM optimal algorithms have been developed

for many of the fundamental problems in computational geometry. On a square mesh many problems can

be solved in Θ(
√
n) time [7, 10, 11], and since this is the diameter of the mesh, there is no possibility for

asymptotic improvement. On the PRAM, by using logarithmic sorting algorithms, most of the fundamental

problems in computational geometry can be solved with linear speedup [1, 2, 5]. This is optimal, though

the constants are large, so again there is no possibility for asymptotic improvement beyond lowering the

constants.

The state of computational geometry on the hypercube, however, has been quite different. The lower

bound for computational geometry algorithms on the hypercube has not been the diameter or the serial lower

bounds, but the time to sort. In fact, Batcher’s Θ(log2 n) time Bitonic Sort algorithm had the best asymptotic

time of any hypercube sorting algorithm for many years. Therefore, an algorithm which relied on sorting ran

in Ω(log2 n) time on a hypercube. Since many of the fundamental computational geometry problems have

very straightforward Θ(log2 n) time hypercube solutions [8, 11, 12], there was little incentive to improve

these algorithms.
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Recently, however, an asymptotically faster hypercube sorting algorithm called ShareSort was developed

by Cypher and Plaxton [6]. The algorithm sorts n elements on an n processor hypercube in Θ(log n(log log n)2)
time. Unfortunately, simply exchanging ShareSort for Bitonic Sort in the aforementioned algorithms will

not produce asymptotically faster algorithms. One could say these algorithms are inherently Θ(log2 n) time

algorithms. We develop new algorithms for these problems and show that they can use ShareSort to run in

o(log2 n) time.

We must emphasize that these new algorithms are asymptotically faster, but the constants are very large

when compared to the simple, inherently Θ(log2 n) algorithms. Practical hypercube algorithms for these

problems appear in [8, 11].

Given two points p and q in d-dimensional space, p is said to dominate q if each coordinate of p is larger

than the corresponding coordinate of q. We give new hypercube algorithms for the following geometric

problems:

2-Set Dominance Counting Given a set S of m points and a set T of k points, find for each point p ∈ S
the number of points in T dominated by p, and find for each point q ∈ T the number of points in S
dominated by q. We assume n = m+ k.

3-Dimensional Maxima Given a set S of n points in 3-dimensional space, determine all points p ∈ S such

that no other point of S dominates p.

Closest Pair Given a set S of n points in the plane, determine a pair of points in S which are closest to

each other in the Euclidean metric.

All Points Nearest Neighbors Given a set S of n points in the plane, for each point p ∈ S find a point in

S − {p} that is closest to p in the Euclidean metric.

Triangulation Given a set S of n points in the plane, join the points of S by nonintersecting straight line

segments such that every region internal to the convex hull of S is a triangle.

Visibility from a Point Given n line segments (possibly intersecting) and a point p, determine that part of

the plane visible from p if all segments are opaque. An interesting special case of this problem is

to determine the Skyline of a set of n rectangles resting on a horizontal line. In this case, the line

segments are the upper edges of the rectangles and the point p is (0,∞).

The problem of 2-Dimensional Maxima can be solved trivially in Θ(Sort(n)) time using a sort and a

prefix operation, and thus is not considered here. Also, Miller and Stout [9] showed that the convex hull of

a set of planar points can be found in Θ(Sort(n)) time. Slower hypercube algorithms for some of the above

problems, taking Θ(log2 n) time, appear in [4, 8, 11, 12]. Optimal PRAM algorithms for these problems

appear in [1, 3, 5, 13, 15].

Throughout we assume that we are using an n processor hypercube with the following characteristics.

Each processor has a unique log2(n)-bit ID (a number from 0 to n − 1), and two processors are neighbors

(share a communication link) if their IDs differ in exactly one bit. In one time step, each processor can either

send one word to a neighbor, receive one word from a neighbor, or perform a single operation on its data.

We also assume each processor has a constant amount of memory, except in the algorithm for Visibility

from a Point with intersecting line segments, in which we assume each processor has a memory of size

Ω(α(n)), where α(n) is the inverse Ackermann’s function, a very slow growing function of n. This is

needed because the output in this case can be of size Θ(nα(n)).
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2 Fundamental Algorithms

We will use many known algorithms as subroutines. One is the Θ(log n(log log n)2) time ShareSort algo-

rithm mentioned previously. Others, listed below, are simpler and run in Θ(log n) time. See [11] for detailed

implementations.

Prefix Assume each processor i contains the value ai. Then the prefix operation (parallel prefix, scan) will

result in processor i containing value si = a0 ⊕ a1 ⊕ . . .⊕ ai, where ⊕ is any associative or Π-quasi-

valid (defined later) operator. A special type of prefix operation is the segmented prefix operation

in which the the processors are divided into groups with consecutive IDs and a prefix operation is

performed within each group in parallel.

Monotonic Route Assume that m of the processors contain records to be routed, each record contains a des-

tination processor ID, and these destination IDs form a strictly monotonic sequence. Then monotonic

route will route these records to their destination processors. Some special monotonic routes are com-

press, in which the m records are routed to the first m processors, distribute, in which the m records

are originally in the first m processors, and increment, in which processor i receives the record from

processor i− 1, for all 1 ≤ i ≤ n− 1.

Merge Assuming all lists are stored one item per processor in consecutively numbered processors, a merge

operation takes two sorted lists of combined size n and merges them into a single sorted list.

Broadcast A broadcast operation takes a value at a single processor and broadcasts it to all other proces-

sors. A special type of broadcast is the segmented broadcast, in which processors are split groups of

consecutively numbered processor, and one processor in each group broadcasts its value to the rest of

its group.

3 General Approach

The inherently Θ(log2 n) algorithms mentioned above all use the same basic technique. They split the data

into k groups, recursively solve the problem in each group, and then merge solutions in Θ(log n) time. Thus

the running time of this method is found by solving the recurrence:

T (n) = T (n/k) + Θ(log n)

= Θ(log2 n)

Since the time to merge two solutions together cannot be decreased (the time is dominated by the hypercube

diameter, which is log n), to decrease the time we will use the idea of splitting the input data into
√
n

groups, instead of k groups. This divide-and-conquer variation is common for PRAM algorithms, but has

only rarely been applied to hypercube algorithms (one relevant exception is the convex hull algorithm in [9]).

Sometimes the subdivision must be done twice, and sometimes once will suffice. After this, solutions will

be merged together in Θ(Sort(n)) time. This method yields running times which can be found through one

of the following recurrences:

T (n) = T (
√
n) + Θ(Sort(n)) (1)

= Θ(Sort(n))
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or

T (n) = 2T (
√
n) + Θ(Sort(n)) (2)

= Θ(Sort(n) · log log n)

The equations above are valid if Sort(n) = f(n) log n, where f(n) is a positive, nondecreasing function of

n. We assume that any hypercube sorting algorithm will satisfy this property. Technically equation 2 only

yields T (n) = O(Sort(n) · log log n) under this assumption, but for all of the sorting algorithms known to

us the O can be replaced by Θ.

4 Dominance Operations

From [15], a Π-quasi-valid response to a search query is a set which is a superset of the answer to the

search query and satisfies a constraint Π, and a binary operator is Π-quasi-valid if it takes two Π-quasi-valid

responses to search queries and returns a Π-quasi-valid response to the union of the search queries. (Sec-

tion 4.3 contains an illustrative example.) Suppose we are given a set S of n planar points with associated

values where each point p ∈ S is represented by a point record (px, py, pv). Suppose that we are also given

a constant-time operation ⊕, which is either associative or Π-quasi-valid. Then the goal of the dominance

operation is to calculate for each p ∈ S the result of the ⊕ operation applied to the values of all the points

which are dominated by p. If we call this result F (p) and define q ≺ p to mean that q is dominated by p,

then

F (p) =
⊕

q:q≺p

qv.

If this operation is to be performed over a subset T of S, it will be denoted by FT (p). It will be shown that

2-Set Dominance Counting, 3-Dimensional Maxima, Closest Pair, and All Points Nearest Neighbor can all

be solved using dominance operations.

4.1 Dominance Operation Procedure

To compute a dominance operation, we are given a set S of n planar points, placed one per processor on an

n processor hypercube and for each point p ∈ S, we wish to compute F (p). We will use divide-and-conquer

into sets of size
√
n.

First sort the points by x coordinates and take every
√
n‘th point. These x splitters divide the points into√

n columns with
√
n points in each. Then sort the points by y coordinates and take every

√
n‘th point to

find the y splitters which divide the points into
√
n rows with

√
n points in each.

Denote the x splitter of rank i by x̂i and the y splitter of rank i by ŷi. Define column i as the area

between x̂i and x̂i+1, and Ci as the subset of points in S which lie in column i. Similarly, define row i as

the area between ŷi and ŷi+1, and Ri as the subset of points in S which lie in row i. Define cell i, j as the

intersection of column i and row j, and Qi,j as Ci ∩Rj .

We can see from Figure 1 that if p ∈ Qi,j , then F (p) can be found by taking the ⊕-sum of three values,

namely, F ((x̂i, ŷj)), FRj
(p), and FCi

((px, ŷj)). The procedures to find these will be called computing

dominance values at intersections, computing dominance values in rows, and computing dominance values

in columns, respectively.

Computing Dominance Values at Intersections Sort the points in S by y coordinates so that they will be

grouped by rows. Then broadcast the x splitters to each row. Once this is done, we can work in
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Figure 1: Computing the Dominance Value of a Point in Qi,j

parallel on each row separately. Assume we are in row j. First sort the points in Rj by x coordinate,

and then merge in the x splitters, giving each x splitter a y coordinate of ŷj+1 and a value which is

the zero of the ⊕ operation. Then perform a prefix using the ⊕ operation. The value obtained at x
splitter i will be FRj

(x̂i, ŷj+1). To find F (x̂i, ŷj), first compress the x splitters in each row, along

with the values they obtained from the prefix, and then sort all of them together by two keys, the

first being their rank, and the second being the row to which they were broadcast. Now x splitters

will be grouped by rank and ordered by row, so performing a prefix operation using the ⊕ operation

within each rank will correctly compute F (x̂i, ŷj+1) for x̂i corresponding to row j. Then perform an

increment route to give x̂i in row j the value F (x̂i, ŷj).
To handle the case where we are performing a prefix operation on points sorted by x (y) coordi-

nates, and many points have the same x (y) coordinate, we modify prefix as follows. First perform a

normal prefix operation. Then each processor i which contains a point with a different x (y) coordi-

nate than processor i−1 broadcasts its value to the group (possibly empty) of processors immediately

following it which have the same x (y) coordinate. This segmented broadcast will give each processor

the correct dominance value.

To inform each point in Qi,j of the value of F (x̂i, ŷj), sort the x splitters by two keys, the first

being the rows to which they were originally sent, and the second being their ranks. Then merge them

(along with the dominance values) into their corresponding rows, and broadcast the value at each x
splitter to those points between itself and the next x splitter.

Computing Dominance Values in Rows Sort the points by row and recursively call the dominance proce-

dure within each row.

Computing Dominance Values in Columns To avoid double counting the points in a cell, change py to

ŷj . Now sort the points by column and recursively call the dominance procedure for each column.

We see that the dominance operation computes a function over the points below and to the left of each

point. Equivalently, this dominance operation could be performed over the points above and to the left,

above and to the right, and below and to the right.
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4.2 Time Analysis

At each stage of recursion, only sorting, merging and prefix operations are performed. These are dominated

by the time to sort. The recursive procedure is called twice on the square root of the number of points we

are dealing with, leading to recurrence 2 above. Thus we have the following theorem.

Theorem 4.1 Given n points, a dominance operation can be computed on an n processor hypercube in

Θ(Sort(n) · log log n) time. Using ShareSort gives Θ(log n(log log n)3) time.

4.3 Applications

The 2-Set Dominance Counting problem can be easily solved using the dominance operation. To solve

the 3-Dimensional Maxima problem on a set S of points in 3 dimensions, run the upper right dominance

operation (where q ≺ p if the x and y coordinates of q both exceed the corresponding coordinates of p).

For each point p ∈ S designate pv as the z coordinate of p, and let ⊕ = max. Then for each p, p will be a

maximal point if and only if F (p) < pv.

The All Nearest Neighbors problem can be solved as follows. Let pv = {p} for each point p ∈ S and let

⊕ be the following Π-quasi-valid operation defined by Willard and Wee [15]. Let R designate a region, x0
be the smallest x coordinate of a point in S ∩R, and y0 be the smallest y coordinate of a point in S ∩R. Let

r = (x0, y0). Let V (r) be the points in S ∩R which are as close to r as to any other points in S ∩R. Define

a query QR which returns V (r). The constraints Π which a quasi-valid response A to QR must meet will

consist of A ⊂ S ∩R and |A| ≤ 3. The definition of the Π-quasi-valid operator follows from the definition

of the Π-quasi-valid response to the query QR.

Run the dominance operation procedure four times (once for each quadrant), finding the most twelve

candidates for each point p ∈ S which could have p as a nearest neighbor. By sorting these candidates and

performing a prefix operation, we can find the nearest neighbor for each point. A simple prefix operation

will then solve the Closest Pair problem. These facts lead to the following theorem.

Theorem 4.2 Given n points, the following problems can be reduced to dominance operations, and can

thus be solved on an n processor hypercube in Θ(Sort(n) · log log n) time: 2-Set Dominance Counting,

3-Dimensional Maxima, Closest Pair, and All Nearest Neighbors. Using ShareSort, these problems can be

solved in Θ(log n(log log n)3) time.

5 Triangulation

Wang and Tsin [13] give an optimal PRAM algorithm for Triangulation, based on using
√
n − 1 dividing

lines to divide the point set S into
√
n equal sized subsets, solving Triangulation recursively on each subset,

and then performing the necessary triangulation outside the convex hulls of each subset. An important part

of this last step is to find the common supporting lines between every pair of convex hulls. Their algorithm

for this part does not translate directly into an efficient hypercube algorithm, but by using the technique of

Miller and Stout [9] one can obtain an efficient algorithm. They show that by dividing S into subsets of size

n3/4, and recursively finding the convex hull of each, one can find the common supporting lines between

every pair of these convex hulls in Θ(log n) time. Combining these, the total time required for triangulation

is

T (n) = T (n3/4) + Θ(Sort(n))

= Θ(Sort(n)).
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6 Visibility

The third type of problem we consider is visibility from a point. Due to severe space restrictions, we can

only make a few comments concerning our visibility algorithms.

When there are no intersections, the basic divide-and-conquer into
√
n pieces is rather straightforward,

and one need only consider how line segments originating in one region may overlap another region. When

there are intersections it is harder to keep track of the segments, and there is the additional complication

that the answer may have Θ(nα(n)) segments, where α(n) is the inverse of the Ackermann function [14].

To merge pieces together, we use the merge routine described in ShareSort. This merge routine calls a

subroutine called SharedKeySort, which sorts together groups of items where each item in a group has the

same key. The analysis for our routine will thus depend on Θ(SharedKeySort(m)) rather than Θ(Sort(m)).
In [6] it is shown that merging can be completed in Θ(SharedKeySort(m) · log logm) time, and that

SharedKeySort(m) can be completed in Θ(logm(log logm)) time.

Theorem 6.1 Given n line segments, and a point p, the visibility operation on an n processor hypercube

can be performed in Θ(Sort(n)) time if the segments do not intersect, and in Θ(SharedKeySort(n) ·
log log n + log n(log log n)α(n)) time if there are intersections. (If segments intersect, then we assume

each processor has a memory size of Ω(α(n)).) Using ShareSort, the visibility operation can be performed

in Θ(log n(log log n)2) time, whether or not the segments intersect.

7 Conclusion

We have presented new hypercube algorithms for 2-Set Dominance Counting, 3-Dimensional Maxima,

Closest Pair, All Nearest Neighbors, Triangulation, and Visibility from a Point. All of these algorithms

have better asymptotic running times than their hypercube predecessors. The impetus for these faster al-

gorithms was the development of a sorting algorithm which sorts in o(log2 n) time. Previously developed

hypercube computational geometry algorithms could not use new sorting algorithm to decrease their asymp-

totic running time below Θ(log2 n).
We note that sorting on a hypercube is still an open problem, with the only known lower time bound

being Ω(log n). Any asymptotic improvement in sorting time will be reflected by the same asymptotic

improvement in the running times of our algorithms. An open question is if the log log n factor can be

removed from the Θ(Sort(n) · log log n) time algorithms which we presented.
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