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Abstract Several allocation rules are examined for the problem of optimizing a response
function for a set of Bernoulli populations, where the population means are as-
sumed to have a strict unimodal structure. This problem arises in dose response
settings in clinical trials. The designs are evaluated both on their efficiency in
identifying a good population at the end of the experiment, and in their efficiency
in sampling from good populations during the trial. A new design, that adapts
multi-arm bandit strategies to this unimodal structure, is shown to be superior to
the designs previously proposed. The bandit design utilizes approximate Gittin’s
indices and shape constrained regression.

Keywords: nonparametric, adaptive, sequential sampling, experimental design, dose-response,
clinical trial, multi-arm bandit, up and down, random walk, stochastic approxi-
mation, Polya urn, unimodal regression

Introduction

Consider a problem in which there arek linearly ordered populations or
“arms”. Associated with Armi is a binary random variable,Yi, the outcome
of which is governed by an unknown distribution functionF (i). The expected
return from Armi, pi = E(Yi), is referred to as itsvalue. Of interest here is
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the problem of identifying the arm with the highest value, given a strict uni-
modal structure on the valuesp1; : : : ; pk. As unimodality is location invariant,
the arms may be located at integersf1; : : : ; kg without any loss of general-
ity. There aren opportunities to sample and allocation rules or sampling al-
gorithms are assessed according to two measures — an sampling error and a
decision error.

We evaluate four nonparametric sampling designs — three from the litera-
ture and a new one proposed here. Since a common application motivated de-
velopment of several of these designs, we briefly review the application here.
See Durham et al. (1998) and Hardwick et al. (2000) for details.

An Application:

Classical dose response problems focus on locating specified quantiles of
the relationship between drug dose and probability of toxic response to drug
therapy. A common framework for these problems is to model a patient’s
response at doses with a Bernoulli random variable with success probability
(i.e., non-toxic outcome)1�Q(s), whereQ(s) is a continuous nondecreasing
function.

We focus on a variation of this problem in which there are onlyk doses.
We wish to maximize the probability that a patient being treated exhibits not
only anon-toxicresponse but is alsocuredat a given dose. LetR(i) be a non-
decreasing response curve that models the probability that dosei is effective,
and takeF (i) = R(i)(1 �Q(i)) to be the product curve for efficacy and non-
toxicity, i = 1; : : : ; k. Note that in many common parametric dose response
settings, the curveF is unimodal.

The goal is to develop a sampling design that identifies the optimal dose,
i� = argmaxi F (i). The problem may be formulated withR conditioned on
Q, and here we take the special case ofR andQ independent. Further, while in
some scenarios we are provided with the individual outcomes fromR andQ,
in this case, we assume that only the outcome ofF is observed (see Hardwick
et al. (2000)).

In clinical trials there are typically two populations of patients to consider
— then trial subjects and the unknown number of patients in the future who
will be affected by the terminal decision of the experiment. We consider a
good design to be one that has a relatively high probability that both

trial subjects will be cured, and

the optimal dose is selected as best at the trial’s termination.

Since these two criteria are opposing, a single optimal design for this problem
doesn’t exist. Instead, we seek designs that lie on or close to an optimal trade-
off curve representing performance along these two measures. Note that it is
not known how to optimize either measure in this setting.
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In this paper, we compare a new shape constrained multiarm bandit sam-
pling rule with three other designs that have been proposed for virtually the
same problem. In Sections 1.1 and 1.2, respectively, we describe urn and up
and down designs as proposed in Durham et al. (1998). In Section 1.3, we
describe a stochastic approximation type of design delineated in Herkenrath
(1983). The bandit design, adapted to the unimodal structure, is outlined in
Section 1.4. In Section 2 we describe evaluation criteria and experimental re-
sults. In Section 3 we discuss asymptotic behavior, and in Section 4 we close
with a short discussion.

1. SAMPLING DESIGNS

We begin with some notation. Recall thati� denotes the best arm and letp�

be the value of Armi�. Arm im is sampled at stagem (themth observation).
LetIim = 1 if i = im and 0 otherwise. Thennim =

Pm
j=1 Iij is the number of

observations sampled from Armi by stagem for i = 1; : : : ; k; m = 1; : : : ; n.
Thus

Pk
i=1 nim = m.

LetYim represent the outcome of Armi at trialm. For convenience we take
Yim to be 0 unlessi = im, in which case,Yim has a Bernoulli outcome with
success ratepi. Then,rm =

Pk
i=1 Yim is the return or “reward” received at

stagem. Two designs considered here take observations in pairs,(Y1; Y2) as
opposed to individually. To keep notation consistent, we setY1(ij) = Yim and
Y2(ij) = Yi(m+1) for j = 1; : : : ; n=2, m = 1; : : : ; n� 1.

The empirical mean̂pim of pi after stagem is given by
Pm

j=1Yij=nim. For
Bayesian designs we assume that eachpi follows an independent beta distribu-
tion with parametersai; bi. Thus the posterior mean�pim of pi after stagem is
given by(ai +

Pm
j=1 Yij)=(ai + bi + nim).

To specify a design, one needs:

A sampling rulethat determines which arm to sample at each stage.
This may involve special rules to handle startup, boundaries, ties, and
observations near the end of the experiment.

A terminal decision rule, to determine the arm declared best at the end
of the experiment.

1.1 Randomized Polya Urn Design

A randomized Polya urn for selecting optimais proposed in Durham et al.
(1998). In this design, arms are sampled according to a draw from the urn. For
eachi in f1; : : : ; kg, the urn initially contains�i > 0 balls labeledi. (In the
present case,�i = 1). At stagem, m = 1; : : : ; n:

1. A ball is drawn at random from the urn (and replaced), and an observa-
tion is taken from the arm corresponding to the ball’s label.
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2. If the response is a success, then another ball with the same label is
added to the urn.

3. If the response is a failure, then no new balls are added.

A stopping rule is associated with this urn process and the authors’ urn contains
some additional information that pertains only to the stopping time. Here, in
order to compare the urn design with the others discussed, we assume a fixed
sample size. The terminal decision rule is to select the arm with the highest
number of balls in the urn as best.

1.2 Up and Down Design

Random walks or up and down designs are well known for the problem
of locating quantiles of a non-decreasing dose response function (see Dixon
(1965) and Flournoy et al. (1995)). For the case in which the response curve
is strictly unimodal, Durham et al. (1998) propose anup and down rule for
targeting the optimum, defined as follows.

At each stagej, j = 1; : : : ; n2 , a pair of arms is sampled. LetM(j) represent
the midpoint between the two arms sampled at stagej. ObservationsY1(ij)
andY2(ij), are taken atM(j) � c andM(j) + c, respectively, wherec = b

2
andb is an odd positive integer. The midpoint for the next two observations at
stagej + 1 is given byM(j + 1) =M(j) + Vj , where

Vj =

8>><
>>:

1 if Y1(ij) = 0 and Y2(ij) = 1

0
if Y1(ij) = 0 and Y2(ij) = 0
or Y1(ij) = 1 and Y2(ij) = 1

�1 if Y1(ij) = 1 and Y2(ij) = 0

If M(j + 1) would fall outside the range, thenM(j + 1) = M(j). In practice
(and herein),b is typically 1, in which case the start-up rule for the process
selectsM(1) = 1:5, the midpoint of the leftmost two arms.

Durham et al. (1998) do not specify a terminal decision rule, but here we
assume that the decision is to select the arm having the largest sample mean,
i.e., argmaxi p̂in. Note that with a Markov chain such as this, one would
ordinarily select the site most visited as best. For this design, however, such a
decision process does not always converge to the optimal arm in the limit so
the empirical mean is used instead.

1.3 Stochastic Approximation Design

Another approach for this problem is to use a Keifer-Wolfowitz type of
stochastic approximation rule for locating a local maximum [Keifer and Wol-
fowitz (1952) and Sacks (1958)]. Typically a design of this sort samples at
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pointsX(j) � cj andX(j) + cj , cj > 0, wherelim cj ! 0. The “decision
point” X(j + 1) is given by

X(j + 1) = X(j) +
aj
cj
Vj ;

where the sequencefaj > 0g is such that�aj =1 and�a2jc
�2
j <1.

One difficulty with the above rule is that the sampling pointsX(j) � cj do
not lie on a lattice. Herkenrath (1983) proposed a modified procedure adapted
both to the discrete case and to Bernoulli observations. With this procedure,
observations are only taken at arms representing the left and right neighbors of
X(j). The method is as follows. Let0 < d < 1=2 andq(x) = x � xl where
xl = bxc (thoughkl is set tok � 1), and letxr = xl + 1.

According to Herkenrath (1983), the process begins withX(1) = 1. At
stagej, allocation of 2 observations is randomized between left and right
neighbors ofX(j) according to their relative distances. The sampling is guided
by the position ofx = X(j) as specified in the first column of the following
table. The succeeding three columns of the table display the probabilities of
sampling pairs of observations as indicated at the top of the columns. Once
sampling has taken place, thej + 1st decision point is given by

X(j + 1) = Proj[1;k]fX(j) + ajS(Y1(ij); Y2(ij);X(j))g;

whereaj ! 0 andS is a time invariant function that depends onX(j) and the
outcomes of the observations at stagej (see Herkenrath (1983) for details).

For this design, the terminal decision is to select the arm closest toX(n+1).

1.4 Unimodal Bandit Design

In generalk-arm bandit problems, thek populations have unknown reward
structures,arm pullingor sampling takes place sequentially, and decisions are
made with the goal of optimizing a discounted sum of all returns,�n

1�mrm for
discount sequencef�m � 0g (see Berry and Fristedt (1985) for details). This
formulation covers a broad class of problems in learning theory, and optimal

If # then sample! xl; xl xl; xr xr; xr

x < xl + d 1� q(xl + d) q(xl + d) 0

xl + d � x < 1=2(xl + xr) 1� q(x) q(x) 0

x = 1=2(xl + xr) 0 1 0

1=2(xl + xr) < x � xr � d 0 1� q(x) q(x)

xr � d < x 0 1� q(xr � d) q(xr � d)
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strategies balance the impulse to earn immediate rewards against the need to
gather information for future decisions.

It is natural to model initial information about the arms of a bandit using a
prior distribution on the “values”,pi, i = 1; : : : ; k, of the arms. As sampling
take place, posterior distributions reflect the additional information acquired.
Optimal strategies for Bayesian bandits with finite “horizon” or sample size
can be determined via dynamic programming Bellman (1956). However, com-
puting such solutions is a daunting task. For the simple case involving inde-
pendent Bernoulli arms, the dynamic programming equations require compu-
tational space and time that grow asn2k=(2k� 1)! for a problem of horizonn.
(See Hardwick et al. (1999) for the largest problems yet solved.)

As the bandit model becomes more complex (e.g., the number of outcomes
per arm increases or there is structure on the arms), the problem quickly out-
grows available computer resources. In the present situation, we facek de-
pendentarms, and thus can obtain optimal solutions in only trivial cases. One
option in handling these more complex problems, however, is to exploit known
characteristics of optimal solutions to the simpler bandit problems.

In particular, there is a bandit model that, appropriately parameterized, ap-
proximates the independent finite horizon model with discount sequence�j =
1; j = 1; : : : ; n. This model, thegeometricbandit in which� j = � j�1 for
0 < � < 1 andj = 1; 2; : : :, offers a surprising solution. Note first that the
infinite horizon in this model makes dynamic programming impractical. How-
ever, with independent arms, optimal solutions for the geometric bandit may be
defined in terms of index rules. Thus, at each stage of the experiment and for
each arm, there exists an index depending only on the arm, such that sampling
from the arm with the highest index yields the optimal solution, (Gittins and
Jones (1974)). Known as Gittin’s Indices, these quantities incorporate avail-
able “knowledge” about an arm along with the arm’s value. The existence of an
index rule greatly simplifies the solution to the geometric bandit problem be-
cause it reduces the complexity of thek-arm bandit from being exponential ink
to being linear ink. However, despite the elegant solution presented in Gittins
and Jones (1974), the indices themselves are extremely complicated. Except in
very simple models, they cannot be calculated exactly. Still, the idea of using
an index rule with traits similar to the Gittin’s index has great appeal. Because
the objective function of the finite horizon problem is to maximize return, it’s
reasonable to ask how well the bandit solution accommodates statistical goals
of gathering information for inferential purposes.

Here, we use a lower bound for the Gittin’s index proposed in Hardwick
(1995). If the beta prior parameters for an arm areA andB, then a lower bound
for the Gittins index for this arm is given by�� = supf�r : r = 1; 2; : : :g;
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where

�r =

�(A+1)
�(A+B+1) �B�r

1�
i �(A+i)
�(A+B+i+1)

�(A)
�(A+B) �B�r

1�
i �(A+i�1)
�(A+B+i)

:

Generally speaking, it is not difficult to compute�� since�r is a unimodal
function ofr.

Interestingly, geometric discounting can be viewed as an ethically equitable
mechanism for balancing the well being of current and future patients. The
parameter� represents the relative weight of the outcome of each subject as
compared to the weight of all future patients. In the finite horizon setting,
optimal decisions will be virtually identical ifn � 1=(1 � �) whenn ! 1
and� ! 1. This relationship is quite accurate whenn is as low as, say 30.

In the present problem, we do not focus on these interpretations, but instead
wish to choose� to optimize our joint goals of minimizing loss and making
good decisions. It’s an open question how best to do this. For simplicity in
our simulation experiments, a fixed value of� = 0:95 was used for all sam-
ple sizes. Naturally somewhat better results would be obtained if� changed
somehow withn. Note that it may even make sense to adjust� during a given
experiment. Since it is best to explore more early in the experiment, higher
values may be more useful then, with lower values towards the end helping to
diminish experimental losses.

Theunimodal banditsampling algorithm used to generate the results in the
next section is constructed as follows. Let the prior distributions of thepi be
beta with parameters(ai; bi) (we useai = bi = 1). At stagem+ 1,

1. Calculate the posterior means,�pim, i = 1; : : : ; k.

2. Using least squares, fit the best unimodal curve to the posterior means
using weightsnim + ai + bi (Stout and Hardwick (2000)).

3. Adjust the posterior distributions so that their means lie on the curve
from (2) by adding the smallest (fractional) number of successes,uim,
or failures,vim, needed to bring the posterior means into alignment. For
Arm i theadjusted posterior parametersare

Aim = ai +
mX
j=1

Yij + uij and Bim = bi + nim �
mX
j=1

Yij + vij :

4. For each armi, calculate��i;m, based on the adjusted posterior distribu-
tions in (3), and letj = argmaxi �

�

i;m. If there are ties for the maxi-
mum, then pickj at random from the tied arms.

5. Determine where to take the next observation:
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(a) If observationm was a success, or was not on armj, then sample
next from armj.

(b) Exploration rule: If observationm was a failure and was on arm
j, then pickj0 uniformly from fj�1; j+1g for j0 2 f1; : : : ; kg. If
the p-value for the one sided test of equality ofj andj0 is at least
1=(n�m+ 1) then sample fromj0, otherwise sample again from
j.

At the end of the experiment, fit a unimodal curve to the weighted posterior
means and select the arm corresponding to the mode.

Note theexploration rulein Step 5. This is used to avoid premature conver-
gence to a suboptimal arm. While the allocation index also serves this purpose,
this may not force as much exploration as needed. The exploration rule also
lends robustness to prior misspecification.

2. EVALUATION CRITERIA AND RESULTS

As discussed, we seek designs that behave well along two performance mea-
sures – an experimental or sampling error to assess losses during the experi-
ment and a decision error to assess future losses based on the terminal decision.

Given any decision rule and sampling design there exists a probability mea-
sure on the arms which reflects the chance,�n(i), that Armi is selected as best
at the end of an experiment of sizen. One could take�n(i�), theprobability
of correct selection, as a measure of decision efficiency. However, in clinical
trials, a major goal is to minimize harm to patients. In such cases, selecting an
arm with a success rate close top� is much preferred to selecting those with
lower rates. This leads to the following definition:

Decision EÆciency : Dn = (�k
i=1�n(i)pi)=p

�

The sampling error is the normalized expected loss incurred when sampling
from arms other thani�. Noting thatE[rm] is the expected return at stagem,
we define

Sampling EÆciency : Sn = (�n
m=1E[rm])=(n � p

�)

This is closely related to theexpected successes lost, �n
m=1p

� �E[rm].
An initial simulation study was conducted to examine the relative behav-

ior of the designs in Section 1. To assess the impact of variation in the uni-
modal functions themselves, we selected four curves with diverse characteris-
tics. These are shown in Figure 1. For each curve and each design, we consider
sample sizes 25, 50, 100 and 200. At each configuration 5,000 iterations of the
experiments were run and used to estimate the decision efficiency and sam-
pling efficiency, shown in Figure 3. Figure 3 also includes results for equal
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allocation, in which there arebk=nc rounds of sampling from each arm and
the remaining observations are assigned at random and without replacement to
f1; : : : ; kg.

Generally speaking, the bandit design performed the best along both mea-
sures, and no design was uniformly worst. For the urn, bandit and equal allo-
cation rules, the efficiencies move from the southwest towards the northeast as
the sample size increases, which is the behavior that one would expect. How-
ever, for the up and down design, this movement is reversed in Curves 2 and 3,
and the stochastic approximation design shows no consistent behavior.

These anomalies point to the impact of design details that are often ignored.
Start-up rules, for example, can have a grave impact on design performance.
For the urn method, there is a random start, while for the bandit design, the start
is dictated by the prior distribution, which in the present case yields a random
start. For the up and down and stochastic approximation designs, however,
sampling begins with the leftmost arm, as designated by the developers of the
designs. If a curve has its mode to the left, these designs tend to initially stay
near the mode. For example, with Curve 3, which is strictly decreasing, the
up and down design samplesonly from Arms 1 and 2 nearly 9% of the time
whenn = 25. This is primarily due to observing repeated failures on these
arms yet not moving away. Note, however, that as the sample sizes increase,
this tendency is overcome and the design’s performance stabilizes.

We reran the experiments with the ordering on the arms reversed, i.e., so that
curves that originally were decreasing were now increasing and so forth. This
switch caused the efficiencies of the up and down and stochastic approximation
designs to plummet for Curves 2 and 3, whereas they improved for Curve 4.

To draw more direct comparisons among the rules, we also reran the experi-
ments using a random start-ups for all designs. The results of these runs appear
in Figure 2. For the up and down design, the unbiased start-up reordered the
efficiencies upward and to the right with the sample size. Further, the results
show an overall improvement over those obtained using the leftmost start-up.
Note, however, that the preferred start-up rule may depend on the application.
For the dose response example discussed in the Introduction, Durham et al.
(1998) determine that it is preferable to have a patient succumb to disease than
it is to be exposed to toxic levels of drug therapy, and thus it was deemed
desirable to begin with low rather than arbitrary drug doses.

Figure 2 shows that even when utilizing a random start-up, the stochastic ap-
proximation design still behaved erratically. In Curve 1, for example, the value
for n = 25 was wildly high on theEn measure – so much so that it has been
omitted from the figure. A less extreme but similar behavior can be observed
in Curve 3. For neither of these curves did stochastic approximation show the
desired trend of efficiency increasing with the sample size. We believe that this
unusual behavior may be the result of the choice of theS function mentioned



10

in Section 1.3. Herkenrath (1983) notes that the system of equations defining
S are underdetermined and thus adds conditions to guarantee unique solutions.
The specific form ofS chosen by the author appears to be questionable, and it
is likely that a different solution would improve performance and produce less
erratic behavior.

While the bandit rule performs the best with regard to decision making, note
the up and down and equal allocation rules have similarDn whenn is large.
As expected, however, the bandit rule outmatches all rules on theSn measure.
Among the adaptive rules examined, the urn model seems to perform least
well on our measures. However, the main strength of this model is that it is
randomized and can better protect patients from selection bias.

3. CONVERGENCE

While in practice these designs are intended for use with small to moderate
sample sizes, it is also important that they exhibit good asymptotic efficiency,
i.e., thatDn andSn converge almost surely (a.s.) to 1 asn!1. If a design is
asymptotically efficient with respect to both kinds of error, then the design is
asymptotically (first order) optimal. In this section, we assume that efficiency
is “asymptotic” and thus drop the adjective.
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Figure 1. Unimodal curves used for evaluation.

0.93 0.94 0.95 0.96 0.97

0.95

0.96

0.97

0.98

D
ec

is
io

n 
E

ffi
ci

en
cy

U1
U2

U3
U4

R1

R2

R3

R4

E1

E2

E3

E4

B1

B2

B3

B4

Curve 1

S2
S3

S4

0.66 0.74 0.82 0.9 0.98

0.82

0.88

0.94

1.00

U1

U2

U3

U4

S1

S2
S3

S4
R1

R2

R3
R4

E1

E2

E3
E4

B1
B2

B3B4

Curve 2

0.75 0.79 0.83 0.87

0.77

0.81

0.85

0.89

0.93

D
ec

is
io

n 
E

ffi
ci

en
cy

U1
U2

U3

U4

S1S2S3
S4

R1

R2

R3

R4

E1

E2

E3

E4

B1

B2

B3

B4

Experimental Efficiency

Curve 3

0.7 0.76 0.82 0.88 0.94
0.78

0.83

0.88

0.93

0.98

U1

U2

U3

U4

S1

S2S3

S4
R1

R2

R3
R4

E1

E2

E3
E4

B1

B2

B3
B4

Experimental Efficiency

Curve 4

Figure 2. Efficiencies, forn=(1) 25, (2) 50, (3) 100, (4) 200.

B=Bandit, E=Equal, R=Up-Down, S=Sto. Approx., U=Urn
Random start-up for all methods
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Figure 3. Efficiencies, forn=(1) 25, (2) 50, (3) 100, (4) 200.
B=Bandit, E=Equal, R=Up-Down, S=Sto. Approx., U=Urn

Start-up as proposed with methods.

To obtain sampling efficiency, it is necessary and sufficient that the rate
at which armi� is sampled goes to 1 asn ! 1, while decision efficiency
requires that the probability of selecting armi� as best goes to 1 asn ! 1.
Note that for a design to insure that it has not prematurely converged in its
selection of a good arm, with the unimodal assumption it is necessary that
armsi� � 1 be sampled infinitely often. Without such an assumption, all arms
would have to be sampled infinitely often.

Equal Allocation:It is straightforward to show that this design is decision effi-
cient, but not sampling efficient.

Up and Down Design:The decision rule for this design selects the arm corre-
sponding tomaxi p̂in as best. Since all arms are sampledi.o., p̂in ! pi a.s.for
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eachi. Thus, choosing the arm with the highest sample mean guaranteesa.s.
selection of Armi� in the limit, i.e., the up and down rule is decision efficient.
However, because the asymptotic rate at which suboptimal arms are sampled
is nonzero, the design is not sampling efficient. Note that unimodality is not
required for decision efficiency.

Urn Design:Let pri be the asymptotic proportion of balls of typei in the urn
asn ! 1. In Theorem 2 of Section 4.2, Durham et al. (1998) show that
pri� = 1 andpri = 0; i 6= i� a.s. Since the decision rule chooses the arm
with the maximum proportion of balls at stagen as best, the rulea.s.makes
the correct selection asn ! 1. Sincepri� = 1, the design is also sampling
efficient. Note that unimodality is not required for the urn design to be both
decision and sampling efficient.

Stochastic Approximation:Herkenrath (1983) shows that when the sequence
fang ! 0,

P
1

1 an = 1 and
P
1

1 a2n < 1, thenX(n) converges toi� a.s.
Thus, in the limit, the decision to select the arm closest toX(n) as best isa.s.
the optimal decision, and hence this design is decision efficient. Unfortunately,
with the probability of sampling adjacent pairs being fixed, this design cannot
be sampling efficient.

Unimodal Bandit:The exploration rule, part 5b, ensures that the arm thought
to be best and its neighbors are sampledi.o., to avoid premature convergence.
Under the unimodal assumption, it can be shown that this insures that asymp-
totically the bandita.s.selectsi� as the best arm, and thus is decision efficient
(see Hardwick and Stout (2000)). Further, since the rate of sampling other arms
goes to zero, the design is also sampling efficient. Note that if� is bounded
away from 1, then the arms not adjacent toi� area.s.sampled only finitely
often. Also note that sampling efficiency can be lost if� goes to 1 too rapidly
asn increases.

The conditions needed for first order sampling efficiency are not difficult to
achieve. However, to obtain second order efficiency, more delicate control of
the rates at which suboptimal arms are sampled is needed. For the unimodal
bandit design, the discount parameter� and the exploration rule together dic-
tate this rate, as ordinarily would the sequencefang for the stochastic approx-
imation design. (As mentioned, it is the deterministic sampling of adjacent
pairs in the Herkenrath (1983) design that precludes sampling efficiency.) One
must be careful, however, in changing the convergence rates since they affect
bothefficiency types. In fact, it is precisely these rates that control the trade-off
between the competing goals of gaining high reward (S1) and drawing good
inferences (D1). Forcing the sampling of suboptimal arms to go to 0 too fast
reduces the rate at which we arrive at an optimal decision.
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In summary, for the unimodal problem, a design needs to sample the best
arm and its neighborsi.o. to be decision efficient. However, sampling too much
from suboptimal arms negatively impacts a design’s experimental regret. Thus
a good rule will be one that carries out enough exploration to determine the
best arm but then samples mostly from it.

4. DISCUSSION

While asymptotic analytical results can give some guidelines, they don’t ap-
pear to be able to determine which designs are best on useful sample sizes, and
hence computer experiments are needed. The experiments reported here, and
those in Hardwick and Stout (2000), show that while all of the designs consid-
ered are asymptotically decision efficient, for fixed sample sizes the unimodal
bandit appears to do slightly better than the others, at least on the curves and
sample sizes examined. It appears to achieve both a good sampling efficiency
and good decision efficiency for a wide range of situations.

However, there is significant work needed to tune these basic approaches
to produce better designs for this setting. We are conducting experiments to
evaluate designs on large numbers of unimodal functions, and to evaluate a
number of variations. For example, there are many alternatives possible for the
exploration rule in the unimodal bandit, and it is unclear which is best. It is
also not obvious how� should go to1 asn goes to1, and whether� should
be reduced as an experiment progresses, to optimize performance. Further,
there is significant interaction between the choice of� and the exploration rule.
This is a problem for future study. There are also many variations possible for
random walks, urn designs, etc., and in initial experiments we have been able
to achieve some improvement.

Returning to the motivating example of dose-response problems, we note
that there is also the important case in which the competing failure modes,Q
andR in the Introduction, are observed. As expected, one can do better by
using designs which exploit the structure of the failure modes (see Hardwick
et al. (2000)).
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