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Abstract

This paper examines the problem of locating large fault-
free subcubes in multiuser hypercube systems. We analyze
a new location strategy, thecyclic buddy system, and com-
pare its performance to the buddy system, the gray-coded
buddy system, and several variants of them. We show that
the cyclic buddy system gives a striking improvement in
expected fault tolerance over the above schemes and, since
it can easily be implemented in parallel with little over-
head, it provides an attractive alternative to these schemes.
We also investigate the behavior of these location systems
in the folded, or projective, hypercube, and find that the
cyclic buddy system, which adapts naturally to this en-
hancement, significantly outperforms the other schemes.
A combination of analytic techniques and simulation is
used to examine both worst case and expected case per-
formance.

Keywords fault tolerance, subcube location, subcube al-
location, hypercube computer, buddy system, gray-
coded system, folded hypercube.

1 Introduction

Parallel computers incorporating thousands of processors
must be able to tolerate faulty processors and communi-
cation links if they are to achieve a usable mean-time-to-
failure. This means, in particular, that such systems should
be able to locate large fault-free subsystems efficiently.
Systems with multiuser or multitasking capabilities should
be able to perform this location efficiently too, for the prob-
lem of assigning a subsystem to a given user or task can
be thought of as allocating a subsystem in the presence of
faults, where the busy processors and dedicated communi-
cation links can be considered “faulty”. For many of the
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well known interconnection topologies, including the hy-
percube, the problem of locating all fault-free subsystems
is computationally intensive. Consequently, a reduction
in the number of allocable subsystems is made to reduce
the system overhead needed for their location and alloca-
tion. Reducing the number of allocable subsystems, unfor-
tunately, can result in a substantial decrease in the fault-
tolerance of the system.

This is particularly unfortunate with the hypercube, for
one of its attractive features is that it offers a high degree of
fault tolerance. Large fault-free subcubes may exist in the
network despite the presence of many edge or node faults.
Moreover, since most hypercube algorithms specify the di-
mension of the hypercube as one of the parameters, these
algorithms can still be used in the presence of faults, al-
though with some degradation. When the set of allocable
subcubes is substantially reduced, however, a few faults
can make all allocable subcubes faulty and cause the sys-
tem to fail to allocate a subcube even when a fault-free one
exists.

Both NCUBE and Intel offer hypercube multicomput-
ers with multiuser and multitasking capabilities. Subcube
allocation in these systems, as in most commercial hy-
percube systems, is accomplished using thebuddystrat-
egy. This strategy is not very fault-tolerant, for in a hy-
percube of dimensiond, the buddy system recognizes only
2d�q q-dimensional subcubes out of the possible

�
d
q

�
2d�q

q-dimensional subcubes. In a hypercube of dimension 10,
for example, the buddy system recognizes less than one
percent of the existing 7-dimensional subcubes.

Several authors have studied strategies for the loca-
tion of subcubes in hypercube multicomputers. Some
approaches involve enlarging the set of subcubes recog-
nized over that of the buddy system, other approaches in-
volve computation- and/or memory-intensive algorithms
for complete subcube recognition. Chen and Shin [4] in-
troduced a gray-coded buddy strategy for subcube loca-
tion that improves upon the buddy strategy, and proposed
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to effect complete subcube recognition. Al-Dhelaan and
Bose [2] introduced a modified buddy strategy which im-
proves upon the single gray-coded buddy scheme. In [16],
we examined several subcube location schemes including
multiple buddy and gray-coded buddy schemes, and intro-
duced a new family of location schemes which generalized
and improved upon the earlier schemes.

We make the distinction between the problems of sub-
cube location and allocation, viewing subcube allocation as
subcube location plus a policy to choose one of the located
subcubes. To evaluate subcube allocation in an environ-
ment with dynamic allocation and de-allocation one must
consider the properties of the subcube request sequence,
the properties of subcube utilization time, and the penal-
ties associated with not locating a subcube, as well as con-
sidering the location capabilities. In this paper, we restrict
ourselves to the study of subcube location strategies, and
leave the study of allocation strategies under various poli-
cies and request distributions for another time. Without
restricting ourselves to a specific allocation policy, we can
make useful comparisons among various location strate-
gies by studying the number of faults required to make ev-
ery locatable subcube faulty. For each subcube location
scheme under consideration, we determine the minimum
number of faults required to make each locatable subcube
of a given dimension faulty (a worst case scenario), and
determine the average number of faults required to make
each locatable subcube faulty (expected case scenario),
where the faults are assumed to be distributed uniformly
randomly and independently. We contend that thecyclic
buddyscheme, which we introduced in [15], should be the
method of choice for subcube location in hypercubes. This
scheme can be implemented in parallel with almost no sys-
tem overhead [15], and, as our results here will show, it
yields a substantial improvement in fault-tolerance over the
buddy and gray-coded buddy schemes.

In Section 2, we describe the subcube location schemes
we will study. The schemes under consideration are the
buddy, double buddy, gray-coded buddy, double gray-
coded buddy, and cyclic buddy. Section 3 shows some
of our analytic results and computer simulations for these
schemes in hypercubes of dimensions ranging from 6 to
20.

Recently, there has been considerable interest in an en-
hancement of the hypercube network in which an extra
edge is included between each pair of diametrically op-
posed nodes [7, 8, 9, 11, 17]. This new structure, which has
appeared under several different names (folded, twisted,
enhanced, projective) will be referred to as aprojectivehy-
percube here. Ad-dimensional projective hypercube has
roughly one-half the diameter of the standard hypercube
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standard hypercube of the same dimension, and retains the
attractive features of the standard hypercube network. Un-
fortunately, subcube location schemes such as the buddy
and gray-coded buddy cannot take advantage of the new
edges of the projective hypercube. However, the cyclic
buddy scheme adapts naturally to this network. In Sec-
tion 4, we show analytic results and computer simulations
that compare the performance, in the presence of faults,
of the buddy and the cyclic buddy schemes in the projec-
tive hypercube for dimensions ranging from 6 to 20. Here,
too, we find the cyclic buddy scheme is significantly more
fault-tolerant than the other schemes.

Multiple cyclic buddy systems for the standard hyper-
cube are discussed in Section 5. The problem of how to
devise optimal cyclic buddy schemes which locate large
non-overlapping sets of subcubes is introduced. The use of
multiple cyclic buddy systems allows a gradual tradeoff to
be made between the size of the set of locatable subcubes
and the time allowed for the location strategy.

Proofs of the theorems are omitted due to space restric-
tions, but will appear in the final version of the paper.

2 Subcube Location Schemes

To facilitate our description of the subcube location
schemes, we first introduce some notation. In a hypercube
of dimensiond, which we will denote byQd, each pro-
cessor is assigned a unique identification number (id) that
is a d-bit binary string. Two processors are directly con-
nected provided their id’s differ in only one component.
Extending our notation ofd-bit binary strings for proces-
sor id’s, we will denote the subcubes ofQd by strings from
f0; 1; �gd, where the number of�’s in the string is the di-
mension of the subcube.

2.1 Buddy Systems

The standardbuddy system recognizes only theq-
dimensional subcubes in which the low-orderd � q bits
have the symbol�. For example, in a 5-dimensional hy-
percube, the buddy system would identify only the four
3-dimensional subcubes of the formab � ��, wherea; b 2
f0; 1g. More generally, each permutation� of the integers
1; 2; : : : ; d gives rise to a single buddy systemB� which
recognizes only theq-dimensional subcubes of the form
a1a2 : : : ad, wherea�(i) = � for d � q + 1 � i � d. No-
tice that the standard buddy system corresponds to the case
of the identity permutation. For each permutation�, B�

recognizes only2d�q of the possible
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q
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2d�q subcubes of

dimensionq in Qd.
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The buddy system is attractive since it is easy to imple-
ment. Moreover, it is an optimal scheme in the following
sense. Suppose that a series of requests for subcube sizes is
given, assume that no de-allocation is considered and that
the presence of faults is ignored. Then the buddy system
is an optimal allocation strategy in the sense that it fails
to grant a request only if there is an insufficient number
of available nodes to satisfy the request. In dynamic al-
location and de-allocation, however, it can perform quite
poorly. Studies of the behavior of subcube allocation in a
dynamic situation have been made in [4, 5, 10] for the pur-
pose of evaluating various policies governing the selection
of which subcube to allocate when there are several avail-
able subcubes. Variations of the single buddy system have
been suggested which allocate the union of several single
buddy systems. For example, an orthogonaldouble buddy
systemconsists of two single buddy systemsB� andB� ,
where� is the identity permutation and� is the permuta-
tion that reverses the order of the bits. Thus, this scheme
allocatesq-subcubes inQd of the forma1a2 : : : ad�q�: : : �
together with the form� : : : � bq+1bq+2 : : : bd. Forq < d,
the orthogonal double buddy system allocates twice the
number of subcubes as does the single buddy system. For
example, ifd = 7 andq = 5 then the standard single buddy
system recognizes the 5-dimensional subcubes given by
ab � � � ��, wherea; b 2 f0; 1g, and the orthogonal double
buddy system recognizes, in addition, the 5-dimensional
subcubes given by� � � � �cd, wherec; d 2 f0; 1g.

2.2 Gray-Coded Buddy Systems

Let gd denote the binary reflected Gray code map from
f0; : : : ; 2d�1g to d-bit strings. The standard singlegray-
coded buddy systemlocatesq-subcubes that arise as pairs
of q � 1-subcubes of the formfa1 : : : ad�q+1 � : : : �,
b1 : : : bd�q+1 � : : : �g, whereg�1d�q+1(a1 : : : ad�q+1) and

g�1d�q+1(b1 : : : bd�q+1) are consecutive mod2d�q+1. As in
the case of the single buddy system, each permutation�
of 1; 2; : : : ; d gives rise to a gray-coded buddy systemG� .
EachG� locates the same number of subcubes as does the
orthogonal double buddy system.

To illustrate the standard single gray-coded buddy sys-
tem, letd = 7, q = 5, and letg3 denote the mapf (0,000),
(1,001), (2,011), (3,010), (4,110), (5,111), (6,101), (7,100)
g. The 5-dimensional subcubes ofQ7 recognized by this
scheme consist of the pairs of 4-dimensional subcubes of
the forma1a2a3 � � � �, b1b2b3 � � � �, whereg�13 (a1a2a2)
andg�13 (b1b2b3) are consecutive mod 8.

The double gray-coded buddy system, first suggested
in [4], locatesq-subcubes by a pair of gray-coded buddy
systems, one which corresponds to the identity permuta-
tion, and the other which corresponds to the permutation

which reverses the order of the bits.

2.3 The Cyclic Buddy System

In contrast to the buddy and gray-coded buddy schemes,
the location strategy which we now consider does not seem
to arise naturally as a serial location system. We introduced
this scheme, thecyclic buddy system, (CBS), in [15]. It lo-
catesq-subcubes of the forma1 : : : ad, whereai through
ai+q�1 are � for somei, with the subscripts calculated
modulod. For example, ifd = 7 andq = 5, theCBSrec-
ognizes all 5-dimensional subcubes of the formsab�����,
�ab����, ��ab���, ���ab��, ����ab�, �����ab, and
a�����b, wherea; b 2 f0; 1g. In general, a permutation,�,
of the integers1; 2; : : : ; d, gives rise to a cyclic buddy sys-
temCBS� which recognizes theq-dimensional subcubes
of the forma1 : : : ad, where, for somej, a�(i) = � for
i = j + 1; j + 2; : : : ; j + q, wherei is calculated modulo
d.

Each cyclic buddy system locatesd2d�q subcubes of
dimensionq, giving complete location forq = d � 1 and
q = 1. Thus, aCBSlocates at least as manyq-subcubes
as the double buddy and the double gray-coded buddy sys-
tems, and locates strictly more than these systems when
d > 2. We showed in [15] that each of the buddy, gray-
coded buddy, and the cyclic buddy schemes can be imple-
mented in�(d) time in parallel. Furthermore, the implied
constants are such that theCBSimplementation time is less
than that required by either the double buddy or the double
gray-coded buddy schemes.

3 Fault Tolerance of Location
Schemes

The use of location procedures that recognize only a small
subset of the available subcubes adversely affects the abil-
ity of the system to function in the presence of faults. Here
we will consider these effects, in both worst case and ex-
pected case, for the location schemes described in Sec-
tion 2. To describe these behaviors, however, we will need
some additional notation.

SupposeA denotes a subcube location scheme, and
S(A; d; q) denotes the set of subcubes of dimensionq in
Qd locatable byA. Let Aw(d; q) denote the minimum
number of node faults that make faulty all the subcubes
of S(A; d; q), and letAe(d; q) denote the corresponding
expected number of node faults, where the faults are as-
sumed to appear uniformly and independently among the
2d nodes. We will useK, B, DB, G, DG, andC to de-
note the case of complete subcube recognition, the single
buddy system, the double buddy system, the single gray-
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coded buddy system, the double gray-coded buddy system,
and the cyclic buddy system, respectively.

The relationships between the subcubes located by the
various schemes are summarized by the following inclu-
sions.

S(B; d; q) � S(DB; d; q) � S(K; d; q)
S(B; d; q) � S(G; d; q) � S(DG; d; q) � S(K; d; q)
S(B; d; q) � S(C; d; q) � S(K; d; q)

In general the inclusions are strict, except that all of the
schemes recognize alld- and 0-dimensional subcubes, and
the cyclic buddy scheme recognizes all(d�1)-dimensional
subcubes ofQd. Note that ifS(A1; d; q) is a proper subset
of S(A2; d; q) thenA1

w(d; q) � A2
w(d; q) andA1

e(d; q) <
A2
e(d; q).
In the worst case, as our next theorem indicates, the

cyclic buddy system does no better than the single or dou-
ble buddy or gray-coded buddy system. The values of
Kw(d; q) are not known for alld and q, but we include
a few of the known values appropriate for comparison.

Theorem 3.1 For d � q,

(i ) Cw(d; q) = 2d�q,

(ii ) [16], Bw(d; q) = Gw(d; q) = DBw(d; q) =
DGw(d; q) = 2d�q,

(iii ) [6], Kw(d; d � 2) = lg d+�(lg lg d),

(iv ) [6], Kw(d; q) � 2d�q�1 lg(q + 3)� (d� q)�
lg(d� q)� 2 lg lg d.

2

Exact analytic expressions for expected fault tolerance
are extremely difficult to determine, particularly ford�q >
1. We see this reflected in the next theorem, in which which
we only give bounds for the schemes under consideration.

Let

B�(k) = x

xX
i=1

1

i
;

wherex = 2k, and let

G�(k) =

z�2X
i=0

p(z; i)
z

z � i
;

wherez = 2k+1 andp(z; i)
�
z
i

�
=
�
z
i

�
�
�

i
z�i

�
�
�

i�1
z�i�1

�
.

Theorem 3.2 For d � q,

(i ) For the buddy, double buddy, gray-coded buddy, dou-
ble gray-coded buddy, cyclic, and complete location
schemes,Ae(d; q) is strictly monotonically increas-
ing in d and strictly monotonically decreasing inq.
Further, if d� q is held fixed, then it is strictly mono-
tonically increasing ind.

(ii ) [16], For fixedd � q = k, Be(d; q) converges mono-
tonically increasingly toB�(k) asd!1.

(iii ) [16], For fixedd� q = k, Ge(d; q) converges mono-
tonically increasingly toG�(k) asd!1.

(iv ) For eachk there is a constantDB�(k) such that, for
d � q = k, DBe(d; q) converges monotonically in-
creasingly toDB�(k) asd!1.

(v ) For eachk there is a constantDG�(k) such that, for
d � q = k, DGe(d; q) converges monotonically in-
creasingly toDG�(k) asd!1.

(vi ) Ce(d; d� 1) = Ke(d; d� 1),

(vii ) Ce(d; q) = �(lg d), for fixedd� q,

(viii ) [3], Ke(d; q) = �(lg d), for fixedd� q.

2

Whend�q is fixed, we see from part(ii) of the theorem
thatBe(d; q) is bounded by a constant approximately equal
to (d�q)2d�q ln 2. Parts(iii); (iv); and(v) of the theorem
show that whend� q is fixed, each ofGe(d; q); DB(d; q);
andDG(d; q) is bounded by a constant, also. On the other
hand, parts(vi); (vii); and(viii) show that ford� q fixed,
Ce(d; q) has the same order of growth asKe(d; q), which
is logarithmic ind.

In [16], a study was begun to compare the fault-
tolerance of various location schemes ford = 20 and
q = d � 2. Here we have extended this simulation to
include smaller dimensions and also to include the cyclic
buddy scheme. In Table 1, we show representative re-
sults from these studies for the buddy, double buddy, gray-
coded buddy, double gray-coded buddy, and cyclic buddy
schemes for dimensionsd = 6; 8; 10; : : : ; 20 andq = d�2.
We also include a column labeled “1”, which represents
the limit asd ! 1. For the buddy, double buddy, and
gray-coded buddy schemes all values shown are exact, uti-
lizing a dynamic programming approach based on observa-
tions in [16]. For the double gray-coded buddy scheme, an
approach was used which mixed Monte Carlo techniques
with the dynamic programming approach in order to re-
duce the variance below that of a simple Monte Carlo ap-
proach.

For the cyclic buddy and complete location schemes the
values shown are based on simulation. In these simula-
tions, onetrial consisted of successively generating ran-
dom faults until allq-subcubes became faulty, and record-
ing the smallest fault number to fall in anyq-subcube.
Then, for any subcube location strategy,A, we would
find and record the maximum fault number over all theq-
subcubes locatable byA. For eachround, which consisted
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d
Scheme 6 8 10 12 14 16 18 20 1

buddy 7.8 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3
dbuddy 9.5 10.1 10.2 10.3 10.3 10.3 10.3 10.3 10.3

gray 9.3 9.9 10.0 10.1 10.1 10.1 10.1 10.1 10.1
dgray 11.1 12.0 12.2 12.2 12.2 12.2 12.2 12.2 12.2
cyclic 12.1 13.9 15.0 15.7 16.2 16.8 17.2 17.4 1

complete 14.2 17.4 19.4 20.9 22.0 23.0 23.8 24.6 1

Table 1: Expected Fault Tolerance of Some Location Schemes for (d� 2)-dimensional Subcubes

of 1000 trials, the average maximum fault number was then
recorded. The mean number of faults observed from thirty
rounds are reported in the table. Since the standard devi-
ations were all less than 0.2, they have not been explicitly
shown.

The first four lines of Table 1 reflect the fact, obtained
from Theorem 3.1, that for the simple location schemes,
Ae(d; q) is bounded by a constant whend�q is held fixed.
On the other hand, the results for the cyclic buddy sys-
tem and the complete location scheme reflect the fact that
Ae(d; q) is unbounded whend� q is fixed andd grows.

In order to make a more extensive comparison between
the values ofBe(d; q) andCe(d; q) for several values of
q andd, we set up another simulation to only obtain es-
timates for the cyclic buddy scheme, comparing it to ex-
act values for the buddy scheme. Again, working on the
assumption that most of the interest in locating subcubes
will be for large subcube dimension, we collected data
for q = d � 3; d � 2; d � 1 and 6 � d � 20. Thirty
rounds of 1000 trials each, were used to gather statistics
on the average number of faults needed to make faulty all
theq-dimenional subcubes recognized by the cyclic buddy
scheme. Table 2 shows the mean number of faults observed
from thirty rounds for the cyclic scheme, with the mean for
the buddy scheme shown in parentheses. Standard devia-
tions for the thirty rounds were all less than 0.4 and are not
shown.

In Table 2, we continue to see the significantly superior
behavior of the cyclic buddy scheme over that of the single
buddy scheme. Within each column of the table, which
represents a case ofd � q fixed, the values ofBe(d; q) are
nearly constant while the estimates forCe(d; q) continue
to increase. Parts (i), (ii), (vi), and (vii) of Theorem 3.2
support these observations.

4 The Projective Hypercube and the
Cyclic Buddy Scheme

The projective hypercubeof dimensiond, denoted by
PQd, is constructed from the standard hypercubeQd by

q
d� 1 d� 2 d� 3

6 4.9 (2.9) 12.1 (7.8) 25.8 (18.2)
8 5.4 (3.0) 13.9 (8.2) 32.8 (20.8)

10 5.7 (3.0) 15.0 (8.3) 36.4 (21.5)
12 6.0 (3.0) 15.7 (8.3) 38.1 (21.7)

d 14 6.2 (3.0) 16.2 (8.3) 39.4 (21.7)
16 6.4 (3.0) 16.8 (8.3) 40.5 (21.7)
18 6.6 (3.0) 17.2 (8.3) 41.7 (21.7)
20 6.6 (3.0) 17.4 (8.3) 42.4 (21.7)
1 1 (3.0) 1 (8.3) 1 (21.7)

Table 2: Values ofCe(d; q) (Be(d; q))

including an extra edge between each pair of diametri-
cally opposed nodes. This enhancement toQd, which
has been discussed informally since at least 1986, arose
because many of the hypercubes in use at that time had
at least one extra port on each node. Formal description
of the projective hypercube has appeared in the literature
in [7, 8, 9, 11, 17], although under different names such
as “twistd”, “enhanced”, or “folded” hypercubes. These
names, as with the name “projective”, are suggested by
the following construction. LetA andB be two node-
disjointd-dimensional subcubes ofQd+1. Retain the edges
that connect corresponding nodes inA andB, but trans-
form, or twist,B so that each of its nodes is moved to the
node that was diametrically opposed to it inB. Now col-
lapse (project)B ontoA, identifying pairs of correspond-
ing nodes ofA andB.

The projective hypercube contains many of the desir-
able properties of the standard hypercube network, such as
scalability, symmetry, high degree of fault tolerance, low
diameter, and good embedding properties. Although we
restrict our study ofPQd here to fault-tolerance behavior
of the buddy and cyclic buddy location schemes, in future
work we will investigate its embedding properties and ad-
ditional subcube fault tolerance properties.

Theq-dimensional subcubes inPQd can be viewed as
arising either asq-dimensional subcubes ofQd, or as a pair
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of (q � 1)-dimensional subcubes ofQd. These pairs must
be of the formx1 � � �xd and y1 � � � yd, where eachxi is
either 0, 1, or�, exactlyq � 1 of the entries are�, andyi
satisfies

yi =

8<
:

� if xi = �
0 if xi = 1
1 if xi = 0

This results in a total of
�
d+1
q

�
2d�q q-dimensional sub-

cubes.
Since PQd has manyq-dimensional subcubes, one

would expect to see an increase in subcube fault tolerance
in PQd, and a consequent improvement among those loca-
tion schemes that can use the extra edges. Unfortunately,
the buddy and gray-coded buddy systems (and their double
variants), cannot directly make use of these extra edges, so
their worst case and expected case behaviors inPQd are
the same as forQd. However, there is an indirect way to
allow many hypercube location systems (including all of
the ones studied here) to utilize the extra edges. To find
q-dimensional subcubes, first findq-dimensional subcubes
which ignore the extra dimension. Then find(q � 1)-
dimensional subcubes which ignore the extra dimension,
and see if two of them are connected via the extra dimen-
sion. Although this offers an interesting alternative, we
will consider here only the direct subcube location schemes
in PQd.

The cyclic buddy system directly adapts to the extra
dimension of the projective hypercube by just adding it
to the list of dimensions to be cycled through. It locates
(d+1)2d�q subcubes of dimensionq in PQd, where theq
dimensions used are consecutive in cyclic order. For exam-
ple, it finds all 5-dimensional subcubes inPQ7 of the form
a � � � � � b, ab � � � ��, � � � � �ab, � � � �abc[��� � �a�b�c,
� � �abc � [ � � � �a�b�c�, � � abc � � [ � � �a�b�c � �,
�abc � � � [ � �a�b�c � ��, andabc � � � � [ �a�b�c � � � �,
wherea; b; c 2 f0; 1g, and�x indicates1� x.

Let PA; PAw; PAe denote the quantities for the pro-
jective hypercube thatA;Aw; Ae represent for the standard
hypercube. From the definitions it is clear thatPCw �
Cw, PCe > Ce, PKw � Kw, andPKe > Ke. One can
show thatPCw(d; d� 1) is 2 whend is odd and 3 whend
is even. ForPCw(d; d � 2), it is 4 whend is congruent to
0 or 2 mod 3, and it is either 5 or 6 whend is congruent to
1.

Table 3 displays the results of some of our computer
simulations ofPCe, comparing it to the exact values for
the buddy scheme. The simulations were set up in the same
manner as for the standard hypercube, using 30 rounds of
1000 trials in each round. In each trial, randomly generated
faults were added toPQd until all theq-dimensional sub-
cubes located by the cyclic buddy scheme became faulty.
The average number of faults required in the 30 experi-

q
d� 1 d� 2 d� 3

6 5.1 (2.9) 12.5 (7.8) 26.5 (18.2)
8 5.5 (3.0) 14.4 (8.2) 33.6 (20.8)

10 5.8 (3.0) 15.3 (8.3) 36.9 (21.5)
12 6.1 (3.0) 16.0 (8.3) 38.7 (21.7)

d 14 6.3 (3.0) 16.5 (8.3) 40.0 (21.7)
16 6.5 (3.0) 17.0 (8.3) 41.0 (21.7)
18 6.6 (3.0) 17.4 (8.3) 42.0 (21.7)
20 6.7 (3.0) 17.7 (8.3) 42.5 (21.7)
1 1 (3.0) 1 (8.3) 1 (21.7)

Table 3: Values ofPCe(d; q) (PBe(d; q)) for the Projec-
tive Hypercube

ments is reported in Table 3. The standard deviations in
these cases were all less than 0.4 and have not been dis-
played.

As the results in Table 3 indicate, the difference in per-
formance between the cyclic buddy scheme and the buddy
scheme is even greater than that observed in the standard
hypercube. Moreover, parallel implementation of a cyclic
buddy scheme on a projective hypercube would be easy
and would incur no larger overhead than the buddy strat-
egy.

5 Multiple Cyclic Buddy Systems

As we have seen with both the buddy and gray-coded
buddy schemes, the use of an appropriately selected second
scheme of the same type can significantly improve the fault
tolerance. For example, in the orthogonal double buddy
scheme, or the double gray-coded buddy scheme, a sec-
ond subset of recognizable subcubes is selected which has
minimal overlap with the set of subcubes arising from the
standard scheme of that type.

Given the standard cyclic buddy scheme,CBS, it is
not clear how to select the permutation,�, that yields the
“best” additional cyclic buddy scheme,CBS�. That is, we
want the recognizable subcubes ofCBSandCBS� to have
minimal overlap to yield a “best” fault-tolerant set. To il-
lustrate these issues, taked = 10, let�1 denote the permu-
tation of1; 2; : : : ; 10 given by1; 3; 5; 7; 9; 2; 10; 8; 6; 4 and
let�2 be the permutation given by1; 3; 5; 7; 9; 4; 2; 10; 8; 6.
Both permutations have the property that, for anyk, 2 �
k � 8, k consecutive numbers in either ordering do not
occur ask consecutive numbers in the standard order-
ing. That is, the subcubes of dimension10 � k, where
2 � k � 8, recognized byCBSare distinct from those rec-
ognized byCBS�1 or byCBS�2 . However, the permuta-
tions are not equivalent, for�2 has the additional property
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that any two of the 5-dimensional subcubes recognized by
CBS�2 differ by at least two dimensions from those rec-
ognized byCBS, and are thus “far” apart, which increases
fault tolerance. It would be of considerable interest to for-
mulate a useful definition of “best” and to devise a con-
structive way to determine a permutation that corresponds
to the “best”CBS� . We leave this as an open problem
and turn now to the problem of using a set of cyclic buddy
systems that will collectively recognize all subcubes of di-
mension at leastq in ad-dimensional hypercube.

Let C(d; q) denote the minimum number of cyclic
buddy systems needed to recognize all subcubes ofQd of
dimensionq or more. ThenC(d; q) is the minimum num-
ber of cyclic permutations off1; 2; ::; dg such that every
sequence of distinct integers fromf1; 2; :::; dg of length
d � q appears in at least one of the cyclic permutations.
For, if �1; �2; : : : ; �k denotes such a minimal set of per-
mutations, then the multiple cyclic buddy scheme consist-
ing of thek systemsCBS�i

, 1 � i � k recognizes all
subcubes of dimensionq or greater. As an illustration, it
is straightforward to check thatC(6; 4) = 3 and that the
setf123456; 163425; 146253g is a minimum set of cyclic
permutations with the above property. Theorem 5.1 shows
thatC(d; d � 2) = bd=2c holds in general. (Due to space
limitations the proof is omitted in this preliminary version.)

Theorem 5.1 For d � q � 1,

( i) C(d; q) � C(d+ 1; q)

( ii ) C(d; d� 2) = bd=2c

2

Our proof of part(ii) of the Theorem gives a method for
constructing a minimum set of cyclic permutations. From
this, a set ofbd=2c cyclic buddy schemes can be con-
structed whose union recognizes all subcubes of dimen-
siond � 2 or greater in a hypercube of dimensiond. Fur-
thermore, as we show in [15], such a location strategy can
be implemented in parallel in�(d2) time. In [15] there
is a much more complicated algorithm that accomplishes
complete location in�(d) time, but the simplicity of the
scheme using the cyclic buddy system might be more at-
tractive to use, particularly for feasible sizes ofd.

6 Conclusion

Through our analytic results and computer simulations we
have seen how the choice of a subcube location scheme
can affect the fault tolerance of multiuser hypercube sys-
tems. As our results showed, thecyclic buddysystem
offers significant improvement over the most commonly

used scheme: the buddy system. The cyclic buddy sys-
tem proved to be significantly better, too, than suggested
schemes such as the double buddy, gray-coded buddy, and
double gray-coded buddy. We have shown in [15] that the
cyclic buddy scheme can be easily implemented in paral-
lel, with no more overhead than the buddy strategy, and
can locate a largest available subcube in�(d) time. These
results give strong support to our contention that the cyclic
buddy strategy should be the subcube location strategy of
choice.

Our simulation studies of subcube location schemes in
the projective hypercube showed that the cyclic buddy sys-
tem significantly outperforms the other schemes, for it
adapts naturally to the additional edges of this enhanced
hypercube.

Since the cyclic buddy system locates onlyd2d�q of
the possible

�
d
q

�
2d�q subcubes of dimensionq in Qd,

there is still considerable motivation to improve upon this
scheme by considering the use of multiple cyclic buddy
systems. The use of multiple schemes allows a gradual
trade-off between improvement of fault tolerance of the lo-
cation scheme over the resources allowed to implement the
scheme. We have left open the problem of constructing
optimal multiple cylic buddy systems.
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