In Proc. 4th Conf. on Hypercube Concurrent Computers and Applicatib®89), ACM, pp. 59-66.

PARALLEL ALLOCATION ALGORITHMS FOR HYPERCUBES
AND MESHES

(Preliminary Version)

Marilynn Livingstort Quentin F. Stoit
Department of Computer Science Dept. of Elec. Eng. and Comp. Sci.
Southern lllinois University University of Michigan
Edwardsville, IL 62026-1653 Ann Arbor, Ml 48109-2122
Abstract This capability is needed in multiuser environments such as

those provided by the Intel or NCUBE series of hypercubes,

We consider the problem of subsystem allocation in the and also in single user systems that allow multiple subtask-
mesh, torus, and hypercube multicomputers. Although the ing. In addition, subsystem allocation can be used to increase
usual practice is to use a serial algorithm on the host proces- fault tolerance by allocating only subsystems with nonfaulty
sor to do the allocation, we show how the free and non-faulty processors. Unfortunately, the existence of a large number
processors can be used to perform the allocation in parallel. of subsystems in a network results in an allocation problem
The algorithms we provide are dynamic, require very little that is computationally intensive, if one tries to allocate all
storage, and work correctly even in the presence of faults. possible subsystems. Thus, in practice, only a small fraction

For the 2-dimensional mesh and torus witfprocessors, of the possible subsystems are checked for availability.
we give an optimab (y/n) time algorithm which identifies
all rectangular subsystems that are not busy and not faulty.
For thed-dimensional mesh and torus of size= m x m x
--- x m, we show how to find all submeshes of dimensions
kExkx---xkforallk <m,inoptimal©(dn'/%) time.

Since the number of subcubes in a hypercube of dimension
d is 3%, the current practice is to allocate only a fraction of
the possible subcubes, which degrades the fault tolerance and
dynamic allocation ability of the system. We consider two
approaches to this problem. In one approach, we limit the di-
mensions of the subcubes to be allocated, and show, for fixed
¢, how to determine all non-faulty and non-busy subcubes
of dimensiond — ¢ in a hypercube of dimensiod in time
©(d). The second approach involves allocating only a subset
of the possible subcubes in all dimensions. We give optimal
parallel algorithms for implementing several previously sug-
gested allocation schemes of this type, including single and
multiple versions of buddy, Gray-coded-buddy, dnrdube
buddy systems. The parallel versions of these are signifi-
cantly faster than the known serial allocation algorithms, and
they provide a significant improvement in the fault tolerance
of the system. We also introduce a new allocation system, the
cyclical buddy system, which has a simple, efficient parallel
implementation but which does not naturally arise as a serial
allocation system.

One consequence of using a scheme that allocates only a
part of the possible subsystems is that a request for a par-
ticular size may be refused even when one is available. To
see how this affects the fault tolerance of the system, con-
sider the performance of the buddy system in allocating
dimensional subcubes indadimensional hypercube. This is
the system currently used on the NCUBE hypercubes, and it
is discussed in more detail in Section 3. While there is a to-
tal of (;’)Qd—q subcubes of dimensiay the standard buddy
system allocates only thogedimensional subcubes deter-
mined by fixing the high-ordef — ¢ address bits. There are
only 297 of these and each processor is in exactly one such
subcube. Now, witlm = 2¢ andm = 29, let B,,(n, m) de-
note the least number of faulty (or busy) processors which
make all the buddy system subcubes consisting @iroces-
sors unavailable for allocation in a hypercubenoproces-
sors, and lef<,,(n, m) denote the analogous number for the
case of complete allocation. That &, (n,m) is the least
number of faulty processors which cause all subcubes of
processors to be unavailable. Takilg= 20 andqg = 18
we see that the buddy system allocates only 4 of the possible
760 subcubes of dimension 18. Also, it is straightforward to
check thatB,,(2%°,2'%) = 4 and K,,(2%°,2'%) = 8. Ex-
tending this example, we find thak, (2¢,29-2) = 4 while
K, (2¢,2¢72) = logd+0(loglog d) ([BeSi, GHLS, KISp]).
Thus, the buddy system becomes progressively less fault tol-

i erant asd increases. Further, if we consider the expected
1 Introduction case behavior, whei®, (n, m) andK . (n, m) denote the cor-

In MIMD parallel computers containing large numbers of responding numbers for the situation in which the faulty (or

processors it is desirable to be able to allocate subsystems. PUsy) processors are distributed independently and uniformly
throughout the hypercube, it is shown in [LiSt] through sim-

*Partially supported by National Science Foundation grant CCR- ylation thatBe(QZO, 218) ~ 8.1 and Ke(220, 218) ~ 24.6.
8808839 . , . Thus, in the worst case, we suffer a 50% decrease and, in the

tPartially supported by National Science Foundation grant DCR- op i
8507851 and an Incentives for Excellence Award from Digital Equipment €XPected case, a decrease of 67% in the fault-tolerant alloca-

Corporation tion ability of the system.

To increase the number of subsystems which can be al-
located, without increasing the time required to do the allo-
cation, we abandon the current practice of having only the
host computer decide the allocation, and instead utilize the
parallel computer. In this paper, we give optimal algorithms
to allocate subsystems in parallel for the hypercube, mesh,
and torus. We use only free and nonfaulty processors to de-
termine the available subsystems, thereby avoiding any in-
terference with currently running tasks and assuring that the
process works correctly even in the presence of faults. More-
over, apart from the transmission of final availability infor-
mation to the host, only neighbor-to-neighbor communica-
tion among the processors is used.

Our allocation algorithms actually find every available

subsystem that is allowed under the given allocation scheme.

This information allows choices to be exercised to minimize
fragmention of the whole system. For example, if a sub-
system of sizek were requested, a desirable choice among
several available ones would be one that is not contained in
any available subsystem of size greater thaA further ad-
vantage of our parallel allocation algorithms is that they are
dynamic and require very little storage. By determining lo-
cally which processors are nonfaulty and free at the time of
the request, there is no need to maintain this information cen-
trally. These allocation algorithms should be of considerable
practical interest, particularly in large systems, for not only
are they efficient, most of them are relatively simple to im-
plement, and a significant improvement in fault tolerance is
attained by their use.

In Section 2 we consider the allocation problem for dhe
dimensional mesh and torus of size= m? and dimensions
m x m x --- x m. We find all submeshes of dimensions
kxkx---xk, foralk < m,in optimal®(dn'/?) time.
A simple modification of this algorithm determines, for a
givenk, the available subsystems of dimensiénsk - - - x k
in time ©(dk). Furthermore, whe@ = 2, our algorithm
finds, for each non-faulty and non-busy processor, the size
of the largest non-faulty and non-busy rectangular submesh
for which the given processor appears in the upper left-hand
corner.

We address the problem of allocatigglimensional sub-

cally require extensive storage and still have poor worst-case
times. At the least, any serial algorithm which must check
the current fault status of processors must have a worst-case
time of2(24). Here we give a parallel algorithm which finds,
for fixed ¢, all subcubes of dimensiah— ¢ in ©(d) time.

Complete allocation in hypercubes may not be the method
of choice whent, ¢, andd — ¢ are all large, or when alloca-
tion of all sizes is necessary. For such cases, we recommend
the use of thé&-cube buddy systefirst introduced in [LiSt].

For fixedk, this system allocategdimensional subcubes in
which the lastl — k bits are arbitrary and the firdt— ¢ + &

bits are the nodes offasubcube of a — ¢ + k-dimensional
cube. In Section 3.5 we give @(d) algorithm for the al-
location of all subcubes allowed by this system. With al-
most no increase in allocation time, our implementation of
the k-cube buddy system offers a significant improvement
in fault tolerance over the buddy and gray-coded buddy sys-
tems currently in use. To contrast the behavior ofifmibe
buddy system with the buddy system, for example, let us take
k=2,d=20,q =18, and letQ B,,(n,m) andQ B¢ (n,m)
denote the quantities analogousBg,(n, m) and Be (n, m)

for the 2-cube buddy system. AlthoughB,, (22°,2!%) = 5
which is a small improvement ove3,, (22°, 2'8), we have
QB.(2?°,21%) ~ 12.8 [LiSt], which represents a 50%
improvement over the expected case behavior of the single
buddy system.

Throughoutthis paper we will assume that each processing
element (pe) in each of the networks under consideration has
a unique identification number (id), and that each pe knows
its own id. Further, we assume each pe has a fixed number
of registers, each of siz@(logn), and can perform standard
arithmetic and Boolean operations on the contents of these
registers in unittime. In addition, we assume that each pe can
send (receive) a word of data to (from) one of its neighbors
in unit time, and that it can determine which of its neighbors,
if any, are faulty. Finally, we assume that there is some host
or controller which sends a message to all processors initial-
izing the process, and that each pe can communicate back to
the host.

A processing element will be termedailableif it is nei-
ther busy nor faulty. Our algorithms are performed by all

cubes in ad-dimensional hypercube in Section 3 and show available processors, and are designed so that no messages
how to implement previously suggested schemes such as are sent to, nor expected from, unavailable processors. While
those based on the buddy system, the gray-coded buddy the algorithm descriptions appear synchronous, they are to
system, multiple-buddy and multiple-gray-coded buddy sys- be run asynchronously, with each processor waiting for the
tems, all in time©(d). We also introduce a new allocation appropriate messages from its nonfaulty neighbors. Timing
scheme, called the cyclical buddy system, which arises nat- will be in terms of the slowest available processor. We con-

urally from our parallel implementation of the buddy sys-
tem, and show how to implement this system in optid&f)
time, as well.

The problem of implementing the complete allocation

scheme for hypercubes is considered in Section 3.4. Since

there are3? subcubes in a hypercube of dimensifyrdeter-
mining all fault-free subcubes of all dimensions at the time
of the request is impractical. Allocating only the subcubes
of dimensiond — ¢, for fixed ¢, is still impractical if we use

a naive serial algorithm such as one which checks each of
the2?-7 pe’sin all (;‘)2‘1 subcubes, for this requires at least

@((2)2‘1) time. Much more efficient serial algorithms are
possible which require significantly less time, but they typi-

sider only the time to locate subsystems, not the time used by
the host to pick among them since that is dependent on the
process used to make the selection.

2 Mesh and Torus Allocation

Before describing the allocation algorithms, we first intro-
duce some notation for the mesh and torus.
Theone-dimensional mesbr linear array, of size con-
sists ofn processing elements arranged in a line with adja-
cent nodes connected. We denote this arrayMby(n) and
useP; to denote théth pe,1 < i < n. Thetwo-dimensional

Algorithm 2.1 (1-Dimensional Mesh or Torus)
Each available pe’; has integer variables; anda, and ex-
ecutes the following algorithm.

1s;:=1.

2 Fora:=2to ndo

3 If P;,_; available then send; to P;_;.
4 If Py, available then

5 Receives;; .

6 S; 1= Si+1 + L.

meshof sizen = m?, denotedM,(n), consists of. pe’s ar-
ranged in ann x m two-dimensional grid. For <i,j < m,

the pe in rowi and columny will be denoted byP;; and is
connected tdP;+1,; andP; j11, when they exist. In general,
a mesh of dimensiod and sizen = m?, denotedM 4(n), is
made up of: pe's arranged in am x - - - x m grid of dimen-
siond. Each pe has an id which isdatuple representing its
coordinates in this grid. Two pe’s are connected if and only
if their coordinates differ by one in exactly one position, that
is, forl < iy,4s,...,44 < m, processing elemem;, ;, i,

is connected td;, j, .. ;, provided>(_ (i, — j;)?> = 1.

The d-dimensionaltorus of sizen = m?, denoted by
Ta(n), is the d-dimensional meshM(n) enhanced with
wrap-aroundconnections. Two pe’s will have a wrap-around
connection if their id’s are the same in all but one compo-

Algorithm 2.2 (2-Dimensional Mesh or Torus)
Each available peP; ; has integer variables; ;,t; ;, u; ;
anda, and executes the following algorithm.

1 Computes; ; using the 1-dimensional algorithm, as if each

column were a 1-dimensional computer.
2 ;. j = Si,j; ti,j = 1,

3 Fora:=2to /ndo

4 If P; ;_, available then send,; ; to P; j_;.
5 If P; j+1 available then

6 Receivay; ji1;

7 w; ;= min(u; j, Wi j41)

8 elseu; ; :=0;

9

t; ;= max(t; j, min(a®,u; ;)).

since the communication diameter.®t; (n) isn — 1 and of
T1(n) is [n/2]. Note that if we are interested only in deter-
mining if there are any subsystems of sizethen we need
only have the for-loop run from 2 th, reducing the time to
O(k).

2.2 Dimension Two

Letn andt be squares of integers. Bysabsystem of sizeof

nent and in that one component one pe’s id has value 1 and M, (n) or 73 (n) we will mean a square subgrid isomorphic

the other has the value. For example7; (n) is a ring and
T>(n) is a cylinder open on both ends.

In all of our algorithms, the components of a pe’s id in the
torus are to be interpreted moduig while, in the mesh, any

to M. (t). The processor id’s of a subsystem of siZerm a
set of the form{(a +i,b+j) : 0 < i,j < /t} for somea, b
in the rangg1..,/n]. There are\/n — v/t + 1), subsystems
of sizet in Mz(n), andn? systems of size in 7(n), for

reference to a nonexistent pe is treated as a reference to a1 < ¢+ < n. A processorP, ;, will be called aleaderof a

nonavailable pe.

2.1 Dimension One

A subsysterof sizet of M (n) or 71 (n) is a string oft pe’s

of the form P;, P;y1,...,Pirt—1. Thus, there is a total of
n—t+ 1 subsystems of sizein M; (n) andn subsystems of
sizet in T;(n) for 1 <t < n—1. We will consider processor
P; to be theleaderof a subsystem of size for somet < n,
provided that each of;, P;y1,..., Pi1:—1 is available but
P, is not. We sayP; is the leader of the subsystem of size
n in case all pe’s are available.

The allocation algorithm for the one-dimensional mesh
and torus, Algorithm 2.1, results in each available pe deter-
mining the size of the subsystem for which it is the leader.
This information can then be used by a variety of algorithms

subsystem of sizg for somet < n, provided (1) all proces-
sors with id’s in the sef(a +4,b + j) : 0 < i,j < \/t} are
available but (2) not all processors in the §6t +i,b+ j) :
0<i,5j< \/Z} are available. Process#t ; is considered
the leader of the system of sizdf all the pe’s are available.
Algorithm 2.2 proceeds by first finding, for each pe, the
largest 1-dimensional subsystem along the first coordinate
for which that pe is a leader. We then use the fact that a
processor is a leader of a system of size at lepsbvided it
and each of thé— 1 processors following it along the second
dimension are leaders of 1-dimensional systems ofisare
greater. At the end of each iteration of the for-loop, if proces-
sorP; ; is the leader of a subsystem of siZeor greater, then
t;; equalsa?, otherwise it equals the size of the subsystem
for which P; ; is the leader.
It is straightforward to show that Algorithm 2.2 has

to choose which of the available subsystems should be used ©(,/n) time and thus is optimal.

in satisfying the request.

At the end of each iteration of the for-loop, if
P;, ..., P, 1 are available ther; equalsa, otherwise it
equals the size of the subsystem for whighis the leader.
Algorithm 2.1 has worst case time complexéyfn), and is
therefore asymptotically optimal for both the mesh and torus

Notice that at the end of each iteration of the for-loap;
is the width of the largest available rectangle with upper left
corner atP; ; and height.. The number of processors in this
rectangle iss; ja, so by changing line 9 to

tij = max(tj, uqj*a),

one can find the largest available rectangle wily as its
leader in timed(y/n) as well.

2.3 Higher Dimensions

For the case of thd-dimensional mesh and torus, subsys-
tems of size and leaders of subsystems of sizare defined
analogously to the case= 2. The method of computation
used in Algorithm 2.2 can be used as a model for higher di-
mensions, building up information dimension by dimension.
In this manner, the leaders and sizes of the subsystems of
Mg(n) and T4(n) can be found in@(dn'/?) time. If one

is only interested in determining if there are any subsystems
of sizek, then the total time can be reducedd¢dk'/?) by
changing all for-loops to run from 2 t.

3 Hypercube Allocation

Let 9(29) denote ad-dimensional hypercube with! pe’s.
Each pe has a unique bina#ytuple as its id number, and
two pe’s are connected if and only if their id numbers differ
in precisely one position. Now, suppoSes a set ofg dis-
tinct integers from the intervdl..d] and (b, ba, ..., bq) is

a fixed binaryd-tuple. The pe’s with id numbers in the set
{(e1,¢2,...,¢q) : ci=Db;fori ¢ 5,1 <i < d}formag-
dimensional subcube which will be denoted &y . .. aq,
wherea; = = fori € S anda; = b; otherwise. Ag-
dimensional subcube will be calledgasubcube There are

a total of (;’)Qd—q g-subcubes inQ(2¢) and each pe is in
exactly (;l) g-subcubes. Moreover, since each subcube is
uniquely represented as a string of lendtbver the alphabet
{0,1, %}, we see tha@(2?) has3? subcubes.

Thus, for larged, allocation of all possible subcubes of
Q(2%) becomes computationally intensive, particularly in the
presence of faults and when both dynamic allocation and de-
allocation is allowed. In this section we will consider two
approaches to alleviate this problem. The first approach, dis-
cussed in Sections 3.1, 3.2, 3.3, and 3.5, is to allocate only
a subset of the possible subcubes in all the dimensions. We
provide ©(d) time parallel algorithms to perform the allo-
cation for each of the systems under consideration. In the
second approach we consider allocation of all subcubes of
dimensiond — g, for fixed ¢, and give & (d) algorithm here
as well.

Consistent with our presentation of algorithms in Sec-
tion 2, each step is to be carried out in parallel by each avail-
able peP,, wherea denotes an arbitrary binadytuple. The
value of theith component of will be denoted byx(i) and
the neighbor ofP, along dimensiork will be represented by
P, . In addition, processaP, will be called theleaderof
the subcube as . . . ag provideda(i) = a; for eachi such
thata; € {0,1} anda(i) = 0 otherwise.

3.1 Buddy Systems

For a given dimension, the standardingle buddy systeal-
locates only;-subcubes i@ (27) of the formaj as . . . ag—q
... %, that is, the high-orde#l — ¢ bits of the id numbers

Algorithm 3.1 (Buddy System)
m is a given permutation of, 2,...,d. Each availableP,
has integer variables,, z,, j,andk.

1 5,:=0; 2,:=0;.
2 Ifa=(0,0,...,0) thenz, :=d

3 else whilen(m(zq + 1)) = 0d0z, := 24 + 1.

4 Forj:=1toz,do

5 ki=a(d+1-j).

6 If P, available then

7 Receives, .

8 If (sary =Jj —lands, = j — 1) thens, :=j.
9 If (2o < dandP, (4, available) then

10 Sends, t0 Py r(d—z,)-

are fixed. More generally, each permutatiorof the inte-
gersl, 2, ...,d givesrise to a single buddy systdsy which
allocates onlyg-subcubes of the fornajas ...aqy where,
ar = *ford —q+1 < i < d. The standard buddy sys-
tem corresponds to the identity permutation. Notice that, for
each permutation, B, allocates onl\2?~7 of the available
()29 g-subcubes.

The buddy system is attractive since it is easy to imple-
ment. Moreover, if only static allocation is considered and
the presence of faults is ignored, the buddy system is an op-
timal allocation strategy in the sense that it fails to grant a
request only if there is an insufficient number of available
nodes to satisfy the request. In dynamic allocation and de-
allocation, however, it is no longer optimal. Studies of the
behavior of subcube allocation in this dynamic situation have
been made in [ChSh, DuHa] for the purpose of evaluating
various policies governing the selection of which subcube to
allocate when there are several available subcubes.

One of the problems in using a serial algorithm to imple-
ment any allocation system is in maintaining the availability
information when faults occur. This is no longer a problem
in our parallel implementation. Our algorithm for the single
buddy system proceeds by recursive halving, determining the
sizes and leaders of all of the available subcubes allowed by
the buddy system. At the end of line 3 of Algorithm 3z,
is the dimension of the largest subcube for whi¢hwould
be the leader in a completely available hypercube using the
buddy allocation system. At the end of the algorithiy,is
the dimension of the largest available subcube for wiiigh
is the leader, among those subcubes allocable under the given
buddy system.

Variations of the single buddy system have been suggested
which allocate the union of several single buddy systems.
For example, an orthogonabuble buddy systeailocates;-
subcubes iQ(29) of the formayaz . ..as—, * ... x together
with the formx ... % by 1bg42 ... bg. Thus, forg < n, the
orthogonal buddy system allocates twice the number of sub-

Algorithm 3.2 (Gray-Coded Buddy System)
m is a given permutation of, 2,...,d. Each availableP,
has integer variables,, j, k, and an integer arrayD[1..d].

1 s4:=0.
2 Forj:=1toddo
k:=n(d+1-j).
If P, available then
Sends,, to P, 1.
Receives, .
D(d+1—j):= sqp.
If s, =j —1ands, =7 — 1thens, = j.

elseD(d+1—j):=-1.

cubes as does the single buddy system. To implement this
double buddy system in parallel, we run Algorithm 3.1 twice,
once for the choice of permutatian which corresponds to
the first single buddy system, followed by a run with per-
mutationm, which corresponds to the second. This gives us
an algorithm with twice the overhead to implement a sys-
tem which allocates twice the number of subcubes. Extend-
ing these ideas to multiple buddy systems is straightforward.
Given any multiple buddy system whose allocable subcubes
are the union of a fixed number, say, of single buddy sys-
tems,m runs of Algorithm 3.1 would perform the allocation

in ©(md) time. However, while the time increases linearly
with m, the number of new allocablg-subcubes does not
increase as rapidly because some ofgtseibcubes are allo-
cated by more than one buddy system.

3.2 Gray-Coded Buddy Systems

Let g4 denote the binary reflected Gray code map from
{0,...,2971} to d-bit strings. The standarsingle Gray-
coded buddy systerallocates g-subcubes that arise as
pairs of ¢ — 1-subcubes of the fornfa; ...ag_g+1 * ... %,

by ... bd—q+1 * ... *}, where g;}q+1(a1 - ad_q+1) and
g(;qurl(bl ...bg—g11) are consecutive mo@—4*1. As in
the case of the single buddy system, each permutatiofi
1,2,...,dgivesrise to a gray-coded buddy systémn Each

Algorithm 3.3 (Cyclical Buddy System)
m is a given permutation of, 2,...,d. Each availableP,
has integer variables,, t4, 24, j, andk.

1s,:=0;ty:=0; 2o :=0.
2 Forj:=0to(2d —3)do

3 k= n(d — (j mod d)).

4 If P, available then

5 Sends, to P, ;; Receives, .

6 Sq =14+ min(sq, Sak)-

7 If t, < s, thent, := s,; 2o == k.
8 elses, := 0.

ble subcube of dimensios, + 1 if and only if there is a
j such thatD(j) > so andgy', (ax()--.ar(a—s.)) and
9a s (@r1y - an(io1) (1 = Gr(j))Ar(j41) - - - On(d—s,)) AFE
consecutive mo@?—»- .

The double Gray-coded buddy systerirst suggested
in [ChSh], allocates;-subcubes by using the Gray-coded
buddy system corresponding to the identity permutation, plus
the Gray-coded buddy system corresponding to the permu-
tation which reverses the order of the bits. This allocation
scheme could be implemented@{d) time by running Al-
gorithm 3.2 twice, analogous to that done for the double
buddy system. This analogy extends to schemes consisting
of a larger number of gray-coded buddy systems, producing
a©(md) time algorithm form systems.

3.3 Cyclical Buddy Systems

While developing the allocation algorithms in this paper,
we discovered a simple, efficient parallel allocation system
which does not seem to arise naturally as a serial allocation
system. This system, which we caltgclical buddy system
allocatesy-subcubes of the form, . . . a4, Wherea; through
ai+q—1 arex for somei, with the subscripts calculated mod-
ulo d. The cyclical buddy system allocates exacfBf—¢
g-subcubes, giving complete allocation fpe= d — 1. This
system always allocates at least as magisgibcubes as the
double buddy and Gray-coded buddy systems, and allocates

G allocates roughly the same number of subcubes as does strictly more than these systems when 2.

the double buddy system. With a few modifications, Algo-
rithm 3.1 can be used to impleme®t in ©(d) time, as given
in Algorithm 3.2.

After the completion of Algorithm 3.2, the largest sub-
cubes which are both available and allocable under the gray-
coded buddy systerfy,. are identified as follows. For each
availableP,, wherea = (a1,as,-..,aq), the value ofs,
shows that that a subcube of dimensignis allocable un-

der the standard buddy system, which is a subset of the sub-

cubes allocable under the Gray-coded buddy systdm.
cannot be in a gray-coded buddy allocable subcube of di-
mensions, + 2 or greater, and it is in a gray-code alloca-

At the end of each iteration of the for-loop in Algo-
rithm 3.3, s, contains the largest numbersuch that they-
dimensional subcube a- . .. a4 IS available, where,; = *
fori =a(d—j),n(d—j+1),...,7(d—j+q—-1),and
a; = a(i) otherwise. Foy > d these indices are interpreted
in a modular fashion. (Fai = 1 the upper limit of the for-
loop should be increased to 0 to work properly. A natural
upper limit on the for-loop i2d — 1, resulting in all dimen-
sions being processed twice, but a little reflection shows that
going through the last two dimensions a second time cannot
produce a larger subcube than has been found earlier.) The
variablet,, records the largest value ef,, andz, records

Algorithm 3.4 (Complete Allocation) fori < 2k, and

1 For all subsetsS of {1,...,d} of sizek, Sors1 = prL(2k+1) U p3l(2k+1) U

2 Letw be any permutation ofl, ..., d} such {Cr +2k*xDy+1,...,d}.
that{=(1),...,n(k)} = S.
Notice that each set contains exactlt elements in
3 Perform Algorithm 3.1 to find alf — & cubes {1,...,Cy}, and each contains at least, elements in
with S as their defining positions. {Cr+1,...,d}, with Sy;.; containing more iRk + 1 does
not divided — Cy.
Each setS; is used to find all availabld — k-subcubes
with defining positions in the complement §f. For, given

the dimension along which it occurred. At the end of the anyd — k-subcube, there is somiesuch that thé: defining
algorithm each available processor stores the largest dimen- POSitions of the subcube must be in the complemert;of
sion of an available cyclical buddy subcube containing that This is because there aé& + 1 sets.S;, and any defining
processor, along with the starting dimension of the subcube. POsition is in only 2 of theS;, if 1 < j < Cj, and in only

The time of Algorithm 3.3 is clearl®(d). Just as forthe ~ OneS;, if i < j < d. Therefore everyi — k-subcube will
buddy and Gray-coded buddy systems, one can extend to a be found.

multiple system by using: different cyclical buddy systems, _Foreach;, the availablel — k-subcubes with defining po-
utilizing m permutations, ir®(md) time. sitions in the complement &f; will be found by recursive

halving to a subcub@; of dimensiond — |S;|, and then re-
. cursively solving the problem iff;. The subcubé€; con-
3.4 Complete Allocation sists of all processors which have 0 as th@lr coordinate

As we have seen, there af$)2¢~ subcubes of dimension forj € Sin{Cx +1,...,d},andforj € S;N{1,...,Cy},

¢ in Q(2%). This number reaches its maximum value when have 0ifpy(j) = ¢, and 1 ifps(j) = <. Notice that there is
¢ = d/3), giving a value which exceeds/d for d > 2. no ove_rlap in subcu_bes corresponding t_o t\/\(o_dlffe_rent sub-
Thus we cannot expect to find an algorithm to identify all ~SES: Since forany given subsétsands;, i < j, if m is the

availableg-subcubes with a running time polynomialdnif pumber of the paifi, j), then in coordinaten all Processors
we have at mos2? processors. On the other hand, if we in the subcubg; corresponding td; must have a 0, while

restrict the dimensions to be allocated, then it is possible, as in the subcubdy;, corresponding i, the processors must

we shall see, to have a polynomial time algorithm provided haﬁ:rt::rlj:zsltecﬁglr\?ilnnai.create the subcubes correspond-
we use the hypercube. Y P

We consider first a parallel algorithm based on the cor- mlg to g.]es" IS perf_gmﬁdlm twocstages. I?rst, tgef he;lr\]nng
responding simple serial algorithm for allocating— - along dimensions irf; N {1,..., Cj } is performed for the

subcubes iQ(2%). The serial algorithm proceeds by check- f‘ onz attha t'|nf1e. TT.'S takesdezatcﬂy]k ;‘gtal steris,_ ar:jd.at
ing the availability of each of the?—* pe’s in each of the IS €nd, the Information needed 1o crediels contained in

Dok 7 1. . . A\ od\ +) a larger cube, which we denote fy*. Observe that these
g()]gr?thri. Iﬁ Z%szu_be;ffsvuvgghbg“ﬁ;uE?(p((’;l?ngnt;mﬁhfaéh Iarg_er cubes have the prope_rty tha_t th(_ey are pairwise_disjoint.
are the same in all processors will be called dieéining po- (This can be seen by the discussion in the preceeding para-

sitions For each choice o defining positions there a¥ graph.). Therefore once the initial recursive_hglving "P di-
d—k-subcubes. Our first algorithm sequentially goes through rr:ensut)r?s{l, -t.) ’fﬁf} ('js completega, the Lemdammg haIV|r|1g
all possible defining positions, using the buddy system al- along the rest of the dimensions X can be done In paral-
gorithm to find all the available subcubes with the selected lel. The re_sults of this second stage Of. recursive halving wil
defining positions. These steps are displayed formally as Al- :)ekstolred mir:he fuI:JCIUiL:]é'S TE € frtezhcurszej%?ﬁ n cantnow
gorithm 3.4. Since there ar¢) choices for defining posi- axe piace, in paratie’, In each ot the subc ese steps

tions, and Algorithm 3.1 take®(d) time for each choice of ar?rg:aswg{sidcgs”enﬁlrmnofi%ic;ng:;)?itﬁ}n will correspond to
defining positions, the total time @((’f)d)' those subsets having the largest complement. The size of the

Our second algorithm, although more difficult to imple- X L
ment than Algorithm 3.4, finds all availabde— k-subcubes largest complement ié — (2k + Dj;), which is fd?.’“/(?’“ *
1)] — k. The worst-case number of communication steps

in ©(d) time, for fixedk. LetCy, = (**1). If d < C, then

use Algorithm 3.4. Otherwise, enumerate all pairs (without therefore obeys a recurrence of the form
replacement) of the integets. . ., (2k + 1) in lexicographic d—Cy A2k
order. Letp, (i) denote the smallest element of t& pair, Ty (d) = 2Ck + {% - 1J + Tir({% n 1-‘ — k)

and p» (i) denote the largest element, for < ¢ < Cj.

For example, fok = 1 the pairs in order are (1,2), (1,3), which is ©(d) for any fixedk. Further, for any fixedk,
and (2,3), ang;(2) = 1 andp,(2) = 3. Let Dy denote Ty(d)/d ~ 1.

L(d — Cr)/(2k + 1)]. We define subsets; of the coordi- Although Algorithm 3.5 is fast, there are circumstances
nates{1,...,d},forl1 <i <2k +1, by when allocation of all subcubes of dimensidn &, for fixed
i i k, or, say bounded, may not be the system of choice. In
Si = py (1) Upy (i) U such cases, it may be preferable to allocate subcubes of all
{Cr +(i—=1)*Dp+1,...,Cr +ix Dy} dimensions but restrict the type of subcube such as is done

Algorithm 3.5 (Complete d — k Allocation)
This algorithm determines all — k-dimensional subcubes of
a d-dimensional hypercube.

1 If d < Cj then use Algorithm 3.4
2 else Fori :=1t02k + 1do

3 Form 7;* by recursive halving for each
coordinatej € S; N{1,...,Ci}.

4 In parallel within each subcub€*,

5 Form 7; by recursive halving in each
coordinatej € S; N {Cr +1,...,d}.

6 Recursively call this algorithm to find all

d — k — |S;|-subcubes ify;.

in the buddy or gray-coded systems. We must then contend
with the trade-off between the number of allocable subcubes
in a given allocation scheme and the time required to do the
allocation. In the next subsection, we consider a generaliza-
tion of the buddy and Gray-coded buddy systems that offers
significant improvement over the schemes described in sub-
sections 3.1 and 3.2.

3.5 k-Cube Buddy Systems

We describe here a family of allocation schemes which we
first introduced in [LiSt]. Lett > 1 and consider an alloca-
tion scheme foQ(2¢) that will allocateg-subcubes in which
the lasty — k bits are arbitrary and the firdt— ¢ + & bits form
the nodes of a subcube of dimensibin Q(27-9+F). We
call this system the standard singleeube buddy systenin
general, ifr denotes a permutation @f2,...,d, andk is a
positive integer, the® By, . denotes the single-cube buddy
system that allocatessubcubes in which bits(d — g+ k +
1),...,w(d) are arbitrary and bitg(1),...,7(d — q + k)
form ak- subcube inQ(2¢-9+*%). We see thaQ) By . allo-
cates(?~1¥)24-4 g-subcubes inQ(2%). Note thatQ By .
is the single buddy system)) B; . extends the single Gray-
coded buddy system, arf@B, . is the complete allocation
system.

To implement thek-cube buddy system in parallel, sup-
poser is a given permutation of,2,...,d. Sequentially
perform recursive halving along dimensian@l), =(d — 1),

..., m(d—q+k+1). Foranavailable p&, with a(7(j)) =0
ford—q+k+1 < j <d,ifthe resultings, is ¢ — k thenP,
represents a completely availalgle- £-subcube that might
be combined with others to form an allocable ¢-subcube,
and otherwise it represents an unavailable subcube.

Now it merely remains to find alk-subcubes among the
pe’'sP, with a(j) =0ford — ¢+ k+ 1 < j < dwhichrep-
resent available — k-subcubes. If Algorithm 3.4 is used, we
obtain all availablg-subcubes which are allocable @\5;;
in ©((“~7**)k) time. By a fairly straightforward procedure,
one can modify the approach of Algorithm 3.4 to move from
one choice of defining bits to another in a manner than allows
partial results to be reused. By incorporating this technique,

Algorithm 3.6 (k-Cube Buddy System)
Assumer is a given permutation of,2,...,d, and each
available P, has an integer variable,,.

1 s,:=0.
2 Fort:=ddowntod — g+ k+1
3 Perform recursive halving along dimensiafy).

4 Find all k-subcubes in the remainingj— g + k-subcube,
where ifs, < q¢—kthenP, is treated as being unavail-
able.

one could reduce the time ®((*¢"*)k/2*). A more sig-
nificant time reduction can be obtained by not solely reducing
to those pe’'d, with a(j) =0ford —g+k+1<j <d.

If instead all available pe’s are used, in a manner similar to
that used in Algorithm 3.5, one can reduce the tim@&tad)

for any fixedk andg. Due to space limitations we omit the
details.

Since thek-cube buddy system can be implemented effi-
ciently in parallel, we see that it provides an attractive alter-
native to the buddy systems. As we noted earlier, even for
k = 2, we find a 50% improvement in its expected case be-
havior over that of the single buddy system.

Of course, multiplé:-cube buddy systems can also be em-
ployed, and allocation can be performed using multiple runs
of Algorithm 3.6.

4 Conclusion

We have considered the problem of allocating subsystems
in MIMD parallel computers, a problem which becomes in-
creasingly important and as the number of processors in the
system grows.

Using only the non-busy and non-faulty pe’s in the par-
allel computer to do the allocation, we have given algo-
rithms which determine the available subsystems fordthe
dimensional mesh and torus and for ihelimensional hy-
percube.

We have given a simpl&(/n) time algorithm to deter-
mine all rectangular subsystems in the two-dimensional mesh
and torus with dimensiong’n x /n. In addition, we have
given an algorithm which determines, for dll all subsys-
tems of the formk x k& x --- x k in ad-dimensional mesh
and torus of dimensions. x m X --- x m in optimal time
O(dm).

To deal with subsystem allocation in hypercubes, we con-
sidered two approaches: one approach is to allocate only a
subset of the possible subcubes in each dimension, the other
approach is to limit the dimensions of the subcubes to be al-
located. Using the first approach, we considered several allo-
cation schemes including the buddy system, the gray-coded
buddy system, the cyclical buddy system, and kheube
buddy system, and provided optimal parallel algorithms for
these. We found that with only small time and memory re-
quirements there are several options available to increase the

number of allocable subcubes, thereby significantly improv-
ing the fault tolerance of the system. For the second approach
to the problem, we gave a parallel algorithm which finds, for
fixed k, all d — k dimensional subcubes in tin@(d), which
is optimal. Depending on the specific requirements of the
users of large systems, it may be advantageous to use some
combination of complete allocation and the partial allocation
schemes. Simulation studies are needed to evaluate the effec-
tiveness of such a scheme in a given environment, however.
There is another approach to subsystem allocation which
attempts to reconfigure or reroute to avoid a faulty node.
For example, suppose we wish to allocate a subcube of
dimensiond — 1 in a d-dimensional hypercube and sup-
pose all nodes of) x ---x are available except the node
a = (0,1,1,...,1) is faulty. If a nearby node, such as
8 =1(0,0,1,...,1), is available, we could allocate the “re-
configured” subcube of dimensiah— 1 in which « is re-
placed by3. Since any message sentidrom a neighbor of
nodea now must travel twice as far, we say this cube tias
lation 2. Thus, our allocation problem could be extended to
the allocation of subsystems with some limited dilation. This
situation was investigated in [Hals]. Under the assumption
that faults are distributed uniformly and randomly with prob-
ability p < 0.5 in a hypercube of dimensiad it is shown
that, with high probability, it is possible to assignia- 1-
dimensional subcube with dilation at m@stFurther studies
need to be done and algorithms for allocation need to be de-
veloped in which dilation of some bounded size is allowed.

References

[BeSi] B. Becker and H. Simon, “How robust is the
cube?”,Proc. 27th IEEE Symp. on Foundations of
Comp. Sci(1986), 283-291.

[ChSh] M.-S. Chen and K. Shin, “Processor allocation in
ann-cube multiprocessor using gray code€EE
Trans. Computers C-3@987), 1396-1407.

[DuHa] S. Dutt and J. P. Hayes, “On allocating subcubes
in a hypercube multiprocessorProc. Third Con-
ference on Hypercube Computers and Applications
(1988), 801-810.

[GHLS] N. Graham, F. Harary, M. Livingston, and Q.F.
Stout, “Subcube fault-tolerence in hypercubes”,
Univ. Michigan Comp. Res. Lab. Tech. Rept. CRL-
TR-12-87 (1987).

[Hals] J. Hastad, T. Leighton, and M. Newman, “Recon-
figuring a hypercube in the presence of faults”,
Proc. 19th ACM Symp. Theory of Com@i987),
274-284.

[KISp] D. Kleitman and J. Spencer, “Families di-
independent sets"Discrete Math6 (1973), 255-
262.

[LiSt] M. Livingston and Q.F. Stout, “Fault tolerance of
allocation schemes in massively parallel comput-
ers”,Proc. 2nd Symp. on the Frontiers of Massively
Parallel Computatior(1988), (to appear).

