
CVGIP: IMAGE UNDERSTANDING
Vol. 54, No. 2, September, pp. 215-223, 1991

Linear Time Distance Transforms for Quadtrees

CLIFFORD A. SHAFFER

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0]06

AND

QUENTIN F. STOUT

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48]09-2[22

Received August 28, 1989; accepted May 16, 1990

Linear time algorithms are given for computing the chessboard
distance transform for both pointer-based and linear quadtree rep-
resentations. Comparisons between algorithmic styles for the two
representations are made. Both versions of the algorithm consist
of a pair of tree traversals. 0 I991 Academic PIW, IIIC.

1. INTRODUCTION

The (region) quadtree, shown in Fig. 1, is a widely
studied data structure for representing digitized images.
An extensive survey of quadtrees and their use in image
processing and graphics appears in Samet [1,2]. Unfortu-
nately, the two-dimensional nature of the information
they store makes quadtree usage more subtle than, say,
binary search tree usage, and efficient algorithms often
demand special quadtree techniques. This problem is in-
tensified by the fact that there are at least three distinct
representations for the quadtree structure reported in the
literature. Each has unique advantages and disadvan-
tages, with the result that each representation has appli-
cations for which it is most suited. The pointer-bused
quadtree representation maintains the explicit tree struc-
ture as illustrated by the tree of Fig. lb. The linear quad-
tree [3] replaces the tree structure with a sorted linear list
containing only the leaf nodes from the original tree. l The
sort key is obtained by assigning to each leaf node an
address derived by interleaving the bits of the x and y
coordinates of the upper left pixel for the corresponding
block in the image. The resulting records appear in the
list in the same order as they would be visited by a depth-

’ The method of [3] explicitly stores only the black nodes of a binary
image. For simplicity, this paper assumes that all nodes are stored in the
linear list; however, being a traversal, our linear quadtree algorithm
could reconstruct the white nodes during processing if they were not
stored explicitly.

first traversal of the pointer-based quadtree. The DF-
expression [4] is a third quadtree representation obtained
by listing only the values of the nodes (both internal and
leaf) in order as they occur when performing a preorder
traversal of the tree structure.

The pointer-based and linear quadtree representations
are the two most often appearing in the literature as base
representations for describing algorithms. The flavor of
the resulting algorithms are often different, depending on
which of the two representations is used. In the past, the
pointer-based quadtree has typically been used for appli-
cations where the entire image can be maintained in main
memory. The linear quadtree is most appropriate for ap-
plications where large images are maintained in disk files
with portions brought into memory as needed. This is
primarily due to the fact that good paging algorithms are
now known for the linear representation (specifically, in-
dex the list with a B-tree), but no effective paging algo-
rithms have been presented for the pointer-based repre-
sentation.

Pointer-based algorithms are concerned with tree-
oriented operations such as finding the father or son of a
node, or neighbor-finding operations [5, 61. In compari-
son, linear quadtree algorithms access the node list by
means of list search and insertion operations. While algo-
rithms for the two representations may appear quite dif-
ferent, algorithms yielding a particular run time complex-
ity for one representation can usually be converted to an
equally efficient algorithm in the other representation
(one example of such a conversion appears in Shaffer and
Samet [7]).

The purpose of this paper is twofold. First, linear time
algorithms are provided to solve the problem of generat-
ing the quadtree chessboard distance transform of Samet
[8]. By providing such an algorithm, a linear time solution
to the computation of the Quadtree Medial Axis Trans-
form (QMAT) of Samet [9] is also implied since Samet’s

215
1049-9660191 $3.00

Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

216 SHAFFER AND STOUT

(a) (b)

FIG. 1. A 4 x 4 image and its quadtree.

algorithm generates the QMAT from the distance trans-
form in linear time. While our algorithms are similar to
previous ones, they are the first with linear worst-case
times. Second, by presenting algorithms both in terms of
pointer-based and linear quadtree representations, the
similarities and differences of the two approaches can be
appreciated.

Section 2 provides further definitions for the data
structures and terminology. Section 3 presents the dis-
tance transform algorithm in terms of the pointer-based
quadtree representation. Section 4 presents the distance
transform algorithm in terms of the linear quadtree repre-
sentation. Section 5 presents our conclusions. Finally,
PASCAL-like pseudo-code for both distance transform
algorithms is provided in the Appendix.

2. DEFINITIONS AND FUNCTIONS

Given a 2” x 2” image array of black or white pixels, its
pointer-based quadtree representation is recursively con-
structed as follows: the root represents the entire image,
and if the entire image is white or black then the root is a
white or black leaf, respectively.2 Otherwise, the root is a
gray (inferior) node with pointers to its four children (de-
noted NW, NE, SW, and SE) representing the four 2”-’
x 2”-i subimages in the quadrants. Two nodes are adja-
cent if and only if neither is a descendant of the other and
if the image squares they represent share an edge or cor-
ner. In Fig. 1, b is adjacent to a and to the white pixel.
The depth of the root is 0, and, recursively, the depth of a
child of a node p is 1 more than the depth of p.

Given nodes p and q, neither of which is a descendant
of the other, we say that p is N (equivalently E, S, W) of
q if some pixel in p’s image square is due north (south,
east, west) of some pixel in q’s image square, and that p
is NW (NE, SW, SE) of q if p is not N nor W (not N nor
E, not S nor W, not S nor E) of q and some pixel in p’s
image square is in the northwest (northwest, southwest,

z While we describe all concepts and algorithms in terms of binary
images, they are easily extended to multi-color images as well.

southeast) quadrant of some pixel in q’s square. Direc-
tion will mean one of N, E, S, W, NW, NE, SW, or SE.
Notice that if neither p nor q is a descendant of the other,
then there is a direction C such that p is C of q and q is
-C of p, where -C is the direction opposite of C. In Fig.
1, a is N of b, b is S of a, and the white pixel is also S of a.

Throughout we use the phrase the C neighbor ofp,
where p is a node and C is a direction. If p’s C edge or
corner is on the border of the image then there is no such
neighbor. Otherwise, the neighbor is the node (possibly
gray) of greatest depth less than or equal to p’s which is
adjacent to p in the indicated direction. In Fig. 1, a is the
N neighbor of b, and b’s parent is the S neighbor of a.
Neighbor means a C neighbor for some direction C. Note
that if q is a neighbor of p, then depth(q) 5 depth(p) and q
represents a square at least as large as the square p repre-
sents. It is important to keep in mind that neighbor is not
a symmetric relation, in that p can be a neighbor of q
while q is not a neighbor of p.

Most linear quadtree representations assume some
sorted list implementation (such as a B-tree) is used that
allows for efficient key search and dynamic record inser-
tion and deletion. Our algorithm accesses the node list
only by means of a visit to each node of the tree in order,
combined with reconstruction of the identical node list in
reverse order. Thus, the only list operations that need to
be supported are some form of “next node” operation,
and an operation that inserts a new node at the head of a
list of output nodes.3

3. POINTER-BASED DISTANCE TRANSFORM
ALGORITHM

The Chessboard or I, distance between two points a
and b can be defined as max((a, - b,(, (aY - by/). Samet
[8] studied the problem of assigning to each black node
the smallest distance to a white node, where the distance
from a black node b to a white node w, denoted d(b, w),
is the 1, distance from the center point of the image
square b represents to the nearest edge or corner of the
image square w represents. The I, distance transform
problem (also called the chessboard distance transform
problem) is to determine dt(b) = min{d(b, w): w a white
node} for each black node b. (If b is the root node, then
dt(b) is defined to be infinite.) Figure 2 shows the dis-
tances for the image in Fig. 1.

Our pointer-based quadtree algorithm is based on
“top-down quadtree traversals” as described in Samet
[lo]. Top-down quadtree algorithms also appear in Jack-

3 An alternative, though unusual, implementation for the linear quad-
tree suitable for use in this algorithm could be created with simple stack
operations. Nodes would be POPed off an input list, processed, and
PUSHed onto an output list, thus reversing the node order.

QUADTREE DISTANCE TRANSFORMS 217

0.5 0.5 m 1

0.5

FIG. 2. Distance to nearest white node for the black nodes of Fig. 1

ins and Tanimoto [ll], Rosenfeld et al. [12] and Samet
and Webber [13]. There are many such traversals, de-
pending on the relative order in which nodes are to be
visited. For example, one can visit all children after their
parent (a postorder traversal), or before (a preorder tra-
versal). For our purposes the parent/children ordering is
immaterial since no work is ever performed at interior
nodes, but the relative order in which different children
are visited is important. In general, a stack is used to
store a path to the root (either explicitly, or implicitly
through recursion), where if an interior node is being
visited then it causes its children to be visited, while if a
leaf is being visited then some action is performed and
the leaf is removed from the stack. “Top-down quadtree
traversals” are distinguished from top-down tree travers-
als such as preorder traversal by the property that a call
to a node p also passes pointers to p’s eight or fewer
neighbors. Note that if q is a child of p, then each of q’s
neighbors is either (1) one of p’s neighbors, (2) one of p’s
children, (3) or a child of one of p’s neighbors. Using this
fact, q’s neighbors can be determined in constant time if
p’s neighbors are known, and hence the overhead for an
entire traversal can be performed in linear time. Since the
distinguishing feature of “top-down quadtree travers-
als,” compared to standard top-down tree traversals ap-
plied to quadtrees, is the fact that each node is accompa-
nied by its neighborhood, in the rest of the paper they will
be called neighbored traversals.

Throughout, N, B, and W will denote the total number
of nodes, the number of black nodes, and the number of
white nodes, respectively, in the quadtree. Time is al-
ways the worst-case time measured as a function of N.
Since B + W 5 N < (4/3) * (B + W), N = O(B + W).

The average time for the algorithm presented by
Samet [8] is O(N). Samet did not analyze the worst-case
time of his algorithm, but it is easy to show that it is
O(N + B * H), where H is the height of the quadtree.
Samet [lo] states that the time of his algorithm “cannot
be lowered by use of the top-down method since its com-
putation time is not dominated by the cost of neighbor

finding.” While this is true for average time under his
assumption concerning the expected distribution of black
nodes, the top-down method can be used to reduce the
worst case time complexity. The algorithm described in
this section is similar to Samet’s, but requires only linear
time in the worst case.

For a black node 6, radius(b) denotes the 1, radius of
b’s square, i.e., radius(b) is half of the length of a side of
the square. It should be clear that dt(b) z radius(b). Two
properties about chessboard distances will be used later
to prove the linear upper bound for our algorithm.

Property 1. If p and q are adjacent black nodes then
dt(p) 5 dt(q) + radius(p) + radius(q). To see why this is
so, let q be a closest white node to q. The triangle in-
equality shows that d(p, w) 9 d(q, w) + radius(p) +
radius(q) (see Fig. 3), and since dt(p) I d(p, w) and
dt(q) = d(q, w), this gives the result.

Property 2. If p is a black node other than the root,
then dt(p) < 3 * radius(p). This is because there must be
a white node beneath p’s parent, and any such white
node is within 3 * radius(p) of p.

Both distance transform algorithms store with each
black node p a field D (indicated as p.D in PASCAL
notation) which is initially 03, and which equals dt(p) at
the end of the algorithm. The value of p.D never in-
creases, and at any time during the algorithm, if p.D < m
then there is a white node w such that p.D = d(p, w).

The pointer-based algorithm consists of two neigh-
bored traversals, named NW-to-SE and SE-to-NW,
which can be performed in either order. These are just
mirror images of each other, interchanging the roles
of north and south, and of east and west, so only the
NW-to-SE traversal will be explained. In this traversal,
when a node p is visited, all of the nodes in the NW, N,
and W directions have already been visited. This is in-
sured by visiting the children of each node in the order
NW, NE, SW, and SE. If p is white, then for each black
neighbor q in the E, SW, S, and SE directions, q.D is set
equal to radius(q). If p is gray then its children are vis-
ited. Finally, if p is black, first p.D is set equal to ra-
dius(p) if any of its neighbors in the NW, N, NE, or W

FIG. 3. The triangle inequality applied to chessboard distances

218 SHAFFER AND STOUT

directions are white. Then for each black neighbor q in
the E, SW, S, and SE, directions, q.D is set equal to the
minimum of q.D and p.D + radius(p) + radius(q).

Algorithm 1, named POINTER-TRANSFORM, en-
codes the procedure described above.

THEOREM. The 1, distance transform algorithm de-
scribed above is correct and always$nishes in time linear
in the number of nodes of the quadtree.

Proof. The time is linear because each neighbored
traversal uses linear time. For any black node p, either p
is the root and initialization sets p.D = a~, or else there is
some nearest white node w. This white node is in some
direction C of p, and by Lemmas 1 and 2 below, at the
end of the appropriate traversa1p.D = dt(p). Sincep.D is
never less than dt(p), the distances are all correctly de-
termined. Q.E.D.

LEMMA 1. For each black node p, if a nearest white
node is N or W of p then p.D = dt(p) at the end of the
NW-to-SE traversal, and ifit is S or E of p then p.D =
dt(p) at the end of the SE-to-NW traversal.

Proof. Let w be a nearest white node top, where w is
C of p for C E {N, E, S, W}. There is a pixel on the C
border of p’s image square such that some pixel of w’s
image square is C of the border pixel. Between w’s image
square and this border pixel there are only black pixels,
since w is a nearest white. Therefore there is a sequence
ofblacknodesq,,. . . , qk (qk = p), where the C border
of 4,‘s image square touches w’s image square, qitl is a
-Cneighborofqiforlsisk- 1,and

dt(qi+l) = d(qi+lT WI

= d(qi, W) + radius(qJ + radius(qi+l)

for1 silk- 1.

(See Fig. 4a). Property 1 ensures that qi is larger than qi-1
for i > 1. All of these claims are straightforward, except
perhaps the fact that qi+i is a -C neighbor of qi, since
this requires that depth(qi+l) I depth(qJ. To see that this

(a) (b)

FIG. 4. Paths from node p to the nearest white node W.

is true, note that if it is false then d(qi+l , w) 2 radius(q;+J
+ 2*radius(qJ 2 3*radius(qi+i). Since d(qi+l) < 3*ra-
dius(qi+i) is always true, this would imply that w is not
the closest white to qi+l , and hence not to p.

During the visit to q1 in the appropriate traversal, ql.D
is set equal to radius(qJ. This is because either w is a C
neighbor of q1 and the visit to q1 sets q,.D, or q1 is a -C
neighbor of w and the visit to w (which preceded the visit
to ql) set ql.D. During the remainder of the traversal, qi
is visited before qi+i , and the visit to qi results in qi+l.D
being set equal to d(qi+l , w). When i = k - 1, this sets
p.D = d(p, w) = dt(p). Q.E.D.

LEMMA 2. For each black node p, if a nearest white
node is NW or NE ofp, then p.D = dt(p) at the end of the
NW-to-SE traversal, while ifit is SE or SW of p, then
p.D = dt(p) at the end of the SE-to-NW traversal.

Proof. The proof is quite similar to that of the pre-
vious lemma. If a nearest white node w is, say, NE of p,
then there are a sequence of black squares ql, . . . ,
qk = p, and an integer j, 1 I j I k - 1, such that q1 is
adjacent to w; each qi+i is a SW neighbor of qi forj I i 5
k - 1; either each qi+i is a S neighbor of qi for 1 I i 2 j -
l,oreachqi+IisaWneighborofqiforl~i~j- 1;and

= d(qi, W) + radius(qJ + radius(qi+J

forl:ilk- 1.

(See Fig. 4b.) Once again, during the visit to q1 in the
NW-to-SE traversal, 41.0 = radius(q,), and during the
visit to qi the value of q/+*-D is set to the correct value.

Q.E.D.

It might appear that there is a problem in that when a
leaf node that is a SE son of its parent is visited during the
NW-to-SE traversal, its NE neighbor has not yet been
visited and thus does not contain the correct distance
transform value. However, once again, Property 1 en-
sures that qi is larger than qi-1. The result is that no node
qi ,j < i < k is a SE son. Likewise for NW sons during the
SE-to-NW traversal.

4. LINEAR QUADTREE DISTANCE
TRANSFORM ALGORITHM

This section presents a linear time two-pass chess-
board distance transform algorithm for linear quadtrees.
The two passes of this algorithm serve the same functions
as the two traversals of the pointer implementation, visit-
ing the leaf nodes in the same order, but accomplish their
goals in a slightly different fashion. The first pass calcu-
lates the distance transform for each node M with respect
to those nodes that precede M in the node list (i.e., M’s

QUADTREE DISTANCE TRANSFORMS 219

I

FIG. 5. The active border of a quadtree block decomposition after
node 6 is processed. Dashed lines show the active border after node 7 is
processed.

value after the first pass will be the distance to the nearest
WHITE node preceding M). This is accomplished by ex-
amining the distance transform values of those blocks
adjacent to M that have been processed already. M is
then output to a temporary node list with its value set to
the (partially calculated) distance transform. The nodes
are output so that the result of the first pass will be a node
list in reverse order from the input node list. The second
pass calculates the distance transform for each node M
with respect to those nodes that now precede M in the
node list (i.e., those nodes that, in the original input tree,
came after M). This ensures that each node examines all
of its neighbors to deduce the correct distance transform
value. The algorithm requires exactly two list searches
and two list insertions for each node, with all searches
performed in order and all insertions performed in the
reverse of the input order (i.e., insertions to the head of
the node list).4

The primary difference between this algorithm and the
one presented in Section 3 is that in the linear quadtree,
neighbor information is not passed down to leaf nodes
from the internal nodes. Instead, information about each
node’s previously visited neighbors is stored in an active
border table [14]. Since the node list is processed in or-
der, the border of the region of the corresponding image
consisting of the blocks that have already been processed
has the shape of a staircase. For example, consider Fig. 5
where the blocks have been assigned labels matching
their order in the input list. The heavy line represents the
state of the active border after block 6 is processed. The
broken line along the southern and eastern border of
block 7 shows the change in the active border after block
7 is processed. The active border of a 2” x 2” image

4 Alternatively, both passes could be performed working forward
from the end of the node list, with all insertions being to the end of the
newly created list. This may be preferable for disk-based processing.

consists of sets of horizontal and vertical segments such
that the total length of each of these sets is 2” pixel
widths. Thus, a complete description of the neighboring
nodes along the active border can be maintained using
two tables each containing 2” records.

The distance transform algorithm must visit corner-
adjacent neighbors as well as side-adjacent neighbors. It
is therefore necessary to maintain, in addition to two
edge tables, a table containing the value at each potential
node corner (referred to as a vertex in Samet and Tam-
minen [14].) This allows the algorithm to retrieve effi-
ciently the distance transform for a node’s NW neighbor
in cases where neither edge table retains a record corre-
sponding to the NW neighbor’s value (e.g., in Fig. 5 node
1 is the NW neighbor of node 13). Since a vertex may fall
anywhere within a range from 0 to 2” along the length of
each axis (with the vertices at 0 being identical), the ver-
tex table must be of size 2 . 2” + 1. A line segment with
equation X = Y + c will intersect the active border only
once; therefore, the vertex table can be organized to
store the record for the vertex at (X, Y) in location c =
2” + X - Y (2” is added to yield a range from 0 to 2 . 2”).

Algorithm 2, named LINEAR-TRANSFORM, en-
codes the procedure described in this section. As with
Algorithm 1, a tree consisting of a single black leaf would
have a distance transform value of =. Arguments very
similar to those used in Theorem 1 of the previous section
can be used to demonstrate the correctness of the algo-
rithm.

Since procedure DOPASS is executed twice for
each node of the tree, the algorithm is O(N) if the sum
of the calls to DOPASS are also O(N). Assuming that
REVERSE-ORDER-INSERT (which inserts a node at
the head of the node list) operates in constant time, the
only point that must be considered is the cost of the two
while loops. Each iteration of these loops represents a
comparison between two neighboring blocks of the quad-
tree, and each such neighbor pair is investigated exactly
once on each traversal. For every pair of side adjacent
leaf nodes M and M’, the smaller node (say M’) has no
other neighbor along their common side other than M.
Thus, the total number of side-adjacent pairs that must be
examined is O(N), yielding a total cost for each traversal
of O(N).

As an example of how DOPASS processes a node,
consider node 13 from Fig. 5 during pass 1. Since 13 is
not white, trual’s value is initially set to m. W neighbors
are checked first, beginning with node 8 (the W neighbor
of 13’s upper left corner). Since 8’s D value + radius (and
consequently the value stored in the edge table) is 1, trual
is set to be 2. Since 8 is not 13’s only W neighbor, the
edge table at 10’s upper right corner is also checked. This
does not affect trual, nor does the check of 13’s SW
neighbor (node 12). Visiting the N edge table provides the
D value based on node 14, followed by a check on the NE

220 SHAFFER AND STOUT

neighbor (node 5). Neither reduces 13’s D value. Finally, stead, these algorithms are complementary in that they
the NW neighbor is checked and found to be white. Thus, provide a means whereby the distance transform may be
13’s D value is set to 13’s radius. x-edge, y-edge, and computed in linear time in whichever representation is
uert are updated to reflect 13’s final D value. selected.

5. CONCLUSIONS
APPENDIX

Two linear time algorithms have been presented to cal-
culate the chessboard distance transform for quadtrees.
Algorithms have been presented for both the pointer-
based and linear quadtree representations, where both
algorithms make two passes through the quadtree, with
the second pass in the reverse order of the first pass.
While the algorithms are quite similar, some differences
may be noted. The primary difference is in the method
whereby neighbor information is provided to the current
node. The pointer-based quadtree algorithm makes use of
neighbored traversals, with each traversal supplying nec-
essary neighbor information to each black node through
parameters passed to the traversal function. The linear
quadtree algorithm makes use of a set of active border
tables to store all necessary information about neighbors
of the current node. Accesses to the quadtree are in
terms of list operations.

A further difference between the two algorithms is that
the linear quadtree algorithm is purely iterative, while the
pointer-based quadtree algorithm is recursive (or stack-
driven). The linear quadtree algorithm requires a “next
node” operation to support a visit to each leaf node in
order, and construction of an output tree where the value
for each leaf is provided in reverse order. The pointer
quadree algorithm requires a stack and an operation to
access children.

As mentioned previously, the choice between a
pointer-based or linear quadtree representation is usually
determined by whether the application is disk or RAM
based. Thus it does not make sense to declare that one or
the other of these representations is “better” since the
application often determines which is appropriate. In-

The algorithms presented in this appendix are written
in PASCAL with the extension of the for (variable) in
(set) construct. This construct iterates (variable) over
each item in (set). In addition, the following operations
are assumed to be predefined.

GRAY, WHITE, and BLACK are boolean operations
which are true iff the node value is gray (i.e., an internal
node), white, or black, respectively.

SON(node, quad) returns the son of node node in
quadrant quad. SON1 is identical to SON except that if
node is a leaf node, then node is returned instead of its
son.

QUAD(side, side) returns the quadrant bounded by the
two sides; e.g., QUAD(N, W) = NW.

OPQUAD(quad) and OPSIDE(side) return the
opposite quadrant and side, respectively; e.g.,
OPQUAD(NW) = SE; OPSIDE(N) = S.

CSIDE(side) and CCSIDE(side) return the side clock-
wise and counter-clockwise to side, respectively; e.g.,
CSIDE(N) = E.

SIDEl(quad) and SIDE2(quad) return the first and
second sides adjacent to quad, respectively; e.g.,
SIDEl(NW) = N, SIDE2(NW) = W.

WIDTH, RADIUS, XOF, Y-OF, and VALUE re-
turn a node’s width, a node’s radius, x and y coordinates
of a node’s upper left corner, and a node’s value, respec-
tively.

REVERSE-ORDERINSERT(out, x, y, width, color,
0) appends to the head of list out a quadtree node with
upper-left corner at (x, y), width width, color value color,
and distance transform value D.

ALGORITHM 1. Pointer-based quadtree chessboard distance transform algorithm.

type
direction = (N, E, S, W, NW, NE, SW, SE);
neighbors = array [direction] of t NODE;
corder = array [1. .4] of direction;

end;

{ Compute and return the distance transform for pointer-based quadtree intree. It is assumed that all .D components
of black nodes are initially infinite. }

procedure POINTER-TRANSFORM(intree : QUADTREE);
var

i : direction;
nurray : neighbors;
childorder : corder;

QUADTREEDISTANCETRANSFORMS 221

begin
for i in (N, S, E, W, NW, NE, SW, SE) do naway[i] := nil;
childorder[l]: =NW; childorder[2]: =NE;
childorder[3]:=SW; childorder[4]:=SE;
TRAVERSE(root, narray, childorder); { NW-to-SE traversal }
childorder[l]:=SE; childorder[2]:=SW;
childorder[3]: =NE; childorder[4]: =NW;
TRAVERSE(root, narray, childorder) { SE-to-NW traversal }

end;

{ Perform a neighbored traversal, visiting the children in the order specified by childorder. }
procedure TRAVERSE(node : t NODE; nurray : neighbors; childorder : corder);
var

d,child : direction;
cnarray : neighbors;

begin
if WHITE(node) then begin

for d in (SIDEl(childorder[4]), childorder[3], SIDE2(childorder[4]), childorder[4]) do
if BLACK(nurruy[d]) then

narray[d] t .D := RADIUS(narray[d])
end
else if BLACK(node) then begin

for d in (OPQUAD(childorder[4]), SIDEl(childorder[2]), childorder[3],
SIDE2(childorder[3])) do

if WHITE(nurray[d]) then
node t .D : = RADIUS(node)

for d in (SIDEl(childorder[4]), childorder[3], SIDE2(childorder[4]), childorder[4]) do
if BLACK(nurruy[d]) then

narray[d] t .D := min(nurruy[d] t .D, node 7 .D+RADIUS(node)+RADIUS(narray[d]))
end
else begin { GRAY node code derived from Samet [lo] }

for i: = 1 to 4 do begin
child: = childorder [i];
cnurruy[child] : = SONI(nurruy[child], QUAD(OPSIDE(child), CSIDE(chiZd)));
cnarruy[QUAD(child, CSIDE(child))] : = SONI(nurruy[QUAD(child, CSIDE(child))],

QUAD(OPSIDE(child), CCSIDE(child)));
cnurruy[CSIDE(child)] : = SONI(nurruy[CSIDE(child)], QUAD(child, CCSIDE(chifd)));
cnurruy[QUAD(OPSIDE(child), CSIDE(child))] : = SONI(nurruy[CSIDE(child)],

QUAD(OPSIDE(child), CCSIDE(child)));
cnarruy[OPSIDE(child)] := SON(node, QUAD(OPSIDE(child), CSIDE(child)));
cnurruy[QUAD(OPSIDE(child), CCSIDE(child))] : =

SON(node, QUAD(OPSIDE(child), CCSIDE(child)));
cnarruy[CCSIDE(child)] : = SON(node, QUAD(child, CCSIDE(child)));
cnurray[QUAD(child, CCSIDE(child))] : =

SONI(narruy[child], QUAD(OPSIDE(child), CCSIDE(child)));
TRAVERSE(SON(node, child), cnarray, childorder)

end
end

ALGORITHM 2. Linear quadtree chessboard distance transform algorithm.
type

EDGE = record
length : integer; { length of edge segment described }
posit : integer; { coordinate of edge segment in other dimension }
D : real { value of edge segment, i.e., the distance transform value along that segment)

end;

222 SHAFFER AND STOUT

var
n : integer; { assume initialized as depth of the quadtree; i.e., width of quadtree = 2”)
x-edge, y-edge : array [0..2”] of EDGE;
verf : array [0..2 * 2”] of integer; { Vertex array }

{ Compute the chessboard distance transform for each node of a quadtree. The value stored in the edge tables is the
sum of the distance transform of the node along that edge plus its radius. The reason for this is that dt(node) =
radius(node) + radius(neighbor) + dt(neighbor) }

function LINEAR-TRANSFORM(intree : QUADTREE) : QUADTREE;
var

temp, outtree : QUADTREE;
nd : f NODE:

begin
y-edge[O].length : = x-edge[O].length : = 2”; { initialize }
y-edge[O].D : = x-edge[O].D : = vert[2”] : = m;
y-edge[O].posit : = x-edge[O] .posit : = 0;
foreach nd in intree do { first pass }

DOPASS(temp, nd, X-OF(nd), Y-OF(nd), WIDTH(nd), true);
y-edge[O].length : = x-edge[O].length : = 2”; { re-initialize }
y-edge[O].D : = x-edge[O].D := vert[2”] := m;
y-edge[O] .posit : = x-edge[O].posit : = 0;
foreach nd in temp do { second pass }

DOPASS(outtree, nd, X-OF(nd), Y-OF(nd), WIDTH(nd), false);
LINEAR-TRANSFORM : = outtree

end;

{ Calculate the distance transform value with respect to the preceding nodes of a node with value trvul, upper left
corner (fx, fy), and width width. The node with its resulting distance transform value will be inserted into linear
quadtree out with its position modified so that the resulting file is in reverse order from the input file. Jirstp is ‘true’
iff this is the first pass. }

procedure DOPASS(out : QUADTREE: nd: t NODE; fx, fy, width : integer; jirstp : boolean);
var

oldval, cur,, outval, newx, newy, oldcurr, trval : integer;
begin

if WHITE(nd) then trval := 0 else if$rstp then trval := ~0 else trval := nd t .D;
if trval <> 0 then begin { non-white node-process distance transform }

curr : = fy; { first do west (east) edge }
while curr < jj~ + width do begin

trval := min(trval, width/2 + y-edge[curr].D); { check each neighbor }
oldcurr : = curr; curr : = curr + y-edge[curr].length

end; { now oldcurr points to last segment of edge }
vert[2” + fi - (fy + width)] : = y-edge[oldcurr].D; { NW of cm-r’s S neighbor }
{ Check SW (NE) corner. If haven’t seen SW (NE) neighbor, don’t update. }
if y-edge[fy].length > width then curr := fy; else curr := jj~ + width;
if y-edge[curr].posit = fx then { We have visited the corner neighbor }

trval := min(trva1, width/2 + y-edge[curr].D);
curr := fx; { now do north (south) edge }
while curr < fx + width do begin

trval := min(trva1, width/2 + x-edge[curr].D); { check each neighbor }
oldcurr := czar; curr := curr + x-edge[curr].length

end; { now oldcurr points to last segment of edge }
vert[2” -t fx + width - fi] := x-edge[oldcurr].D; { NW of curr’s E neighbor }
{ now check NE (SW) corner }
if x-edge[fx].length > width then curr : = fi; else curr : = fx + width;
if x-edge[curr].posit = fy then trval : = min(trva1, width/2 + x-edge[currl.D);

QUADTREE DISTANCE TRANSFORMS

{ Finally, do NW (SE) corner }
trual := min(trual, width/2 + uert[2” + fx - fy])

end; { now, trval is set to be the distance transform value for the node }
{ insert node into output tree (in reverse))
newx := 2” - (fx + width); newy := 2” - (fi, + width);
REVERSE-ORDERINSERT(out, newx, newy, width, VALUE(nd), trual);
(update tables }
if trual <> 0 then { if black node, then add radius }

ma1 := ma1 + widthf2; { store transform + width in table >
if x_edge[fx].length > width then begin {just updating part of segment }

x-edge[fx + width].length := x-edge[fx].length - width;
x-edge[fx + width1.D := x-edge[fx].D;
x-edge[fx + width].posit := x-edge[fi].posit

end;
x-edge[fx].length : = width; x-edge[fx].D : = trual;
x-edge[fx].posit : = x-edge[fx].posit + width;
if y-edge[fy].length > width then begin

y-edge[fy + width].length := y-edge[fy].length - width;
y-edge[fy + width1.D := y_edge[fy].D;
y-edge[fy + width] .posit : = y-edge[fy] .posit

end;
y-edge[fi].length := width; y_edge[fy].D := trual;
y-edge[fy] .posit : = y-edge[fy] .posit + width;
vert[2” + fx - fy] := trval

end:

223

1.

2.

3.

4.

5.

6.

7.

REFERENCES 8.

H. Samet, “Design and Analysis of Spatial Data Structures: Quad- 9.
trees, Octrees, and Other Hierarchical Methods,” Addison-Wes-
ley, Reading, MA, 1989. 10.
H. Samet, “Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS,” Addison-Wesley, Read-
ing, MA, 1990. Il.

I. Gargantini, An effective way to represent quadtrees, Commun.
ACM 25, 1982, 905-910.
E. Kawaguchi and T. Endo, On a method of binary picture repre-
sentation and its application to data compression, IEEE Trans. Par- 12.

tern Anal. Mach. Intelligence 2, 1980, 21-35.
H. Samet, Neighbor finding techniques for images represented by
quadtrees, Comput. Graphics Image Process. 18, 1982, 31-51.
H. Samet and C. A. Shaffer, A model for the analysis of neighbor l3
finding in pointer-based quadtrees, IEEE Trans. Pattern Anal.
Mach. Intelligence 7, 1985, 717-720.
C. A. Shaffer and H. Samet, Optimal quadtree construction algo- 14.
rithms, Comput. Vision Graphics Image Process. 37, 1987, 402-
419.

H. Samet, Distance transform for images represented by quadtrees,
IEEE Trans. Pattern Anal. Mach. Intelligence 4, 1982, 298-303.

H. Samet, A quadtree medial axis transform, Commun. ACM 26,
1983, 680-693.

H. Samet, A top-down quadtree traversal algorithm, IEEE Trans.
Pattern Anal. Mach. Intelligence 7, 1985, 94-98.

C. L. Jackins and ‘S. L. Tanimoto, Quad-trees, act-trees, and k-
trees-A generalized approach to recursive decomposition of Eu-
clidean space, IEEE Trans. Pattern Anal. Mach. Intelligence 5,
1983, 533-539.

A. eosenfeld, H. Same& C. Shaffer, and R. E. Webber, “Applica-
tion of Hierarchical Data Structures to Geographic Information
Systems, University of Maryland, Computer Science TR-1197,
June, 1982.

H. Samet and R. E. Webber, On encoding boundaries with quad-
trees, IEEE Trans. Pattern Anal. Mach. Intelligence 6, 1984, 365-
369.

H. Samet and M. Tamminen, Computing geometric properties of
images represented by linear quadtrees, IEEE Trans. Pattern Anal.
Mach. Intelligence 7, 1985, 229-240.

