
This appears inAlgorithms and Theory of Computation Handbook, 2nd ed., 2009, M. Atallah, ed.,
46:1-18

Algorithmic Techniques For Regular Networks of Processors

Russ Millera and Quentin F. Stoutb

aState University of New York at Buffalo andbUniversity of Michigan

Introduction

This chapter is concerned with designing algorithms for machines constructed from multiple processors.
In particular, we discuss algorithms for machines in which the processors are connected to each other
by some simple, systematic, interconnection patterns. Forexample, consider a chess board, where each
square represents a processor (for example, a processor similar to one in a home computer) and every
generic processor is connected to its 4 neighboring processors (those to the north, south, east, and west).
This is an example of amesh computer, a network of processors that is important for both theoretical
and practical reasons.

The focus of this chapter is on algorithmic techniques. Initially, we define some basic termi-
nology that is used to discuss parallel algorithms and parallel architectures. Following this introductory
material, we define a variety of interconnection networks, including the mesh (chess board), which are
used to allow processors to communicate with each other. We also define an abstract parallel model
of computation, thePRAM, where processors are not connected to each other, but communicate di-
rectly with a global pool of memory that is shared amongst theprocessors. We then discuss several
parallel programming paradigms, including the use of high-level data movement operations, divide-
and-conquer, pipelining, and master-slave. Finally, we discuss the problem of mapping the structure of
an inherently parallel problem onto a target parallel architecture. This mapping problem can arise in a
variety of ways, and with a wide range of problem structures.In some cases, finding a good mapping is
quite straightforward, but in other cases it is a computationally intractable NP-complete problem.

Terminology

In order to initiate our investigation, we first define some basic terminology that will be used throughout
the remainder of this chapter.

Shared Memory versus Distributed Memory

In ashared memorymachine, there is a single global image of memory that is available to all processors
in the machine, typically through a common bus, set of busses, or switching network, as shown in
Figure 1 (top). This model is similar to a blackboard, where any processor can read or write to any
part of the board (memory), and where all communication is performed through messages placed on
the board.

As shown in Figure 1 (bottom), each processor in adistributed memorymachine has access
only to its private (local) memory. In this model, processors communicate by sending messages to each
other, with the messages being sent through some form of an interconnection network. This model is
similar to that used by shipping services, such as the UnitedStates Postal Service, Federal Express,
DHL, or UPS, to name a few. For example, suppose Tom in cityX needs some information from Sue in

1

city Y . Then Tom might send a letter requesting such information from Sue. However, the letter might
get routed from cityX to a facility (i.e., “post office”) in city W , then to a facility in cityZ and finally
to the facility in cityY before being delivered locally to Sue. Sue will now package up the information
requested and go to a local shipping facility in cityY , which might route the package to a facility in
city Q, then to a facility in cityR, and finally to a facility in cityX before being delivered locally
to Tom. Note that there might be multiple paths between source and destination, that messages might
move through different paths at different times between thesame source and destination depending
on congestion, availability of the communication path, andso forth. Also note that routing messages
between processors that are closer to each other in terms of the interconnection network (fewer hops
between processors) typically require less time than is required to route messages between pairs of pro-
cessors that are farther apart (more hops between processors in terms of the interconnection network).
In such message-passing systems, the overhead and delay canbe significantly reduced if, for exam-
ple, Sue sends the information to Tom without him first requesting the information. It is particularly
useful if the data from Sue arrives before Tom needs to use it,for then Tom will not be delayed wait-
ing for critical data. This analogy represents an importantaspect of developing efficient programs for
distributed memory machines, especially general-purposemachines in which communication can take
place concurrently with calculation so that the communication time is effectively hidden.

For small shared memory systems, it may be that the network issuch that each processor can
access all memory cells in the same amount of time. For example, many symmetric multiprocessor
(SMP) systems have this property. However, since memory takes space, systems with a large number
of processors are typically constructed as modules (i.e., a processor/memory pair) that are connected
to each other via an interconnection network. Thus, while memory may be logically shared in such
a model, in terms of performance each processor acts as if it is distributed, with some memory being
“close” (fast access) to the processor and some memory being“far” (slow access) from the processor.
Notice the similarity to distributed memory machines, where there is a significant difference in speed
between a processor accessing its own memory versus a processor accessing the memory of a distant
processor. Such shared memory machines are called NUMA (non-uniform memory access) machines,
and often the most efficient programs for NUMA machines are developed by using algorithms effi-
cient for distributed memory architectures, rather than using ones optimized for uniform access shared
memory architectures.

Efficient use of the interconnection network in a parallel computer is often an important con-
sideration for developing and tuning parallel programs. For example, in either shared or distributed
memory machines, communication will be delayed if a packet of information must pass through many
communication links. Similarly, communication will be delayed by contention if many packets need to
pass through the same link. As an example of contention at a link, in a distributed memory machine
configured as a binary tree of processors, suppose that all leaf processors on one side of the machine
need to exchange values with all leaf processors on the otherside of the machine. Then a bottleneck
occurs at the root since the passage of information proceedsin a sequential manner through the links
in and out of the root. A similar bottleneck occurs in a systemif the interconnect is merely a single
Ethernet-based bus.

Both shared and distributed memory systems can also suffer from contention at the destinations.
In a distributed memory system, too many processors may simultaneously send messages to the same
processor, which causes a processing bottleneck. In a shared memory system, there may be memory
contention, where too many processors try to simultaneously read or write from the same location.

Another common feature of both shared and distributed memory systems is that the programmer
has to be sure that computations are properly synchronized,i.e., that they occur in the correct order. This
tends to be easier in distributed memory systems, where eachprocessor controls the access to its data,

2

and the messages used to communicate data also have the side-effect of communicating the status of
the sending processor. For example, suppose processorW is calculating a value, which will then be
sent to processorR. If the program is constructed so thatR does not proceed until the message from
W arrives, then it is guaranteed of using the correct value in the calculations. In a shared memory
system, the programmer needs to be more careful. For example, in the same scenario,W may write
the new value to a memory location thatR reads. However, ifR reads beforeW has written, then it
may proceed using the wrong value. This is known as arace condition, where the correctness of the
calculation depends on the order of the operations. To avoidthis, various locking or signaling protocols
need to be enforced so thatR does not read the location until afterW has written to it. Race conditions
are a common source of programming errors, and are often difficult to locate because they disappear
when a deterministic, serial debugging approach is used.

ooo

oo o

cache cache cache

Memory

CPUCPU CPUCPU

Interconnection Network

Interconnection Network

CPU

mem

CPU

mem

CPU

mem

CPU

mem

cache cache cache cache

cache

Figure 1: Shared memory (top) and distributed memory (bottom) machines.

Flynn’s Taxonomy

In 1966, Michael Flynn classified computer architectures with respect to theinstruction stream, that
is, the sequence of operations performed by the computer, and thedata stream, that is, the sequence
of items operated on by the instructions [Flynn, 1966]. While extensions and modifications to Flynn’s
taxonomy have appeared, Flynn’s original taxonomy [Flynn,1972] is still widely used. Flynn charac-
terized an architecture as belonging to one of the followingfour classes.

• Single-Instruction Stream, Single-Data Stream (SISD)

• Single-Instruction Stream, Multiple-Data Stream (SIMD)

• Multiple-Instruction Stream, Single-Data Stream (MISD)

3

• Multiple-Instruction Stream, Multiple Data Stream (MIMD)

Standard serial computers fall into thesingle-instruction stream, single data stream (SISD)category,
in which one instruction is executed per unit time. This is the so-called “von Neumann” model of
computing, in which the stream of instructions and the stream of data can be viewed as being tightly
coupled, so that one instruction is executed per unit time toproduce one useful result. Modern “serial”
computers include various forms of modest parallelism in their execution of instructions, but most of
this is hidden from the programmer and only appears in the form of faster execution of a sequential
program.

A single-instruction stream, multiple-data stream (SIMD)machine typically consists of multi-
ple processors, a control unit (controller), and an interconnection network, as shown in Figure 2. The

Controller

PE

PE

PE

PE

PE

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

Figure 2: A SIMD machine. (PE is used to represent a processing element.)

control unit stores the program and broadcasts the instructions to all processors simultaneously. Active
processors simultaneously execute the identical instruction on the contents of each active processor’s
own local memory. Through the use of amask, processors may be in either an active or inactive state
at any time during the execution of the program. Masks can be dynamically determined, based on local
data or the processor’s coordinates. Note that one side-effect of having a centralized controller is that
the system is synchronous, so that no processor can execute asecond instruction until all processors are
finished with the first instruction. This is quite useful in algorithm design, as it eliminates many race
conditions and makes it easier to reason about the status of processors and data.

Multiple-instruction stream, single-data stream (MISD)machines consist of two or more pro-
cessors that simultaneously perform not necessarily identical instructions on the same data. This model
is rarely implemented.

A multiple-instruction stream, multiple-data stream (MIMD) machine typically consists of mul-
tiple processors and an interconnection network. In contrast to the single-instruction stream model, the
multiple-instruction stream model allows each of the processors to store and execute its own program,

4

providing multiple instruction streams. Each processor fetches its own data on which to operate. (Thus,
there are multiple data streams, as in the SIMD model.) Often, all processors are executing the same
program, but may be in different portions of the program at any given instant. This is thesingle-program
multiple-data (SPMD)style of programming, and is an important mode of programming because it is
rarely feasible to have a large number of different programsfor different processors. The SPMD style,
like the SIMD architectures, also makes it somewhat simplerto reason about the status of data structures
and processors.

MIMD machines have emerged as the most commonly used general-purpose parallel comput-
ers, and are available in a variety of configurations. Both shared and distributed memory machines
are available, as are mixed architectures where small numbers of processors are grouped together as a
shared memory symmetric multiprocessor, and these SMPs arelinked together in a distributed memory
fashion.

Granularity

When discussing parallel architectures, the termgranularity is often used to refer to the relative number
and complexity of the processors. Afine-grained machinetypically consists of a relatively large num-
ber of small, simple processors (in terms of local memory andcomputational power), while acoarse-
grained machinetypically consists of relatively few processors, each of which is large and powerful.
Fine-grained machines typically fall into the SIMD category, where all processors operate in lockstep
fashion (i.e., synchronously) on the contents of their own small, local, memory. Coarse-grained ma-
chines typically fall into the shared memory MIMD category,where processors operate asynchronously
on the large, shared, memory. Medium-grained machines are typically built from commodity micro-
processors, and are found in both distributed and shared memory models, almost always in MIMD
designs.

For a variety of reasons, medium-grained machines currently dominate the parallel computer
marketplace in terms of number of installations. Such medium-grained machines typically utilize com-
modity processors and have the ability to efficiently perform as general-purpose (parallel) machines.
Therefore, such medium-grained machines tend to have cost/performance advantages over systems uti-
lizing special-purpose processors. In addition, they can also exploit much of the software written for
their component processors. Fine-grained machines are difficult to use as general-purpose computers
because it is often difficult to determine how to efficiently distribute the work to such simple proces-
sors. However, fine-grained machines can be quite effectivein tasks such as image processing or pattern
matching.

By analogy, one can also use the granularity terminology to describe data and algorithms. For
example, a database is a coarse-grained view of data, while considering the individual records in the
database is a fine-grained view of the same data.

Interconnection Networks

In this section, we discuss interconnection networks that are used for communication among processors
in a distributed memory machine. In some cases, all communication is handled by processors sending
messages to other processors that they have a direct connection to, where messages destined for proces-
sors farther away must be handled by a sequence of intermediate processors. In other other cases the
processors send messages into, and receive messages from, an interconnection network composed of
specialized routers that pass the messages. Most large systems use the latter approach. We use the term
nodeto represent the processors, in the former case, or the routers in the latter case,i.e., in any system,

5

messages are passed from node to node in the interconnectionnetwork.
First, we define some terminology. Thedegree of nodeR is the number of other nodes thatR

is directly connected to via bi-directional communicationlinks. (There are straightforward extensions
to systems with uni-directional links.) Thedegree of the networkis the maximum degree of any node
in the network. Thedistancebetween two nodes is the number of communication links on a shortest
path between the nodes. Thecommunication diameterof the network is the maximum, over all pairs
of nodes, of the distance between the nodes. Thebisection bandwidthof the network corresponds to
the minimum number of communication links that need to be removed (or cut) in order to partition
the network into two pieces, each with the same number of nodes. Goals for interconnection networks
include minimizing the degree of the nodes (to minimize the cost of building them), minimizing the
communication diameter (to minimize the communication time for any single message), and maximiz-
ing the bisection bandwidth (to minimize contention when many messages are being sent concurrently).
Unfortunately, these design goals are in conflict. Other important design goals include simplicity (to
reduce the design costs for the hardware and software) and scalability (so that similar machines, with a
range of sizes, can be produced). We informally call simple scalable interconnectionsregular networks.
Regular networks make it easier for users to develop optimized code for a range of problem sizes.

Before defining some network models (i.e., distributed memory machines characterized by their
interconnection networks, or the interconnection networkused in a shared memory machine), we briefly
discuss theparallel random access machine (PRAM), which is an idealized parallel model of computa-
tion, with a unit-time communication diameter. The PRAM is ashared memory machine that consists
of a set of identical processors, where all processors have unit-time access to any memory location. The
appeal of a PRAM is that one can ignore issues of communication when designing algorithms, focusing
instead on obtaining the maximum parallelism possible in order to minimize the running time necessary
to solve a given problem. The PRAM model typically assumes a SIMD strategy, so that operations are
performed synchronously. If multiple processors try to simultaneously read or write from the same
memory location, then a memory conflict occurs. There are several variations of the PRAM model
targeted at handling these conflicts, ranging from the Exclusive Read Exclusive Write (EREW) model,
which prohibits all such conflicts, to Concurrent Read Concurrent Write (CRCW) models, which have
various ways of resolving the effects of simultaneous writes. One popular intermediate model is the
concurrent read exclusive write (CREW) PRAM, in which concurrent reads to a memory location is
permitted, but concurrent writes are not. For example, a classroom is usually conducted in a CREW
manner. In the classroom, many students can read from the blackboard simultaneously (concurrent
read), while if several students are writing simultaneously on the blackboard, they are doing so in dif-
ferent locations (exclusive write).

The unit-time memory access requirement for a PRAM is not scalable (i.e., it is not realistic
for a large number of processors and memory). However, in creating parallel programs, it is sometimes
useful to describe a PRAM algorithm and then either perform astepwise simulation of every PRAM
operation on the target machine, or perform a higher-level simulation by using global operations. In
such settings, it is often useful to design the algorithm fora powerful CRCW PRAM model, since often
the CRCW PRAM can solve a problem faster or more naturally than an EREW PRAM. Since one is
not trying to construct an actual PRAM, objections to the difficulty of implementing CRCW are not
relevant; rather, having a simpler and/or faster algorithmis the dominant consideration.

In the remainder of this section, several specific interconnection networks are defined. See
Figure 3 for illustrations of these. The networks defined in this section are among the most com-
monly utilized networks. However, additional networks have appeared in both the literature and in
real machines, and variations of the basic networks described here are numerous. For example, many
small systems use only a bus as the interconnection network (where only one message at a time can

6

be transmitted), reconfigurable meshes extend the capabilities of standard meshes by adding dynamic
interconnection configuration [Li and Stout, 1991], and Clos networks have properties between those
of completely connected crossbar systems and hypercubes.

Ring

In aring network, then nodes are connected in a circular fashion so that nodeRi is directly connected to
nodesRi−1 andRi+1 (the indices are computed modulon, so that nodesR0 andRn−1 are connected).
While the degree of the network is only 2, the communication diameter is⌊n/2⌋, which is quite high,
and the bisection bandwidth is only 2, which is quite low.

Meshes and Tori

The n nodes of a2-dimensional square meshnetwork are configured so that an interior nodeRi,j is
connected to its four neighbors, nodesRi−1,j , Ri+1,j , Ri,j−1, andRi,j+1. The four corner nodes are
each connected to their 2 neighbors, while the remaining nodes that are on the edge of the mesh are
each connected to 3 neighbors. So, by increasing the degree of the network to 4, as compared to
the degree 2 of the ring, the communication diameter of the network is reduced to2(

√
n −1), and

the bisection bandwidth is increased to
√

n. The diameter is further reduced, to2⌊√n/2⌋, and the
bisection bandwidth is increased, to2

√
n, in a 2-dimensional torus, which has all the connections of

the 2-dimensional mesh plus connections between the first and last nodes in each row and column.
Meshes and tori of higher dimensions can be constructed, where the degree of ad-dimensional mesh
or torus is2d, and, whenn is a perfectdth power, the diameter is eitherd(n1/d − 1) or d⌊n1/d/2⌋,
respectively, and the bisection bandwidth is eithern(d−1)/d or 2n(d−1)/d, respectively. Notice that the
ring is a 1-dimensional torus.

For a 2-dimensional mesh, and similarly for higher-dimensional meshes, the mesh can be rect-
angular, instead of square. This allows a great deal of flexibility in selecting the size of the mesh, and
the same flexibility is available for tori as well.

Hypercube

A hypercubewith n nodes, wheren is an integral power of 2, has the nodes indexed by the integers
{0, . . . , n − 1}. Viewing each integer in this range as a (log2 n)-bit string, two nodes are directly
connected if and only if their indices differ by exactly one bit. Some advantages of a hypercube are that
the communication diameter is onlylog2 n and the bisection bandwidth isn/2. A disadvantage of the
hypercube is that the number of communication links needed by each node grows aslog2 n, unlike the
fixed degree for nodes in ring and mesh networks. This makes itdifficult to manufacture reasonably
generic hypercube nodes that could scale to extremely largemachines, though in practice this is not a
concern because the cost of an extremely large machine wouldbe prohibitive.

Tree

A complete binary treeof height k, k ≥ 0 an integer, hasn = 2k+1 − 1 nodes. The root node is
at level 0 and the2k leaves are at levelk. Each node at level1, . . . , k − 1 has two children and one
parent, the root node does not have a parent node, and the leaves at levelk do not have children nodes.
Notice that the degree of the network is 3 and that the communication diameter is2k = 2⌊log2 n⌋.
One severe disadvantage of a tree is that when extensive communication occurs, all messages traveling
from one side of the tree to the other must pass through the root, causing a bottleneck. This is because
the bisection bandwidth is only 1. Fat trees, introduced by Leiserson [Leiserson, 1985], alleviate this

7

Figure 3: Sample interconnection networks (from top to bottom): ring, mesh, hypercube, and tree.

8

problem by increasing the bandwidth of the communication links near the root. This increase can
come from changing the nature of the links, or, more easily, by using parallel communication links.
Other generalizations of binary trees include completet-ary trees of heightk, where each node at level
0, . . . , k − 1 hast children. There are(tk+1 − 1)/(t − 1) nodes, the maximum degree ist + 1, and the
diameter is2k = 2⌊logt n⌋.

Designing Algorithms

Viewed from the highest level, many parallel algorithms arepurely sequential, with the same overall
structure as an algorithm designed for a more standard “serial” computer. That is, there may be an input
and initialization phase, then a computational phase, and then an output and termination phase. The
differences, however, are manifested within each phase. For example, during the computational phase,
an efficient parallel algorithm may be inherently differentfrom its efficient sequential counterpart.

For each of the phases of a parallel computation, it is often useful to think of operating on
an entire structure simultaneously. This is a SIMD-style approach, but the operations may be quite
complex. For example, one may want to update all entries in a matrix, tree, or database, and view this
as a single (complex) operation. For a fine-grained machine,this might be implemented by having a
single (or few) data item per processor, and then using a purely parallel algorithm for the operation. For
example, suppose ann × n arrayA is stored on ann × n 2-dimensional torus, so thatA(i, j) is stored
on processorPi,j. Suppose one wants to replace each valueA(i, j) with the average of itself and the
four neighborsA(i−1, j), A(i+1, j), A(i, j−1) andA(i, j+1), where the indices are computed modulo
n (i.e., “neighbors” is in the torus sense). This average filtering can be accomplished by just shifting
the array right, left, up, and down by one position in the torus, and having each processor average the
four values received along with its initial value.

For a medium- or coarse-grained machine, operating on entire structures is most likely to be
implemented by blending serial and parallel approaches. Onsuch an architecture, each processor uses
an efficient serial algorithm applied to the portion of the data in the processor, and communicates with
other processors in order to exchange critical data. For example, suppose then × n array of the previ-
ous paragraph is stored in ap × p torus, wherep evenly dividesn, so thatA(i, j) is stored in processor
P⌊ip/n⌋,⌊jp/n⌋. Then, to do the same average filtering onA, each processorPk,l still needs to communi-
cate with its torus neighborsPk±1,l, Pk,l±1, but now sends them either the leftmost or rightmost column
of data, or the topmost or bottommost row. Once a processor receives its boundary set of data from
its neighboring processors, it can then proceed serially through its subsquare of data and produce the
desired results. To maximize efficiency, this can be performed by having each processor send the data
needed by its neighbors, then perform the filtering on the part of the array that it contains that does not
depend on data from the neighbors, and then finally perform the filtering on the elements that depend
on the data from neighbors. Unfortunately, while this maximizes the possible overlap between commu-
nication and calculation, it also complicates the program because the order of computations within a
processor needs to be rearranged.

Global Operations

To manipulate entire structures in one step, it is useful to have a collection of operations that perform
such manipulations. Theseglobal operationsmay be very problem-dependent, but certain ones have
been found to be widely useful. For example, the average filtering example above made use of shift
operations to move an array around.Broadcastis another common global operation, used to send
data from one processor to all other processors. Extensionsof the broadcast operation include simul-

9

taneously performing a broadcast within every (predetermined and distinct) subset of processors. For
example, suppose matrixA has been partitioned into submatrices allocated to different processors, and
one needs to broadcast the first row ofA so that if a processor contains any elements of columni then
it obtains the value ofA(1, i). In this situation, the more general form of a subset-based broadcast can
be used.

Besides operating within subsets of processors, many global operations are defined in terms
of a commutative, associative, semigroup operator⊗. Examples of such semigroup operators include
minimum, maximum, or, and, sum, andproduct. For example, suppose there is a set of values
V (i), 1 ≤ i ≤ n, and the goal is to obtain the maximum of these values. Then⊗ would represent
maximum, and the operation of applying⊗ to all n values is calledreduction. If the value of the
reduction is broadcast to all processors, then it is sometimes known asreport. A more general form
of the reduction operation involves labeled data items,i.e., each data item is embedded in a record that
also contains a label, where at the end of the reduction operation the result of applying⊗ to all values
with the same label will be recorded in the record.

Global operations provide a useful way to describe major actions in parallel programs. Further,
since several of these operations are widely useful, they are often made available in highly optimized
implementations. The language APL provided a model for several of these operations, and some par-
allel versions of APL have appeared. Languages such as C* [Thinking Machines Corporation, 1991],
UPC [El-Ghazawi, Carlson, Sterline, Yellick, 2005], OpenMP [OpenMP Architecture Review Board, 2005],
and FORTRAN 90 [Brainerd, Goldberg, and Adams, 1990] also provide for some forms of global oper-
ations, as do message-passing systems such as MPI [Snir, Otto, Huss-Lederman, Walker, and Dongarra,
1995]. Reduction operations are so important that most parallelizing compilers detect them automati-
cally, even if they have no explicit support for other globaloperations.

Besides broadcast, reduction, and shift, other important global operations include the following.

Sort: Let X = {x0, x1, . . . , xn−1} be an ordered set such thatxi < xi+1, for all 0 ≤ i < n− 1. (That
is, X is a subset of a linearly ordered data type.) Given that then elements ofX are arbitrarily
distributed among a set ofp processors, the sort operation will (re)arrange the members of X so
that they are ordered with respect to the processors. That is, after sorting, elementsx0, . . . , x⌊n/p⌋

will be in the first processor, elementsx⌊n/p⌋+1, . . . , x⌊2n/p⌋ will be in the second processor, and
so forth. Note that this assumes an ordering on the processors, as well as on the elements.

Merge: Suppose that setsD1 andD2 are subsets of some linearly ordered data type, andD1 andD2 are
each distributed in an ordered fashion among disjoint sets of processorsP1 andP2, respectively.
Then the merge operation combinesD1 andD2 to yield a single sorted set stored in ordered
fashion in the entire set of processorsP = P1 ∪ P2.

Associative Read/Write: These operations start with a set ofmasterrecords indexed by unique keys.
In the associative read, each processor specifies a key and ends up with the data in the master
record indexed by that key, if such a record exists, or else a flag indicating that there is no such
record. In the associative write, each processor specifies akey and a value, and each master
record is updated by applying⊗ to all values sent to it. (Master records are generated for all keys
written.)

These operations are extensions of the CRCW PRAM operations. They model a PRAM
with associative memory and a powerful combining operationfor concurrent writes. On most
distributed memory machines the time to perform these more powerful operations is within a
multiplicative constant of the time needed to simulate the usual concurrent read and concurrent
write, and the use of the more powerful operations can resultin significant algorithmic simplifi-
cations and speedups.

10

Compression: Compression moves data into a region of the machine where optimal interprocessor
communication is possible. For example, compressingk items in a fine-grain two-dimensional
mesh will move them to a

√
k ×

√
k subsquare.

Scan (Parallel prefix): Given a set of valuesai, 1 ≤ i ≤ n, thescancomputation determinessi =
a1 ⊗ a2 ⊗ · · · ⊗ ai, for all i. This operation is available in APL. Note that the hardware feature
known as “fetch-and-op” implements a variant of scan, where“op” is ⊗ and the ordering of the
processors is not required to be deterministic.

All-to-all broadcast: Given dataD(i) in processori, every processorj receives a copy ofD(i), for all
i 6= j.

All-to-all personalized communication: Every processorPi has a data itemD(i, j) that is sent to
processorPj , for all i 6= j.

Example: Maximal Point Problem
As an example of the use of global operations, consider the following problem from computational
geometry. LetS be a finite set of planar (i.e., 2-dimensional) points. A pointp = (px, py) in S is a
maximal pointof S if px > qx orpy > qy, for every point(qx, qy) 6= p in S. Themaximal point problem
is to determine all maximal points ofS. See Figure 4. The following parallel algorithm for the maximal
point problem was apparently first noted by Atallah and Goodrich [Atallah and Goodrich, 1986].

Figure 4: The maximal points of the set are shaded.

1. Sort then planar points in reverse order byx-coordinate, with ties broken by reverse order by
y-coordinate. Let(ix, iy) denote the coordinates of theith point after the sort is complete. There-
fore, after sorting, the points will be ordered so that ifi < j then eitherix > jx or ix = jx and
iy > jy.

2. Use a scan on theiy values, where the operation⊗ is taken to be maximum. The resulting values
{Li} are such thatLi is the largesty-coordinate of any point with index less thani.

11

3. The point(ix, iy) is an extreme point if and only ifiy > Li.

The running timeT (n) of this algorithm is given by

T (n) = Sort(n) + Scan(n) + O(1) , (1)

whereSort(n) is the time to sortn items andScan(n) is the time to perform scan. On all parallel archi-
tectures known to the authors,Scan(n) = O(Sort(n)), and hence on such machines the time of the al-
gorithm isΘ(Sort(n)). It is worth noting that for the sequential model, [Kung, Luccio, and Preparata, 1975]
have shown that the problem of determining maximal points isas hard as sorting.

Divide-and-Conquer

Divide-and-conquer is a powerful algorithmic paradigm that exploits the repeated subdivision of prob-
lems and data into smaller, similar problems/data. It is quite useful in parallel computation because
the logical subdivisions into subproblems can correspond to physical decomposition among processors,
where eventually the problem is broken into subproblems that are each contained within a single pro-
cessor. These small subproblems are typically solved by an efficient sequential algorithm within each
processor.

As an example, consider the problem of labeling the figures ofa black/white image, where
the interpretation is that of black objects on a white background. Two black pixels are defined to be
adjacentif they are vertical or horizontal neighbors, andconnectedif there is a path of adjacent black
pixels between them. Afigure (i.e., connected component) is defined to be a maximally connected set
of black pixels in the image. The figures of an image are said tobe labeledif every black pixel in the
image has a label, with two black pixels having the same labelif and only if they are in the same figure.

We utilize a generic parallel divide-and-conquer solutionfor this problem, given, for example,
in [Miller and Stout, 1996], p. 30. Suppose that then × n image has been divided intop subimages, as
square as possible, and distributed one subimage per processor. Each processor labels the subimage it
contains, using whatever serial algorithm is best and usinglabels that are unique to the processor (so
that no two different figures can accidentally get the same label). For example, often the label used is
a concatenation of the row and column coordinates of one of the pixels in the figure. Notice that so as
long as the global row and column coordinates are used, the labels will be unique. After this step, the
only figures that could have an incorrect global label are those that lie in two or more subimages, and
any such figures must have a pixel on the border of each subimage it is in (see Figure 5). To resolve
these labels, a record is prepared for each black pixel on theborder of a subimage, where the record
contains information about the pixel’s position in the image, and its current label. There are far fewer
such records than there are pixels in the original image, yetthey contain all of the information needed to
determine the proper global labels for figures crossing subimages. The problem of reconciling the local
labels may itself be solved via divide-and-conquer, repeatedly merging results from adjacent regions,
or may be solved via other approaches. Once these labels havebeen resolved, information is sent back
to the processors generating the records, informing them ofthe proper final label.

One useful feature of many of the networks described in the section on Interconnection Net-
works is that they can be divided into similar subnetworks, in a manner that matches the divide-and-
conquer paradigm. For example, if the component labeling algorithm just described were performed on
a mesh computer, then each subregion of the image would correspond to a subsquare of the mesh. As
another example, consider an implementation of quicksort on a hypercube. Suppose a pivot is chosen
and that the data is partitioned into items smaller than the pivot and items larger than the pivot. Further,
suppose that the hypercube is logically partitioned into two subcubes, where all of the small items are
moved into one subcube and all of the large items are moved into the other subcube. Now, the quicksort

12

A

B

C

D

E

F

G H

I J

K L

M

N

The 14 labels shown were generated after each quadrant performed its own, local, labeling algorithm.
While the labels are unique, they need to be resolved globally. Notice that once the labels are resolved

(not shown), the image will have only 5 unique labels, corresponding to the 5 figures.

Figure 5: Divide-and-Conquer for Labeling Figures

13

routine may proceed recursively within each subcube. Because the recursive divide-and-conquer occurs
within subcubes, all of the communication will occur withinthe subcubes and not cause contention with
the other subcube.

Master-Slave

One algorithmic paradigm based on real-world organizationparadigms is the master-slave (sometimes
referred to as manager-worker) paradigm. In this approach,one processor acts as the master, directing
all of the other slave processors. For example, many branch-and-bound approaches to optimization
problems keep track of the best solution found so far, as wellas a list of subproblems that need to be
explored. In a master-slave implementation, the master maintains both of these items and is responsible
for parceling out the subproblems to the slaves. The slaves are responsible for processing the sub-
problems and reporting the result to the master (which will determine if it is the current best solution),
reporting new subproblems that need to be explored to the master, and notifying the master when it
is free to work on a new subproblem. There are many variationson this theme, but the basic idea is
that one processor is responsible for overall coordination, and the other processors are responsible for
solving assigned subproblems. Note that this is a variant ofthe SPMD style of programming, in that
there are two programs needed, rather than just one.

Pipelining and Systolic Algorithms

Another common parallel algorithmic technique is based on models that resemble an assembly line. A
large problem, such as analyzing a number of images, may be broken into a sequence of steps that must
be performed on each image (e.g., filtering, labeling, scene analysis). If one had three processors, and
if each step takes about the same amount of time, one could start the first image on the first processor
that does the filtering. Then the first image is passed on to thenext processor for labeling, while the
first processor starts filtering the second image. In the third time step, the initial image is at the third
processor for scene analysis, the second image is at the second processor for labeling, and the third
image is at the first processor for filtering. This form of processing is calledpipelining, and it maps
naturally to a parallel computer configured as a linear array(i.e., a 1-dimensional mesh or, equivalently,
a ring without the wraparound connection).

This simple scenario can be extended in many ways. For example, as in a real assembly line,
the processors need not all be identical, and may be optimized for their task. Also, if some task takes
longer to perform than others, then more than one processor can be assigned to it. Finally, the flow may
not be a simple line. For example, an automobile assembly process may have one line working on the
chassis, while a different line is working on the engine, andeventually these two lines are merged. Such
generalized pipelining is calledsystolic processing. For example, some matrix and image-processing
operations can be performed in a two-dimensional systolic manner (see [Ullman, 1984]).

Mappings

Often, a problem has a natural structure to be exploited for parallelism, and this needs to be mapped
onto a target machine. Several examples follow.

• The average filtering problem, discussed in the section on Designing Algorithms, has a natural
array structure that can easily be mapped onto a mesh computer. If, however, one had the same
problem, but a tree computer, then the mapping might be much more complicated.

14

• Some artificial intelligence paradigms exploit a blackboard-like communication mechanism that
naturally maps onto a shared memory machine. However, a blackboard-like approach is more
difficult to map onto a distributed-memory machine.

• Finite-element decompositions have a natural structure whereby calculations at each grid point
depend only on values at adjacent points. A finite-element approach is frequently used to model
automobiles, airplanes, and rocket exhaust, to name a few. However, the irregular (and perhaps
dynamic) structure of such decompositions might need to be mapped onto a target parallel archi-
tecture that bears little resemblance to the finite-elementgrid.

• A more traditional example consists of porting a parallel algorithm designed for one parallel
architecture onto another parallel architecture.

In all of these examples, one starts with a source structure that needs to be mapped onto a target
machine. The goal is to map the source structure onto the target architecture so that calculation and
communication steps on the source structure can be efficiently performed by the target architecture.
Usually, the most critical aspect is to map the calculationsof the source structure onto the processors of
the target machine, so that each processor performs the sameamount of calculations. For example, if
the source is an array, and each position of the array represents calculations that need to be performed,
then one tries to map the array onto the machine so that all processors contain the same number of
entries. If the source model is a shared-memory paradigm with agents reading from a blackboard, then
one would map the agents to processors, trying to balance thecomputational work.

Besides trying to balance the computational load, one must also try to minimize the time spent
on communication. The approaches used for these mappings depend on the source structure and target
architecture, and some of the more widely used approaches are discussed in the following subsections.

Simulating Shared Memory

If the source structure is a shared memory model, and the target architecture is a distributed memory
machine, then besides mapping the calculations of the source onto the processors of the target, one must
also map the shared memory of the source onto the distributedmemory of the target.

To map the memory onto the target machine, suppose that thereare memory locations0 . . . n−1
in the source structure, andp processors in the target. Typically one would map locations0 . . . ⌊n/p−1⌋
to processor0 of the target machine, locations⌊n/p⌋ . . . ⌊2n/p − 1⌋ to processor1, and so forth. Such
a simple mapping balances the amount of memory being simulated by each target processor, and makes
it easy to determine where data is located. For example, if a target processor needs to read from shared
memory locationi, it sends a message to target processor⌊ip/n⌋ asking for the contents of simulated
shared memory locationi.

Unfortunately, some shared memory algorithms utilize certain memory locations far more often
than others, which can cause bottlenecks in terms of gettingdata in and out of processors holding the
popular locations. If popular memory locations form contiguous blocks, then this congestion can be
alleviated by stripping (mapping memory locationi to processori mod p) or pseudo-random mapping
[Rau, 1991]. Replication (having copies of frequently readlocations in more than one processor) or
adaptive mapping (dynamically moving simulated memory locations from heavily loaded processors
to lightly loaded ones) are occasionally employed to relieve congestion, but such techniques are more
complicated and involve additional overhead.

15

Simulating Distributed Memory

It is often useful to view distributed memory machines as graphs. Processors in the machine are rep-
resented by vertices of the graph, and communication links in the machine are represented by edges in
the graph. Similarly, it is often convenient to view the structure of a problem as a graph, where vertices
represent work that needs to be performed, and edges represent values that need to be communicated
in order to perform the desired work. For example, in a finite-element decomposition, the vertices of
a decomposition might represent calculations that need to be performed, while the edges correspond to
flow of data. That is, in a typical finite-element problem, if there is an edge from vertexp to vertex
q, then the value ofq at timet depends on the values ofq andp at timet − 1. (Most finite-element
decompositions are symmetric, so thatp at timet would also depend onq at timet − 1.) Questions
about mapping the structure of a problem onto a target architecture can then be answered by considering
various operations on the related graphs.

An ideal situation for mapping a problem onto a target architecture is when the graph repre-
senting the structure of a problem is a subgraph of the graph representing the target architecture. For
example, if the structure of a problem was represented as a connected string ofp vertices and the target
architecture was a ring ofp processors, then the mapping of the problem onto the architecture would
be straightforward and efficient. In graph terms, this is described through the notion of embedding. An
embeddingof an undirected graphG = (V,E) (i.e., G has vertex setV and edgesE) into an undirected
graphG′ = (V ′, E′) is a mappingφ of V into V ′ such that

• every pair of distinct verticesu, v ∈ V , map to distinct verticesφ(u), φ(v) ∈ V ′, and

• for every edge{u, v} ∈ E, {φ(u), φ(v)} is an edge inE′.

Let G represent the graph corresponding to the structure of a problem (i.e., thesource structure) and
let G′ represent the graph corresponding to the target architecture. Notice that if there is an embedding
of G into G′, then values that need to be communicated may be transmittedby a single communication
step in the target architecture represented byG′. The fact that embeddings map distinct vertices ofG to
distinct vertices ofG′ ensures that a single calculation step for the problem can besimulated in a single
calculation step of the target architecture.

One reason that hypercube computers were quite popular is that many graphs can be embedded
into the hypercube (graph). An embedding of the one-dimensional ring of size2d into ad-dimensional
hypercube is called ad-dimensional Gray code. In other words, if{0, 1}d denotes the set of alld-bit
binary strings, then thed-dimensional Gray codeGd is a 1-1 map of0 . . . 2d − 1 onto{0, 1}d, such that
Gd(j) andGd((j + 1) mod2d) differ by a single bit, for0 ≤ j ≤ 2d − 1. The most common Gray
codes, calledreflected binaryGray codes, are recursively defined as follows:Gd is a 1–1 mapping from
{0, 1, . . . , 2d − 1} onto{0, 1}d, given byG1(0) = 0, G1(1) = 1, and ford ≥ 2,

Gd(x) =

{

0Gd−1(x) 0 ≤ x ≤ 2d−1 − 1
1Gd−1(2

d − 1 − x) 2d−1 ≤ x ≤ 2d − 1.
(2)

Alternatively, the same Gray code can be defined in a non-recursive fashion asGd(x) = x ⊕ ⌊x/2⌋,
wherex and⌊x/2⌋ are interpreted asd-bit strings. Further, the inverse of the reflected binary Gray code
can be determined by

G−1
d (y0 . . . yd−1) = x0 . . . xd−1, (3)

wherexd−1 = yd−1, andxi = yd−1 ⊕ · · · ⊕ yi for 0 ≤ i < d − 1.
Meshes can also be embedded into hypercubes. LetM be ad-dimensional mesh of sizem1 ×

m2 × · · · × md, and letr =
∑d

i=1⌈log2 mi⌉. ThenM can be embedded into the hypercube of size

16

2r. To see this, letri = ⌈log2 mi⌉, for 1 ≤ i ≤ d. Let φ be the mapping of mesh node(a1, . . . , ad)
to the hypercube node which has as its label the concatenation Gr1

(a1) · . . . · Grd
(ad), whereGri

denotes anyri-bit Gray code. Thenφ is an embedding. Wrapped dimensions can be handled using
reflected Gray codes rather than arbitrary ones. (A meshM is wrappedin dimensionj if, in addition
to the normal mesh adjacencies, vertices with indices of theform (a1, . . . , aj−1, 0, aj+1, . . . , ad) and
(a1, . . . , aj−1,mj − 1, aj+1, . . . , ad) are adjacent. A torus is a mesh wrapped in all dimensions.) If
dimensionj is wrapped andmj is an integral power of 2, then the mappingφ suffices. If dimensionj
is wrapped andmj is even, but not an integral power of 2, then to ensure that thefirst and last nodes in
dimensionj are mapped to adjacent hypercube nodes, useφ, but replaceGrj

(aj) with

{

Grj
(aj) if 0 ≤ aj ≤ mj/2 − 1

Grj
(aj + 2rj − mj) if mj/2 ≤ aj ≤ mj − 1,

(4)

whereGrj
is therj-bit reflected binary Gray code. This construction ensures thatGrj

(mj/2 − 1) and
Grj

(2rj − mj/2) differ by exactly one bit (the highest order one), which in turns ensures that the
mapping takes mesh nodes neighboring in dimensionj to hypercube neighbors.

Any treeT can be embedded into a(|T | − 1)-dimensional hypercube, where|T | denotes the
number of vertices inT , but this result is of little use since the target hypercube is exponentially larger
than the source tree. Often one can map the tree into a more reasonably sized hypercube, but it is a
difficult problem to determine the minimum dimension needed, and there are numerous papers on the
subject.

In general, however, one cannot embed the source structure into the target architecture. For
example, a complete binary tree of height 2, which contains 7processors, cannot be embedded into a
ring of any size. Therefore, one must consider weaker mappings, which allow for the possibility that
the target machine has fewer processors than the source, anddoes not contain the communication links
of the source. Aweak embeddingof a directed source graphG = (V,E) into a directed target graph
G′ = (V ′, E′) consists of

• a mapφv of V into V ′, and

• a mapφe of E ontopathsin G′, such that if(u, v) ∈ E thenφe((u, v)) is a path fromφv(u) to
φv(v).

(Note that ifG is undirected, each edge becomes two directed edges that maybe mapped to different
paths inG′. Most machines that are based on meshes, tori, or hypercubeshave the property that a
message from processorP to processorQ may not necessarily follow the same path as a message sent
from processorQ to processorP , if P andQ are not adjacent.) The mapφv shows how computations
are mapped from the source onto the target, and the mapφe shows the communication paths that will
be used in the target.

There are several measures that are often used to describe the quality of a weak embedding
(φv, φe) of G into G′, including the following.

Processor Load: the maximum, over all verticesv′ ∈ V ′, of the number of vertices inV mapped
onto v′ by φv. Note that if all vertices of the source structure representthe same amount of
computation, then the processor load is the maximum computational load by any processor in the
target machine. The goal is to make the processor load as close as possible to|V |/|V ′|. If vertices
do not all represent the same amount of work, then one should use labeled vertices, where the
label represents the amount of work, and try to minimize the maximum, over all verticesv′ ∈ V ′,
of the sum of the labels of the vertices mapped ontov′.

17

Link Load (Link Congestion): the maximum, over all edges(u′, v′) ∈ E′, of the number of edges
(u, v) ∈ E such that(u′, v′) is part of the pathφe((u, v)). If all edges of the source structure
represent the same amount of communication, then the link load represents the maximum amount
of communication contending for a single communication link in the target architecture. As for
processor load, if edges do not represent the same amount of communication, then weights should
be balanced instead.

Dilation: the maximum, over all edges(u, v) ∈ E, of the path length ofφe((u, v)). The dilation
represents the longest delay that would be needed to simulate a single communication step along
an edge in the source, if that was the only communication being performed.

Expansion: the ratio of the number of vertices ofG′ divided by the number of vertices ofG. As
was noted in the example of trees embedding into hypercubes,large expansion is impractical.
In practice, usually the real target machine has far fewer processors than the idealized source
structure, so expansion is not a concern.

In some machines, dilation is an important measure of communication delay, but in most mod-
ern general-purpose machines it is far less important because each message has a relatively large start-up
time that may be a few orders of magnitude larger than the timeper link traversed. Link contention may
still be a problem in such machines, but some solve this by increasing the bandwidth on links that would
have heavy contention. For example, as noted earlier,fat-trees[Leiserson, 1985] add bandwidth near
the root to avoid the bottlenecks inherent in a tree architecture. This increases the bisection bandwidth,
which reduces the link contention for communication that poorly matches the basic tree structure.

For machines with very large message start-up times, often the number of messages needed be-
comes a dominant communication issue. In such a machine, onemay merely try to balance calculation
load and minimize the number of messages each processor needs to send, ignoring other communica-
tion effects. The number of messages that a processor needs to send can be easily determined by noting
that processorsp andq communicate if there are adjacent verticesu andv in the source structure such
thatφv mapsu to p andv to q.

For many graphs that cannot be embedded into a hypercube, there are nonetheless useful weak
embeddings. For example, keeping the expansion as close to 1as is possible (given the restriction that a
hypercube has a power of 2 processors), one can map the complete binary tree onto the hypercube with
unit link congestion, dilation two, and unit processor contention. See, for example, [Leighton, 1992].

In general, however, finding an optimal weak embedding for a given source and target is an NP-
complete problem. This problem, sometimes known as themapping problem, is often solved by various
heuristics. This is particularly true when the source structure is given by a finite-element decomposition
or other approximation schemes for real entities, for in such cases the sources are often quite large and
irregular. Fortunately, the fact that such sources often have an underlying geometric basis makes it
easier to find fairly good mappings rather quickly.

For example, suppose the source structure is an irregular grid representing the surface of a
3-dimensional airplane, and the target machine is a 2-dimensional mesh. One might first project the
airplane onto thex-y plane, ignoring thez-coordinates. Then one might locate a medianx-coordinate,
call it x̄, where half of the plane’s vertices lie to the left ofx̄ and half to the right. The vertices may then
be mapped so that those that lie to the left ofx̄ are mapped onto the left half of the target machine, and
those vertices that lie to the right ofx̄ are mapped to the right half of the target. In the left half of the
target, one might locate the mediany-coordinate, denoted̄y, of the points mapped to that half, and map
the points abovēy to the top-left quadrant of the target, and map points belowȳ to the bottom-left. On
the right half a similar operation would be performed for thepoints mapped to that side. Continuing in
this recursive, divide-and-conquer manner, eventually the target machine would have been subdivided

18

down into single processors, at which point the mapping would have been determined. This mapping
is fairly straightforward, balances the processor load, and roughly keeps points adjacent in the grid
near to each other in the target machine, and hence it does a reasonable approximation of minimizing
communication time. This technique is known asrecursive bisectioning, and is closely related to the
serial data structure known as aK-d tree[Bentley, 1975].

An approach which typically results in less communication is to form a linear ordering of the
vertices via their coordinates on aspace-filling curve, and then divide the vertices into intervals of this
ordering. Typically either Z-ordering (aka Morton-ordering) or Peano-Hilbert curves are used for this
purpose. Peano-Hilbert curves are also used as orderings ofthe processors in meshes, where they are
sometimes calledproximity orderings[Miller and Stout, 1996], p. 150.

Neither recursive bisectioning nor space-filling curves minimize the number of messages sent
by each processor, and hence if message start-up time is quite high it may be better to use recursive
bisectioning where the plane is cut along only, say, thex-axis at each step. Each processor would end
up with a cross-sectional slab, with all of the source vertices in given range ofx-coordinates. If grid
edges are not longer than the width of such a slab, then each processor would have to send messages
to only two processors, namely the processor with the slab tothe left and the processor with the slab to
the right.

Other complications can arise because the nodes or edges of such sources may not all represent
the same amount of computation or calculation, respectively, in which case weighted mappings are
appropriate. A variety of programs are available that perform such mappings, and over time the quality
of the mapping achieved, and the time to achieve it, has significantly improved. For irregular source
structures, such packages are generally superior to what one would achieve without considerable effort.

A more serious complication is that the natural source structure may be dynamic, adding nodes
or edges over time. In such situations one often needs to dynamically adjust the mapping to keep the
computational load balanced and keep communication minimal. This introduces additional overhead,
which one must weigh against the costs of not adjusting the imbalance. Often the dynamical remappings
are made incrementally, moving only a little of the data to correct the worst imbalances. Deciding how
often to check for imbalance, and how much to move, typicallydepends quite heavily on the problem
being solved.

Research Issues and Summary

The development of parallel algorithms and efficient parallel programs lags significantly behind that
of algorithms and programs for standard serial computers. This makes sense due to the fact that com-
mercially available serial machines have been available for approximately twice as long as have com-
mercially available parallel machines. Parallel computing, including distributed computing, cluster
computing, and grid computing, is in a rapidly growing phase, with important research and develop-
ment still needed in almost all areas. Extensive theoretical and practical work continues in discovering
parallel programming paradigms, in developing a wide rangeof efficient parallel algorithms, in devel-
oping ways to describe and manage parallelism through new languages or extensions of current ones,
in developing techniques to automatically detect parallelism, and in developing libraries of parallel
routines.

Another factor that has hindered parallel algorithm development is the fact that there are many
different parallel computing models. As noted earlier, architectural differences can significantly affect
the efficiency of an algorithm, and hence parallel algorithms have traditionally been tied to specific
parallel models. One advance is that various hardware and software approaches are being developed to
help hide some of the architectural differences. Thus, one may have, say, a distributed memory machine,

19

but have a software system that allows the programmer to viewit as a shared memory machine. While
it is true that a programmer will usually only be able to achieve the highest performance by directly
optimizing the code for a target machine, in many cases acceptable performance can be achieved without
tying the code to excessive details of an architecture. Thisthen allows code to be ported to a variety of
machines, encouraging code development. In the past, extensive code revision was needed every time
the code was ported to a new parallel machine, strongly discouraging many users who did not want to
plan for an unending parade of changes.

Another factor that has limited parallel algorithm development is that most computer scientists
were not trained in parallel computing and have a limited knowledge of domain-specific areas (chem-
istry, biology, mechanical engineering, civil engineering, physics, and architecture, to name but a few).
As the field matures, more courses will incorporate parallelcomputing and the situation will improve.
There are some technological factors that argue for the needfor rapid improvement in the training of
programmers to exploit parallelism. The history of exponential growth in the clock rate of processors
has come to a close, with only slow advances predicted for thefuture, so users can no longer expect
to solve ever more complex problems merely through improvements in serial processors. Meanwhile,
cluster computers, which are distributed memory systems where the individual nodes are commodity
boards containing serial or small shared memory units, havebecome common throughout industry and
academia. These are low cost systems with significant computing power, but unfortunately, due to the
dearth of parallel programmers, many of these systems are used only to run concurrent serial programs
(known asembarrassingly parallelprocessing), or to run turnkey parallel programs (such as databases).

Parallelism is also becoming the dominant improvement in the capabilities of individual chips.
Some graphics processing units (GPUs) already have over a hundred simple computational units that
are vector processing systems, which can be interpreted as implementing SIMD operations. There is
interest in exploiting these in areas such as data mining andnumeric vector computing, but so far this
has primarily been achieved for proof of concept demonstrations. Most importantly, standard serial
processors are all becoming many-core chips with parallel computing possibilities, where the number
of cores per chip is predicted to have exponential growth. Unfortunately it is very difficult to exploit
their potential, and they are almost never used as parallel computers. Improving this situation has
become an urgent problem in computer science and its application to problems in the disciplinary fields
that require large multi-processor systems.

Defining Terms

Distributed memory: Each processor only has access to only its own private (local) memory, and
communicates with other processors via messages.
Divide-and-conquer: A programming paradigm whereby large problems are solved bydecomposing
them into smaller, yet similar, problems.
Global operations: Parallel operations that affect system-wide data structures.
Interconnection network: The communication system that links together all of the processors and
memory of a parallel machine.
Master-slave (manager-worker): A parallel programming paradigm whereby a problem is broken
into a collection of smaller problems, with a master processor keeping track of the subproblems and
assigning them to the slave processors.
Parallel Random Access Machine (PRAM):A theoretical shared-memory model, where typically the
processors all execute the same instruction synchronously, and access to any memory location occurs
in unit time.
Pipelining: A parallel programming paradigm that abstracts the notion of an assembly line. A task is

20

broken into a sequence of fixed subtasks corresponding to thestations of an assembly line. A series
of similar tasks is solved by starting one task through the subtask sequence, then starting the next task
through as soon as the previous task has finished its first subtask. At any point in time, several tasks are
in various stages of completion.
Shared memory: All processors have the same global image of (and access to) all of the memory.
Single Program Multiple Data (SPMD): The dominant style of parallel programming, where all of
the processors utilize the same program, though each has itsown data.

21

References

[Akl and Lyon, 1993] Akl, S.G. and Lyon, K.A. 1993.Parallel Computational Geometry, Prentice-
Hall, Englewood Cliffs, NJ.

[Atallah and Goodrich, 1986] Atallah, M.J. and Goodrich, M.T. 1986. Efficient parallel solutions to
geometric problems,Journal of Parallel and Distributed Computing3 (1986): 492–507.

[Bentley, 1975] Bentley, J. 1975. Multidimensional binarysearch trees used for associative searching,
Communications of the ACM18(9): 509–517.

[Brainerd, Goldberg, and Adams, 1990] Brainerd, W.S., Goldberg, C., and Adams, J.C. 1990.Pro-
grammers Guide to FORTRAN 90, McGraw-Hill Book Company, New York, NY.

[Flynn, 1966] Flynn, M.J. 1966. Very high-speed computing systems,Proc. of the IEEE, 54(12): 1901–
1909.

[Flynn, 1972] Flynn, M.J. 1972. Some computer organizations and their effectiveness,IEEE Transac-
tions on Computers, C-21:948–960.

[JáJá, 1992] JáJá, J. 1992.An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA.

[Kung, Luccio, and Preparata, 1975] Kung, H.T., Luccio, F.,and Preparata, F.P. 1975. On finding the
maxima of a set of vectors,Journal of the ACM22(4): 469–476.

[Leighton, 1992] Leighton, F.T. 1992.Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA.

[Leiserson, 1985] Leiserson, C.E. 1985. Fat-trees: Universal networks for hardware-efficient super-
computing,IEEE Transactions on Computers, C-34(10):892–901.

[Li and Stout, 1991] Li, H. and Stout, Q.F. 1991. Reconfigurable SIMD parallel processors,Proceed-
ings of the IEEE, 79:429–443.

[Miller and Stout, 1996] Miller, R. and Stout, Q.F. 1996.Parallel Algorithms for Regular Architec-
tures: Meshes and Pyramids, The MIT Press, Cambridge, MA.

[OpenMP Architecture Review Board, 2005] OpenMP Architectural Review Board, 2005.OpenMP
Application Program Interface.

[Quinn, 1994] Quinn, M.J. 1994.Parallel Computing Theory and Practice, McGraw-Hill, Inc., New
York, NY.

[Rau, 1991] Rau, B.R. 1991. Pseudo-randomly interleaved memory.Proc. 18th Int’l. Symp. Computer
Architecture, 1991, 74–83.

[Reif, 1993] Reif, J., ed. 1993.Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San
Mateo, CA.

[Snir, Otto, Huss-Lederman, Walker, and Dongarra, 1995] Snir, M., Otto, S.W., Huss-Lederman, S.,
Walker, D.W., and Dongarra, J. 1995.MPI: The Complete Reference, The MIT Press, Cambridge,
MA.

22

[Thinking Machines Corporation, 1991] Thinking Machines Corporation. 1991.C* Programming
Guide, Version 6.0.2, Cambridge, MA.

[Ullman, 1984] Ullman, J.D. 1984.Computational Aspects of VLSI, Computer Science Press,
Rockville, MD.

[El-Ghazawi, Carlson, Sterline, Yellick, 2005] El-Ghazawi, T., Carlson, W., Sterling, T., Yellick, K.
2005.UPC: Distributed Shared Memory Programming, John Wiley and Sons, New York, NY.

23

Further Information

A good introduction to parallel computing at the undergraduate level isParallel Computing: Theory and
Practiceby Michael J. Quinn. This book provides a nice introduction to parallel computing, including
parallel algorithms, parallel architectures, and parallel programming languages.Parallel Algorithms
for Regular Architectures: Meshes and Pyramidsby Russ Miller and Quentin F. Stout focuses on fun-
damental algorithms and paradigms for fine-grained machines. It advocates an approach of designing
algorithms in terms of fundamental data movement operations, including sorting, concurrent read, and
concurrent write. Such an approach allows one to port algorithms in an efficient manner between ar-
chitectures. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubesis a
comprehensive book by F. Thomson Leighton that also focuseson fine-grained algorithms for several
traditional interconnection networks. For the reader interested in algorithms for the PRAM,An Intro-
duction to Parallel Algorithmsby J. JáJá covers fundamental algorithms in geometry, graph theory, and
string matching. It also includes a chapter on randomized algorithms. Finally, a new approach is used in
Algorithms Sequential & Parallelby Miller and Boxer, which presents a unified approach to sequential
and parallel algorithms, focusing on the RAM, PRAM, Mesh, Hypercube, and Pyramid. This book
focuses on paradigms and efficient implementations across avariety of platforms in order to provide
efficient solutions to fundamental problems.

There are several professional societies that sponsor conferences, publish books, and publish
journals in the area of parallel algorithms. These include the Association for Computing Machinery
(ACM), which can be found at http://www.acm.org,The Institute for Electrical and Electronics En-
gineers, Inc. (IEEE), which can be found at http://www.ieee.org, and theSociety for Industrial and
Applied Mathematics (SIAM), which can be found at http://www.siam.org.

Since parallel computing has become so pervasive, most computer science journals cover work
concerned with parallel and distributed systems. For example, one would expect a journal on program-
ming languages to publish articles on languages for shared-memory machines, distributed memory
machines, networks of workstations, and so forth. For several journals, however, the primary focus is
on parallel algorithms. These journals include theJournal for Parallel and Distributed Computing, pub-
lished by Academic Press (http://www.apnet.com), theIEEE Transactions on Parallel and Distributed
Systems(http://computer.org/pubs/tpds), and for results that can be expressed in a condensed form,Par-
allel Processing Letters, published by World Scientific. Finally, several comprehensive journals should
be mentioned that publish a fair number of articles on parallel algorithms. These include theIEEE
Transactions on Computers, Journal of the ACM, andSIAM Journal on Computing.

Unfortunately, due to very long delays from submission to publication, most results that appear
in journals (with the exception ofParallel Processing Letters) are actually quite old. (A delay of 3-5
years from submission to publication is not uncommon.) Recent results appear in a timely fashion in
conferences, most of which are either peer or panel reviewed. The first conference devoted primarily to
parallel computing was theInternational Conference on Parallel Processing (ICPP), which had its inau-
gural conference in 1972. Many landmark papers were presented at ICPP, especially during the 1970s
and 1980s. This conference merged with theInternational Parallel Processing Symposium (IPPS)
(http://www.ippsxx.org), resulting in theInternational Parallel and Distributed Symposium (IPDPS)
(http://www.ipdps.org). IPDPS is quite comprehensive in that in addition to the conference, it offers a
wide variety of workshops and tutorials.

A conference that tends to include more theoretical algorithms is theACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA)(http://www.spaa-conference.org). This conference is
an offshoot of the premier theoretical conferences in computer science,ACM Symposium on Theory
of Computing (STOC)andIEEE Symposium on Foundations of Computer Science (FOCS). A confer-
ence which focuses on very large parallel systems isSC ’XY(http://www.supercomp.org), where XY

24

represents the last two digits of the year. This conferencesincludes the presentation of the Gordon
Bell Prize for best parallelization. Awards are given in various categories, such as highest sustained
performance and best price/performance. Other relevant conferences include theInternational Super-
computing Conference(http://www.supercomp.de), and theIEEE International Conference on High
Performance Computing(http://www.hipc.org).

Finally, the IEEE Distributed Systems Online site, http://dsonline.computer.org, contains links
to conferences, journals, people in the field, bibliographies on parallel processing, on-line course mate-
rial, books, and so forth.

25

