
Numerical simulation and modeling
are increasingly essential to basic
and applied space-physics research
for two primary reasons. First, the

heliosphere and magnetosphere are vast regions
of space from which we have relatively few in
situ measurements. Numerical simulations let us
“stitch together” observations from different re-
gions and provide data-interpretation insight to
help us understand this complex system’s global
behavior. Second, models have evolved to where
their physical content and numerical robustness,
flexibility, and improving ease of use inspire re-
searchers to apply them to intriguing scenarios
with new measures of confidence.

Indeed, many shortcomings and questions re-
main for even the most advanced models in terms
of inclusion of important physical mechanisms, the
spatial and temporal domains they can address, and
thorny technical numerical issues to be dispatched.
Nonetheless, over the last several years modeling
has crossed a threshold, making the transition from
the arcane preserves of specialists to practical tools
with widespread applications.

Global computational models based on first-
principles mathematical physics descriptions are es-
sential to understanding the solar system’s plasma
phenomena, including the large-scale solar corona,
the solar wind’s interaction with planetary magnetos-
pheres, comets, and interstellar medium, and the ini-
tiation, structure, and evolution of solar eruptive
events. Today, and for the foreseeable future, numer-
ical models based on magnetohydrodynamics (MHD)
equations are the only self-consistent mathematical
descriptions that can span the enormous distances as-
sociated with large-scale space phenomena. Although
providing only a relatively low-order approximation
to actual plasma behavior, MHD models have suc-
cessfully simulated many important space-plasma
processes and provide a powerful means for signifi-
cantly advancing process understanding.

Space scientists have used global MHD simula-
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tions for over 25 years to simulate space plasmas.
Early global-scale 3D MHD simulations focused on
simulating the solar wind–magnetosphere system.
Since then, researchers have used MHD models to
study a range of solar system plasma environments.
During the past 25 years, global MHD model nu-
merical approaches have evolved in several ways.
Early models were based on relatively simple cen-
tral differencing methods, in which physical quan-
tities are expressed as centered finite differences.
Later models take advantage of the so-called high-
resolution approach, in which a nonlinear switch,
or limiter, blends a high-order scheme with a first-
order scheme.1 In more advanced models, the lim-
ited approximation is combined with an approxi-
mate Riemann solver. Some models use an
approximate Riemann solver based on the five
waves associated with the fluid dynamics system,
and treat the electromagnetic effects using the con-
strained-transport technique.2 The latest models
use approximate Riemann solvers based on the
waves associated with the full MHD system.3

In this article we outline elements of a modern, so-
lution-adaptive MHD code that we use at the Uni-
versity of Michigan for space-plasma simulations.

MHD Equations
MHD describes the time evolution of conducting
fluids. The basic MHD equations combine
Maxwell’s equations to describe electromagnetic
fields and the conservation laws of hydrodynamics.
The sources of the electromagnetic fields (electric
charge and current densities) are calculated self-
consistently with the fluid motion.

Classical MHD
We can write the governing equations for an ideal,
nonrelativistic, compressible plasma in many
forms. While the MHD equations’ different forms
describe the same physics at the differential equa-
tion level, there are important practical differences
when we solve the various formulations’ dis-
cretized forms.

According to the Lax–Wendroff theorem,4 we
can expect only conservative schemes to get the
correct jump conditions and propagation speed for
a discontinuous solution. This fact is emphasized
much less in global magnetosphere simulation lit-
erature than the more-controversial divergence of
B issue. In some test problems, the nonconserva-
tive discretization of the MHD equations can lead
to significant errors, which do not diminish with
increased grid resolution.

Primitive variable form. In primitive variables, we

can write the governing equations of ideal
MHD, which represent a combination of Euler’s
gasdynamics equations and Maxwell’s electro-
magnetics equations:

(1)

(2)

(3)

, (4)

where µ0 and γ represent the magnetic perme-
ability of a vacuum and the specific heat ratio of
the gas. In addition, current density j and elec-
tric field vector E are related to magnetic field B
by Ampère’s law and Ohm’s law:

(5)

E = –u × B. (6)

Gasdynamics conservation form. For one popular
class of schemes, we write the equations in a
form in which the gasdynamic terms are in di-
vergence form, and the momentum and energy
equations’ electromagnetic terms are source
terms. This gives

(7)

(8)

(9)

for the hydrodynamic flow, and

(10)

for the magnetic field’s time evolution. In these
equations, I is the identity matrix and Egd is the gas-
dynamic total energy, given by

. (11)

You can see that the source terms in these equa-
tions are entropy preserving.

Fully conservative form. The fully conservative
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form of the equations is

, (12)

where U is the vector of conserved quantities, and
F is a flux diad,

(13)

, (14)

where Emhd is the magnetohydrodynamic energy,
given by

. (15)

Symmetrizable formulation. Sergei Godunov5

and many others have studied symmetrizable
systems of conservation laws. One property of
the symmetrizable form of a system of conser-
vation laws is that we can derive an added con-
servation law

for entropy s by linearly combining the system of
equations. For the ideal MHD equations, as for
the gasdynamic equations, the entropy is s =
log(p/ργ ). Another property is that the system is
Galilean invariant;5 all waves in the system prop-
agate at speeds u ± cw (for MHD, the possible val-
ues of cw are the Alfvén, magnetofast, and ma-
gentoslow speeds). Neither of these properties
holds for the fully conservative form of the MHD
equations.

Godunov showed that the fully conservative
form of the MHD equations (Equation 12) is not
symmetrizable.5 We can write the symmetrizable
form as

, (16)

where

. (17)

Marcel Vinokur separately showed that we could
derive Equation 16 starting from the primitive
form, if no stipulation is made about ∇ • B in the
derivation. Kenneth Powell showed that we could
use this symmetrizable form to derive a Roe-type
approximate Riemann solver for solving the MHD
equations in multiple dimensions.3

The MHD eigensystem arising from Equations 12
or 16 leads to eight eigenvalue–eigenvector pairs. The
eigenvalues and associated eigenvectors correspond to
an entropy wave, two Alfvén waves, two magnetofast
waves, two magnetoslow waves, and an eighth eigen-
value–eigenvector pair that depends on which form of
the equations we are solving. This last wave (which de-
scribes the jump in the normal component of the mag-
netic field at discontinuities) has a zero eigenvalue in
the fully conservative case, and an eigenvalue equal to
the normal component of the velocity un in the sym-
metrizable case. The eigenvector expressions and scal-
ing are more intricate than in gasdynamics.

While Equation 12 is fully conservative, the sym-
metrizable formulation (given by Equation 16) is for-
mally not fully conservative. Terms of order
∇ • B are added to what would otherwise be a diver-
gence form. The danger of this is that shock-jump
conditions might not be correctly met, unless the
added terms are small and/or they alternate in sign so
that the errors are local and, in a global sense, cancel
in some way with neighboring terms. We must weigh
this downside, however, against the alternative; a sys-
tem (the one without the source term) that, while con-
servative, is not Gallilean invariant, has a zero eigen-
value in the Jacobian matrix, and is not symmetrizable.

Semirelativistic MHD
While the solar-wind speed remains nonrelativis-
tic in the solar system, the intrinsic magnetic fields
of several planets in the solar system are high
enough, and the density of the plasma low enough,
that the Alfvén speed

(18)

can reach appreciable fractions of the speed of
light. In the case of Jupiter, the Alfvén speed in the
vicinity of the poles is on the order of 10 times the
speed of light. Earth has a strong enough intrinsic
magnetic field that the Alfvén speed reaches twice
the speed of light in Earth’s near-auroral regions.
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Limiting the Alfvén speed. For these regions, solving
the nonrelativistic ideal MHD equations does not
make sense. Having waves in the system propagat-
ing faster than the speed of light—besides being
nonphysical—causes several numerical difficulties.
However, solving the fully relativistic MHD equa-
tions is overkill. What is called for is a semi-rela-
tivistic form of the equations, in which the flow
speed and acoustic speed are nonrelativistic, but the
Alfvén speed can be relativistic. A derivation of
these semirelativistic equations from the fully rel-
ativistic equations is given elsewhere;6 we present
the final result here. The essence of the derivation
is that we must keep the displacement current and,
thus, limit the Alfvén speed by the speed of light.

The semirelativistic ideal MHD equations are of
the form

, (19)

where the state vector Usr and the flux diad Fsr are

(20)

. (21)

In the preceding equations,

(22)

(23)

(24)

are the Poynting vector, the electromagnetic en-
ergy density, and the electromagnetic pressure ten-
sor, respectively. The electric field E is related to
the magnetic field B by Ohm’s law (Equation 6).

Lowering the speed of light. This new system of
equations has wave speeds limited by the speed
of light; for strong magnetic fields, the modified
Alfvén speed (and the modified magnetofast

speed) asymptote to c. The modified magne-
toslow speed asymptotes to a, the acoustic speed.
This property offers the possibility of a tricky
convergence-acceleration technique for explicit
time-stepping schemes, first suggested by Jay
Boris;7 the wave speeds can be lowered, and the
stable time step thereby raised, by artificially
lowering the value taken for the speed of light.
This method is known as the Boris correction.

In the next section, Equations 19 through 24 are
valid in physical situations in which VA > c. A slight
modification yields a set of equations, the steady-state
solutions of which are independent of the value taken
for the speed of light. Defining the true value of the
speed of light to be c0, to distinguish it from the arti-
ficially lowered speed of light c, the equations are

, (25)

where the state vector, Usr, and the flux diad Fsr are
as defined in Equations 20 and 21, and the new
source term in the momentum equation is

. (26)

Numerical Solution Techniques
Numerical solution of the MHD equations starts
with discretization of the system of equations to be
solved. All discretization schemes introduce errors
and other undesirable effects. Modern numerical
solution techniques minimize discretization errors
and optimize the efficiency of the solution.

Finite-Volume Schemes
for Systems of Conservation Laws
We can write a coupled system of conservation laws
in the form

, (27)

where U is the vector of conserved quantities (for
example, mass, x−momentum, mass fraction of a
particular species, magnetic field, and so on), Fconv
is the convective flux, and S is the source-term
modeling diffusion, chemical reactions, and other
effects. If necessary, we also can include the trans-
port of radiation in this framework.

Systems of conservation laws lend themselves
well to finite-volume discretization. We divide the
computational domain into “cells,” typically hexa-
hedra or tetrahedra, and integrate the system of
partial differential equations given in Equation 27
over each cell in the resulting grid. This leads to a
set of coupled ordinary differential equations in
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time, with the conserved quantities’ cell-averaged
values as the unknowns. A conserved physical
quantity’s rate of change is the sum of all fluxes
through the faces defining the cell plus the volume
integral of the source terms. This leads to the fol-
lowing ordinary differential equation for the cell
volume averaged vector of conserved physical
quantities :

, (28)

where V is the volume of the cell, A is the surface
area of a given cell face multiplied by the normal
vector of the face (the normal vector always points
outward of the cell), and is the volume average
of all source terms. Equation 28 provides an inher-
ently 3D update of  and does not separate dif-
ferent directions into different steps (as it is done
in operator-splitting methods).

The result is a very physical one: each cell in the
grid is a small control volume, in which the integral
form of the conservation laws hold. For example, the
time rate of change of the average mass in the cell is
expressed in terms of flux of mass through the faces
of the cell. In this approach, the sophistication level
used to compute the fluxes across cell boundaries
fundamentally determines the solution’s quality.

One distinct advantage of this conservation-law-
based finite-volume approach is that we can achieve
discontinuous solutions, while obeying proper
jump conditions, even at the discrete level. For ex-
ample, any shocks in a flow will satisfy the
Rankine–Hugoniot conditions. While we can
achieve this property using a scheme derived from
a finite-difference approach, it is a natural conse-
quence of adopting a finite-volume point of view.

High-Resolution Upwind Schemes
Early work in numerical methods for convection-
dominated problems showed that results strongly
depended on how the spatial derivatives were nu-
merically calculated. The most straightforward
methods, obtained by using symmetric centered
differences, led to numerically unstable schemes.

Before the development of modern high-resolu-
tion upwind schemes, researchers solving hyper-
bolic systems of conservation laws had a choice be-
tween schemes such as Lax–Friedrichs or Rusanov,
which were extremely dissipative, or Lax–Wendroff,
which was much less dissipative but could not cap-
ture even weakly discontinuous solutions (for ex-
ample, shock waves) without nonphysical and po-
tentially destabilizing oscillations in the solutions.

Over the past half a century, a rich class of
schemes became available for numerical solutions of

conservation laws. The basic building blocks were

• Godunov’s concept of using the solution to
Riemann’s initial-value problem as a building
block for a first-order numerical method;

• Bram van Leer’s insight that Godunov’s orig-
inal scheme could be extended to a higher or-
der by making the scheme nonlinear; and

• work by Philip Roe, van Leer, Stanley Osher,
and others on “approximate Riemann solvers,”
which led to a wide array of schemes that were
much less computationally expensive than Go-
dunov’s original scheme.

These methods revolutionized computational
fluid dynamics and lead to the development of
modern numerical methods for the solution of
MHD equations.

Upwind differencing. The most successful schemes
were those that used the convection direction to
bias the derivatives’ numerical representation.
These biased schemes are called upwind
schemes, because the data in the update step is bi-
ased toward the upwind direction. The simplest
upwind scheme for the convection equation

(29)

is

, (30)

where i is an index denoting discrete spatial loca-
tion, and n is an index denoting discrete tempo-
ral location.

For systems of conservation laws, use of the up-
winding idea relies on

• doing some type of characteristic decomposi-
tion to determine which way is upwind for
each of the waves of the system and

• constructing an interface flux based on this
characteristic decomposition, using upwind-
biased data.

The first step makes the scheme stable; the sec-
ond makes it conservative. There are many ways to
carry out the two steps; various approaches lead to
a variety of upwind schemes.

Approximate Riemann solvers. The original Go-
dunov scheme8 was a finite-volume scheme for so-
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lution of inviscid, compressible gas flow equations.
This scheme’s seminal idea was that at each time
step, the fluxes of mass, momentum, and energy
through the face connecting two cells of the grid
were computed by a solution to Riemann’s initial
value problem. Specifically, the early interaction
between the fluid states in two neighboring cells
were computed numerically from the nonlinear,
self-similar problem of the wave interactions be-
tween the two fluids. This procedure was carried
out for a time ∆t at each cell–cell interface in the
grid, which constituted one iteration.

This scheme, though computationally expensive
and only first-order accurate, had a huge impact on
computational methods for conservation laws. First,
the scheme was extremely robust, even for very
strong shocks. It was also much more accurate than
the few other schemes that were similarly robust. Fi-
nally, researchers soon realized that they could carry
the concept to other systems of conservation laws.

Several researchers refined Godunov’s scheme by
replacing the exact solution of the Riemann prob-
lem with approximate solutions that were cheaper,
and had certain nice properties.

One of these approximate Riemman solvers that
is particularly known because of its high accuracy
is Roe’s scheme.9 We will briefly describe it here for
a one-dimensional system of conservation laws; its
extension to multiple dimensions is relatively
straightforward.

Roe’s scheme computes the fluxes at a cell inter-
face based on the states to the left and right of the
interface. It looks for simple wave solutions to the
system of conservation laws and constructs a nu-
merical flux that treats each of these waves in an
upwind manner. If we substitute the relation

U(x, t) = U(x – λt) (31)

into the conservation law

, (32)

the eigenvalue problem

(33)

results, where I is an identity matrix. Roe’s scheme
is based on the eigenvalues λk and right and left
eigenvectors Rk and Lk that arise from this eigen-
value problem. In general, for a system of n con-
servation laws, there will be n eigenvalues, each
with a corresponding left and right eigenvector.
The Roe flux is expressed in terms of the states UL
and UR just to the left and right of the interface.

We can write it as

• the flux calculated based just on the left state,
plus a correction due to waves traveling left-
ward from the right cell, 

• the flux calculated based just on the right state,
plus a correction due to waves traveling right-
ward from the left cell, or

• a symmetric form that arises from averaging
the previous two expressions, given by

. (34)

Research into approximate Riemman solvers led
to robust and low-dissipation schemes. These al-
gorithmic advances yielded methods that had the
minimum dissipation necessary to provide stabil-
ity—they provided robustness nearly equal to that
of the Lax–Friedrichs scheme in conjunction with
accuracy near that of the Lax–Wendroff scheme.
When coupled with the limited-reconstruction
techniques, these schemes provided the accurate,
robust, efficient approaches that we generally clas-
sify as high-resolution methods.

Limited reconstruction. Our approach takes advan-
tage of these advances in approximate Riemann
solvers and limited reconstruction. The limited-
reconstruction approach ensures second-order ac-
curacy away from discontinuities, while simulta-
neously providing the stability that ensures
nonoscillatory solutions. We use modern limiters
to ensure these properties. The approximate Rie-
mann solver approach provides the correct cap-
turing of discontinuous solutions and a robustness
across a wide range of flow parameters.

To compute the interface flux, we need interpolated
values of the flow states at the interfaces between cells.
Since the interface lies halfway between the cell cen-
ters on a Cartesian grid, a simple averaging of the two
cell center states might seem appropriate. However,
we need a more sophisticated interpolation to yield
schemes that meet our accuracy and stability criteria.

van Leer proposed a family of limited interpola-
tion schemes, in what is now known as the mono-
tone upstream-centered schemes for conservation
laws (MUSCL) approach.10 To interpolate a vari-
able q to the interface i + 1/2 between cell centers i,

and i + 1, we can use

. (35)  
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In the preceding, κ is a parameter that deter-
mines the relative weighting of the upwind and
downwind cells in the reconstruction, and φ is a
limiter function. If φ were taken to be zero, the in-
terpolation would be the first-order one—that is,
the interface value is the same as the cell-centered
value. If φ were taken to be one, the reconstruction
would be unlimited. For stability’s stake, φ is a func-
tion of the ratio

. (36)

Popular choices for κ are zero (Fromm’s scheme)
and minus one (second-order upwind). Popular
choices for φ include

van Albada

, (37)

Minmod

, (38)

Superbee: φ(r) = max(0, min(2r,1), min(r,2)). (39)

∇ • B Control Techniques
Another way in which the numerical solution of the
MHD equations differs from that of the gasdynamic
equations is the constraint that ∇ • B = 0. We can en-
force this constraint numerically, particularly in
shock-capturing codes, in a number of ways, but
each way has its particular strengths and weaknesses.
Next, we provide a brief overview of the schemes.
(For more complete explanations, refer to the cited
references. Gábor Tóth has a numerical comparison
of many of the approaches for a suite of test cases.11)

Eight-wave scheme. Kenneth Powell3,12 first pro-
posed an approach based on the symmetrizable
form of the MHD equations (Equation 16). In
this approach, the source term on the right-hand
side of Equation 16 is computed at each time
step and included in the update scheme. Dis-
cretizing this form of the equations leads to en-
hanced stability and accuracy. However, there is
no stencil on which the divergence is identically
zero. In most regions of the flow, the divergence
source term is small, but it is not guaranteed to
be small near discontinuities. In essence, the in-
clusion of the source term changes what would
be a system zero eigenvalue to one whose value
is un, the component of velocity normal to the

interface through which the flux is computed.
We typically refer to the scheme as the eight-
wave scheme; the eighth wave corresponds to
propagation of jumps in the normal component
of the magnetic field.

We can think of the eight-wave scheme as a hy-
perbolic or advective approach to controlling ∇ • B;
symmetrizable form of the equations (Equation 16)
are consistent with the passive advection of
∇ • B/ρ. The eight-wave scheme is computationally
inexpensive, easy to add to an existing code, and
quite robust. However, if there are regions in the
flow in which the ∇ • B source term Equation 17 is
large, the numerical errors can create problems
such as the generation of spurious magnetic fields.

Projection scheme. Jeremiah Brackbill and Daniel
Barnes13 proposed using a Hodge-type projec-
tion to the magnetic field. This approach leads
to a Poisson equation to solve each time the pro-
jection occurs:

∇2φ = ∇ • B (40)

Bprojected = B – ∇φ. (41)

The resulting projected magnetic field is diver-
gence-free on a particular numerical stencil, to the
level of error of the Poisson equation’s solution.
While it is not immediately obvious that using the
projection scheme in conjunction with the fully con-
servative form of the MHD equations gives the cor-
rect weak solutions, Tóth proved this to be the
case.11 The projection scheme has several advan-
tages, including the ability to use standard software
libraries for the Poisson solution, its relatively
straightforward extension to general unstructured
grids, and its robustness. It does, however, require
solving an elliptic equation at each projection step,
which can be expensive, particularly on distributed-
memory machines.

Diffusive control. Some of the most recent work
on the ∇ • B = 0 constraint relates to modifying
the eight-wave approach by adding a source
term proportional to the gradient of ∇ • B so that
the divergence satisfies an advection-diffusion
equation, rather than a pure advection equation.
This technique, referred to as diffusive control
of ∇ • B, has the same advantages and disadvan-
tages as the eight-wave approach. It is not strictly
conservative, but appears to keep the level of
∇ • B lower than the eight-wave approach does.

Constrained transport. Several approaches exist
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that combine a Riemann-solver-based scheme
with a constrained-transport approach. Evans
and Hawley’s constrained-transport approach
treated the MHD equations in the gasdynam-
ics–electromagnetic-split form of Equations 7
through 9.2 The grid was staggered, and the
∇ • B = 0 constraint met identically, on a partic-
ular numerical stencil.

The advantages of the conservative constrained-
transport schemes are that they are strictly conser-
vative and that they meet the ∇ • B = 0 constraint to
machine accuracy, on a particular stencil. The pri-
mary disadvantage is the difficulty in extending
them to general grids. Tóth and Roe14 made some
progress on this front; they developed divergence-
preserving prolongation and restriction operators,
allowing the use of conservative constrained-trans-
port schemes on h-refined meshes.

However, conservative constrained-transport
techniques also lose their ∇ • B-preserving prop-
erties if different cells advance at different phys-
ical time rates. This precludes using local time-
stepping. Thus, while for unsteady calculations
the cost of the conservative constrained-transport
approach is comparable to the eight-wave
scheme, for steady-state calculations (where we
typically would use local time-stepping), the cost
can be prohibitive.

Time-Stepping
Because a major goal of global space-plasma simu-
lations is creating a predictive space-weather tool,
solution time is a paramount issue; a predictive
model must run substantially faster than real time.
From the starting point—observing a solar event—
to the ending point—postprocessing the data from
a simulation based on the initial observational con-
ditions—a simulation must accomplish rapidly to
be useful.

The principal limitation of the present genera-
tion of global space-plasma codes is the explicit
time-stepping algorithm. Explicit time steps are
limited by the Courant-Friedrichs-Lewy (CFL)
condition, which ensures that no information trav-
els more than one cell size during a time step. This
condition represents a nonlinear penalty for highly
resolved calculations, because finer grid resolution
not only results in more computational cells, but
also in smaller time steps.

In global MHD space-plasma simulations, two
factors control the CFL condition: the smallest cell
size in the simulation and the fast magnetosonic
speed in high-magnetic-field, low-plasma-density
regions. In a typical magnetosphere simulation, in
which the smallest cell size is about 0.25 RE, the

CFL condition limits the time step to about 10–2 s.
The high fast magnetosonic speed (due to the high
Alfvén speed) in the near-Earth region primarily
controls this small step.

Local Time-Stepping
In the local time-stepping approach, a local stability
condition determines the time step for each cell in a
computational domain. The flow variables in cell i
are advanced from time step n to time step n + 1 as

Ui
n+1 = Ui

n + ∆ti
n (–∇ • F + Q)i , (42)

where the stability condition determines the local
time step. Here, U represents the conservative state
vector, F is the flux diad, and Q is the source term.
In case of ideal MHD, the time step is determined
by the CFL condition

, (43)

where C < 1 is the Courant number and ci
fast is the

fast speed in cell i. In more than one dimension,
we use the sum of the speeds in all directions in
the denominator.

This technique is different from subcycling, in
which cells advance at the same physical time rate, but
the number of time steps individual cells take varies.
For example, in adaptive grids, usually we set the time
step to be inversely proportional to cell size, so that a
finer cell typically makes two half time steps while the
coarser cell makes only one full time step. In this
method, a global stability condition determines the
time steps compared with local time-stepping in
which time steps are set on a cell-by-cell basis.

Equation 42 shows that if a steady-state solution
exists, it satisfies

0 = (–∇ • F + Q)i (44)

because in steady state, U i
n+1 = U i

n, and we can sim-
plify with the time step ∆ ti

n, which always is a pos-
itive number. Consequently, the steady-state solu-
tion is independent of the time step, so it does not
matter if it is local or global.

The preceding proof assumes that the boundary
conditions fully determine the steady state. This is
a nontrivial assumption because the MHD equa-
tions are nonlinear. Initial boundary value prob-
lems might or might not asymptote to steady states
independent of the initial conditions; it depends on
the boundary conditions imposed, which are prob-
lem dependent. In practice, magnetosphere simu-
lations seem to converge to the same solution in-
dependent of the initial conditions or the
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time-integration scheme.
The applicability of the local time-stepping tech-

nique in a given scheme depends primarily on the
evolution of ∇ • B. In some methods, even if ∇ • B = 0
initially, the numerical transients toward steady state
will destroy this property with the application of lo-
cal time-stepping. For instance, we can show that the
constrained transport scheme can’t be combined with
local time-stepping. In our code, we use constrained
transport only in time-accurate simulations, local
time-stepping with the eight-wave method.

Implicit Time-Stepping
The simplest and least-expensive time-stepping
scheme is multistage explicit time-stepping, in
which the CFL stability condition limits a time
step. We also have an unconditionally stable fully
implicit time-stepping scheme. This second-order
implicit time discretization requires solving a sys-
tem of nonlinear equations for all flow variables at
each time step. We can achieve this by using the
Newton–Krylov–Schwarz approach: applying a
Newton iteration to the nonlinear equations, solv-
ing them using a parallel Krylov type iterative
scheme, and accelerating the Krylov solver con-
vergence with a Schwarz-type preconditioning. Be-
cause every block has a simple Cartesian geometry,
we can implement the preconditioner very effi-
ciently. The resulting implicit scheme requires
about 20 to 30 times more CPU time per time step
than the explicit method, but the physical time step
can be 1,000 to 10,000 times larger. This implicit
algorithm has very good parallel scaling because of
the Krylov scheme and the block-by-block pre-
conditioner application. While our scaling for the
implicit is quite good, it’s not as near perfect as the
explicit, because of the higher amount of inter-
processor communication overhead.

We also can combine explicit and implicit time-
stepping. Magnetosphere simulations include large
volumes in which the Alfvén speed is quite low (tens
of km/s), and the local CFL number allows large, ex-
plicit time steps (tens of seconds to several minutes).
In these regions, implicit time-stepping is a waste of
computational resources. Because the parallel im-
plicit technique we use is fundamentally block based,
we implicitly treat only those blocks where the CFL
condition would limit the explicit time step to less
than the selected time step (typically, approximately
10 s). This combined explicit–implicit time-stepping
represents more computational challenges (such as
separate load balancing of explicit and implicit
blocks). Overall, this solution seems to be a very
promising option, but we need to explore other po-
tential avenues before we make a final decision about

the most efficient time-stepping algorithm for space
MHD simulations.

Data Structure and
Adaptive Mesh Refinement
Adaptive mesh refinement (AMR) techniques that au-
tomatically adapt the computational grid to the solu-
tion of the governing PDEs are very effective in treat-
ing problems with disparate length scales. They avoid
underresolving the solution in interested regions (for
example, high gradient) and, conversely, avoid over-
resolving the solution in other less-interesting regions
(low gradient), thereby saving orders of magnitude in
computing resources for many problems. For typical
solar-wind flows, length scales can range from tens of
kilometers in the near Earth region to the Earth–Sun
distance (1.5 × 1011 m), and timescales can range from
a few seconds near the Sun to the expansion time of
the solar wind from the Sun to Earth (~ 105 s). The
use of AMR is extremely beneficial and almost a vir-
tual necessity for solving problems with such disparate
spatial and temporal scales.

Block-Adaptive AMR
We developed a simple and effective block-based
AMR technique used with the finite-volume scheme
previously described. We integrate the governing
equations to obtain volume-averaged solution quan-
tities within rectangular Cartesian computational
cells. The computational cells are embedded in reg-
ular structured blocks of equal-sized cells. The
blocks are geometrically self-similar. Typically, the
blocks we use consist of anywhere between 4 × 4 × 4
= 64 and 12 × 12 × 12 = 1,728 cells (see Figure 1).
We store solution data associated with each block in
standard indexed array data structures, making it
straightforward to obtain solution information from
neighboring cells within a block.

Computational grids are composed of many self-
similar blocks. Although each block within a grid
has the same data-storage requirements, blocks can
be of different sizes in terms of the volume of phys-
ical space they occupy. Starting with an initial mesh
consisting of blocks of equal size (that is, equal res-
olution), we accomplish adaptation by dividing and
coarsening appropriate solution blocks. In regions
requiring increased cell resolution, a parent block
is refined by dividing itself into eight children, or
offspring. Each of the eight octants of a parent
block becomes a new block with the same number
of cells as the parent, which doubles cell resolution
in the region of interest. Conversely, in overre-
solved regions, the refinement process reverses;
eight children coarsen and coalesce into a single
parent block. Thus, cell resolution reduces by a fac-
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tor of 2. We use standard multigrid-type restriction
and prolongation operators to evaluate the solution
on all blocks created by the coarsening and division
processes, respectively.

Figure 1 shows two neighboring blocks, one re-
fined and one that isn’t. Any block can be refined,
successively leading to finer blocks. In the present
method, we constrain mesh refinement such that
the cell resolution changes by only a factor of 2 be-
tween adjacent blocks; the minimum resolution is
not less than the initial mesh’s.

To independently apply the update scheme for a
given iteration or time step directly to all blocks, ad-
jacent blocks—those with common interfaces—share
some additional solution information. This infor-
mation resides in an additional two layers of over-
lapping ghost cells associated with each block. At in-
terfaces between blocks of equal resolution, these
ghost cells simply take on the solution values associ-
ated with the appropriate interior cells of the adja-
cent blocks. At resolution changes, restriction and
prolongation operators, similar to those used in block
coarsening and division, evaluate the ghost-cell so-
lution values. After each stage of the multistage time-
stepping algorithm, ghost-cell values reevaluate to
reflect the updated solution values of neighboring
blocks. The AMR approach also requires additional
interblock communication at interfaces with resolu-
tion changes to strictly enforce the flux conservation
properties of the finite-volume scheme. In particu-
lar, we use the interface fluxes computed on more re-
fined blocks to correct the interface fluxes computed
on coarser neighboring blocks to ensure that the
fluxes are conserved across block interfaces.

Hierarchical Tree Data Structure
We use a hierarchical tree-like data structure with
multiple roots and trees and additional intercon-
nects between the tree leaves to track mesh refine-
ment and the connectivity between solution blocks.
Figure 2 depicts this interconnected data structure
“forest.” The blocks of the initial mesh are the for-
est roots, which reside in an indexed array data
structure. Associated with each root is a separate oc-
tree data structure that contains all the blocks mak-
ing up the tree leaves created from the original par-
ent blocks during mesh refinement. Each grid block
corresponds to a tree node. To determine block
connectivity, we can traverse the multitree structure
by recursively visiting the parent and children solu-
tion blocks. However, to reduce overhead associ-
ated with accessing solution information from ad-
jacent blocks, we compute and store the neighbors
of each block directly, providing interconnects be-
tween blocks in the hierarchical data structure that

are neighbors in physical space.
An advantage of the preceding hierarchical data

structure is that it is relatively easy to carry out local
mesh refinement anytime during a calculation. For
example, if a particular flow region becomes suffi-
ciently interesting at some point in a computation,
we can obtain better resolution of that region by re-
fining its solution blocks, without affecting the grid
structure in other regions of the flow. Reducing grid
resolution in a region is equally easy. There is no
need to completely remesh the entire grid and re-
calculate block connectivity with each mesh refine-
ment. Although other approaches are possible, ours
directs block coarsening and dividing via multiple
physics-based refinement criteria. In particular, we
base decisions about when to refine or coarsen
blocks on comparisons of the maximum values of
various local flow quantities determined in each
block to specified refinement threshold values. Note
that we dynamically adjust the refinement thresh-
olds to control a calculation’s total number of blocks
and cells. We can use other refinement criteria, such
as a combination of estimated numerical errors.

Figure 3 illustrates the adaptation of the block-
based Cartesian mesh to an evolving solution. It
shows the grid at four time instances for an unsteady
calculation, showing the solution blocks (thick lines)
and computational cells (thin lines) of the evolving
grid. As previously noted, each grid refinement level
introduces cells smaller in dimension by a factor of 2
from those one level higher in the grid. Typically, cal-
culations might have 10 to 15 refinement levels; some

(b)(a)

Figure 1. Self-similar blocks. (a) Those used in parallel block-based
adaptive mesh refinement schemes, and (b) illustrating the double
layer of ghost cells for both coarse and fine blocks.
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calculations could have more than 20. With 20, the
finest cells on the mesh are more than one million
times (220) smaller in each dimension than the coars-
est cells. The block-based AMR approach previously
described has many similarities to the cell-based
method proposed by De Zeeuw and Powell.12 Al-
though the block-based approach is somewhat less
flexible and incurs some solution resolution ineffi-
ciencies compared with a cell-based approach, it of-
fers many advantages when we consider parallel al-
gorithm implementations and performance issues.
Next, we look at how block adaptation readily en-
ables domain decomposition and effective load bal-
ancing and leads to low communication overhead be-
tween solution cells within the same block.

Parallel Implementation
We designed the parallel block-based AMR solver
from the ground up, aiming to achieve very high
performance on massively parallel architectures.
The underlying upwind finite-volume solution al-
gorithm, with explicit time-stepping, has a very

compact stencil, making it highly local. The hier-
archical data structure and self-similar blocks read-
ily simplify domain decomposition and readily en-
able good load-balancing, a crucial element for
truly scalable computing. Natural load-balancing
occurs by distributing the blocks equally among the
processors. We achieve additional optimization by
ordering the blocks using the Peano–Hilbert space-
filling curve to minimize interprocessor communi-
cation. The self-similar nature of the solution
blocks also means that serial performance en-
hancements apply to all blocks and that fine-
grained algorithm parallelization is possible. The
algorithm’s parallel implementation is so pervasive
that even the grid adaptation performs in parallel.

Other features of the parallel implementation in-
clude using Fortran 90 as the programming language
and the message-passing interface (MPI) library for
performing the interprocessor communication. Use
of these standards greatly enhances code portability
and leads to very good serial and parallel perfor-
mance. Message passing occurs asynchronously, with
gathered wait states and message consolidation.

We implemented these new methods in the block
adaptive-tree solar-wind Roe-type upwind scheme
(BATS-R-US) code developed at the University of
Michigan.6,12 BATS-R-US solves the relativistic
MHD equations using block-based AMR technology,
finite-volume methodology with four approximate
Riemann solvers (Roe,9 Linde,16 artificial wind,17 and
Lax-Friedrichs/Rusanov), four different divergence
B control techniques (eight-wave, constrained trans-
port, projection, and ∇ • B diffusion), and your choice
of five limiters. You also can choose different time-
stepping methods (local, explicit, implicit, and com-
bined explicit and implicit) depending on the type of
problem you want to solve.

We’ve implemented the algorithm on Cray T3E
supercomputers, SGI and Sun workstations, Be-
owulf-type PC clusters, SGI shared-memory ma-
chines, a Cray T3D, several IBM SP2s, and Com-
paq supercomputers. BATS-R-US nearly perfectly
scales to 1,500 processors and a sustained speed of
342 GFlops has been attained on a Cray T3E-1200
using 1,490 processors. For each target architec-
ture, we use simple single-processor measurements
to set the adaptive block size. Figure 4 shows the
scaling of BATS-R-US on various architectures.

Applications to 
Space Weather Simulations
Researchers have applied BATS-R-US to global
numerical simulations of the inner heliosphere
including coronal mass ejection (CME) propaga-
tion,18 the coupled terrestrial
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Figure 2. Solution blocks of a computational mesh with three refine-
ment levels originating from two initial blocks and the associated
hierarchical multiroot octree data structure. The figure omits
interconnects to neighbors.
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magnetosphere–ionosphere,19, 20 and the inter-
action of the heliosphere with the interstellar
medium.21 Other applications include a host of
planetary problems ranging from comets,22, 23 to
the planets Mercury,24 Venus,25 Mars,26 and Sat-
urn,27 to planetary satellites.28,29 Next, we pre-
sent a selection of space-weather-related simula-
tions that are most relevant for practical
applications.

Space Weather
“Space weather” refers to conditions on the Sun and
in the solar wind, magnetosphere, ionosphere, and
thermosphere that can influence the performance
and reliability of space-borne and ground-based
technological systems; it can affect human life or
health as well. Adverse conditions in the space en-
vironment can disrupt satellite operations, commu-
nications, navigation, and electric power distribu-
tion grids, leading to broad socioeconomic losses.

The solar corona is so hot (> 106 K) that in open
magnetic field regions, it expands transonically, fill-
ing all of interplanetary space with a supersonic mag-
netized plasma flowing radially outward from the
Sun. As this flowing plasma—the solar wind—passes
the Earth, it interacts strongly with the geomagnetic
field, severely compressing the field on the Earth’s
dayside, and drawing it out into a long, comet-like
tail on the nightside. The confined region of geo-
magnetic field is called the Earth’s magnetosphere.

The solar wind not only confines the terrestrial
magnetic field within the magnetospheric cavity,
but it also transfers significant mass, momentum,
and energy to the magnetosphere, as well as to the
ionosphere and upper atmosphere. One dramatic
consequence of this solar wind and magnetosphere
interaction is the production of a variety of com-
plex electric current systems, ranging from a sheet
of current flowing on the solar wind and magne-
tosphere boundary, to an enormous current ring
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Figure 3. Evolution of a computational mesh illustrating grid adaptation in response to numerical solution changes. The cross-
sectional cuts through a 3D grid are for a solar-wind calculation at four different time instances. The computational cells are not
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flowing around Earth in the inner magnetosphere,
to currents flowing throughout the ionosphere and
connecting along magnetic field lines to magne-
tospheric currents systems. Solar wind–magnetos-
phere interaction also produces populations of very
energetic particles stored in the magnetosphere
and precipitated into the upper atmosphere. The
electric currents and the energetic particles can
have severe consequences for many human activi-
ties from ground to space. The variation over time
of these electric current systems and energetic par-
ticle populations in the geospace environment
modulates the consequences for human activities.

Space-weather timescales range from minutes to
decades. The longest timescales usually considered
important to space weather are the 11-year solar
activity cycle and the 22-year solar magnetic cycle
(see Figure 5). Near the solar-activity cycle mini-
mum, the solar wind is nearly completely domi-
nated by a quasi-steady outflow.

Significant temporal solar-wind speed variations at
Earth’s orbit routinely occur in response to the rotation
with the Sun of quasi-steady solar-wind structures. The
wind’s large-amplitude Alfvén waves produce large
fluctuations in the southward component of the inter-
planetary magnetic field (IMF). CMEs—the transient
mass and magnetic field ejection from the solar
corona—also produce solar-wind speed and magnetic
field variations. Indeed, the most severe storms expe-
rienced in the Earth’s space environment are driven by
exceptionally fast CMEs that exhibit a strong south-
ward magnetic field component throughout a signifi-
cant fraction of their volume. These very fast CMEs,
which are ejected from the corona at speeds of more
than 1,000 km/s, also drive strong hydromagnetic
shocks. These shocks are efficient producers of ener-
getic particles, which can impact the geospace envi-
ronment. Of course, a very fast CME only is effective
at producing a severe geomagnetic storm when it trav-
els toward Earth, which presents a problem for those
attempting to give forewarning of such storms.

Figure 6 illustrates this interaction. Figure 6a de-
picts the CME-generated magnetic cloud approaches
the quiet magnetosphere. In Figure 6b, the cloud ini-
tiates a stronger interaction that generates stronger
magnetospheric current systems and larger, more en-
ergetic, magnetospheric particle populations—a geo-
magnetic storm. As solar activity increases, the fre-
quency of CMEs increases substantially, and the
“severity of space weather” concomitantly increases.

Magnetosphere Simulations
The magnetosphere’s steady-state topology for due
south- and north-pointing IMF conditions is of great
theoretical interest for magnetospheric physics. In an

Number of processors

Pa
ra

lle
l p

er
fo

rm
an

ce
 (

g
ig

af
lo

p
s)

256256256 512512512 768768768 1,0241 021 02 1,2801 281 28 1,536536536
000

100100100

200200200

300300300

323232 646464 969696 128128128
000

101010

202020

303030

404040

505050

666 2512225122

Figure 4. Parallel speedup of BATS-R-US on various architectures. Black
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Figure 5. Twelve X-ray images of the Sun obtained by the Yohkoh
satellite at 90-day increments provide a dramatic view of how the solar
corona changes from solar maximum to minimum. As we approach
solar maximum, the reverse progression will occur. (Image courtesy of
Lockheed Martin.)
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idealized situation (assuming a nonrotating planet
with a strictly southward pointing magnetic dipole
moment), such configurations exhibit two planes of
symmetry (the equatorial plane and the noon–mid-
night meridian). Scientists have researched the due
south and north IMF configurations countless times.

Our group used BATS-R-US simulations to inves-
tigate the solar wind–terrestrial magnetosphere in-
teraction under northward IMF conditions.20 Figure
7 shows a 3D representation of the simulated mag-
netospheric topology for northward IMF conditions.
White solid lines represent the last closed magnetic
field lines in the Northern hemisphere, in effect trac-
ing the magnetopause (the discontinuity separating
the shocked solar wind from the region dominated by
the terrestrial magnetic field). The color code in the
equatorial plane represents the thermal pressure dis-
tribution of magnetospheric particles.

Figure 8a shows simulation results for the
noon–midnight meridian for the Northern hemi-
sphere. The upstream conditions are n = 5 cm–3, u =
400 km/s, acoustic Mach number = 8, specific heat ra-
tio = 5/3, and IMF magnitude = 5 nT. The white lines
with arrowheads are magnetic field lines. The color
coding represents the logarithm of the thermal pres-
sure. The thick red lines indicate topological bound-
aries that separate flows of distinct characteristics.
Figure 8b shows the equatorial plane for the morning
side. White lines with arrowheads are streamlines,
and color coding represents the sonic Mach number.

Figure 8 shows that a bow shock forms in front
of the magnetosphere. This fast magnetosonic
shock decelerates, deflects, and heats the solar-wind
plasma. The magnetosphere is essentially closed
except for a small region near the cusp where the
IMF and magnetospheric field reconnect.

In the noon–midnight meridian plane, both the
magnetic field and the velocity have no component
normal to the plane. In ideal MHD, the magnetic
field lines and streamlines are equipotentials because
the electric field is perpendicular to both magnetic
field and velocity. The magnetic field lines in the
noon–midnight meridian plane can be of the same
potential if they are on the same streamline. The red
thick lines in Figure 8a separate different flow re-
gions and, hence, regions with different potentials.

For symmetry reasons the magnetic field has no
component in the equatorial plane; the magnetic
field is always perpendicular to the Z = 0 plane and
points northward everywhere in our case. In con-
trast, plasma streamlines do not leave the equatorial
plane, meaning that the motional electric field is in
the equatorial plane and normal to the streamlines.
The potential difference between two given stream-
lines in the equatorial plane remains the same

throughout the plane. Magnetospheric electric cur-
rents are associated with the distortion of the mag-
netic field from the dipole magnetic field. Stretch-
ing the magnetic field generates currents in a
clockwise direction while compressing it produces a
counterclockwise current in the equatorial plane.
The Lorentz force associated with these currents al-
ways tends to restore the dipole magnetic field

Figure 6. The interaction of the magnetosphere with an expanding
magnetic cloud. The coronal mass ejection releases a huge amount of
magnetized plasma that propagates to Earth orbit in a few days. When
such a cloud hits Earth, intense geomagnetic storms are generated.
(Illustration courtesy of the NASA International Solar Terrestrial Program.)
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Figure 7. 3D representation of the simulated magnetospheric topology
for northward interplanetary magnetic field conditions. White solid
lines represent the last closed magnetic field lines in the Northern
hemisphere. The color code in the equatorial plane represents the
magnetospheric particles’ thermal pressure distribution.
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geometry in the closed magnetic field line region.
These currents’ divergence or convergence within
the closed magnetic field line region generates the
field-aligned currents flowing out of the equatorial

plane. These field-aligned currents map into the
ionosphere. However, the equatorial region’s major
current component of the distant tail does not con-
verge–diverge within the magnetosphere. It is closed
via the magnetopause current in the tail region.

Figure 8 also reveals three topologically distinct
regions in the magnetosphere: the inner core or
plasmasphere, the outer magnetosphere, and the
low-latitude boundary layer (LLBL)–tail region.
These regions are separated by boundaries marked
by thick red lines.

Figure 9 shows the Y component of the electric
currents in the noon–midnight meridian plane. On
the day side, most of the currents are generated at
the bow shock. These currents’ Lorentz force de-
celerates the solar-wind flow. Most of the magne-
topause current appears in the region upstream of
the first closed magnetospheric field line. Obser-
vations of the sheath transition layer, or plasma-
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Figure 8. Simulation results for northward interplanetary magnetic field. (a) Noon–midnight meridian for the Northern
hemisphere. The white lines are magnetic field lines. The color coding represents the logarithm of the thermal pressure. The
thick red lines indicate the topological boundaries that separate flows of distinct characteristics. (b) Equatorial plane for the
morning side. White lines are streamlines and the color coding represents the Mach number. The two red lines indicate the
boundaries between distinct flow regions.
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depletion layer, are consistent with this region of
current. The topological boundary itself contains
little current and marks the inner edge of the mag-
netopause current. Observations show that for
northward IMF, the topological change occurs at
the inner edge of the sheath transition layer.

On the night side, the magnetopause current and
the magnetosphere’s topological boundary become
completely different. In the noon–midnight merid-
ian plane, most of the current is associated with mag-
netic field kinks located around 20 to 30 RE above
and below the equator, a region few satellites have
visited. If we use this current to define the boundary
of the magnetosphere, the magnetosphere would ap-
pear to be open. Between the last closed field lines
and the magnetopause current, magnetic field and
particle characteristics are similar to (and observa-
tionally difficult to distinguish from) those in the
closed magnetic field line region in the magnetotail.
This is quite natural because these field lines have just
recently lost their topological connection with Earth.
It will take an Alfvén traveling time for the field lines
to communicate to the flux tube’s equatorial region
about the magnetic field line being disconnected at
the cusp. It will take even longer before the plasma
on these flux tubes assimilates to the solar wind.

Solar Simulations
Traditionally, we’ve defined CMEs as large-scale
expulsions of plasma from the corona seen as bright
arcs in coronagraphs that record Thomson scat-
tered light. These events are the most stunning ac-
tivity of the solar corona in which typically 1015 to
1016 g of plasma is hurled into interplanetary space
with a kinetic energy of the order 1031 to 1032 ergs.
Observations show that most CMEs originate from
the disruption of large-scale coronal structures
known as helmet streamers, arcade-like structures
commonly found in coronagraph images.

Central to understanding CME dynamics is the
pre-event magnetic field’s nature. For a helmet
streamer to be in static equilibrium, the underlying
magnetic field must be in a closed configuration to
confine the dense plasma that would otherwise be
carried out with the solar wind. Observations show
that the photospheric magnetic field associated
with helmet streamers is in a bipolar configuration,
with a neutral line separating opposite magnetic
polarities. The magnetic field configuration of pre-
event helmet streamers is a sheared arcade, possi-
bly containing a flux rope coinciding with the
plasma cavity. CMEs could represent a significant
restructuring of the global coronal magnetic field.

We carried out a set of numerical simulations30

to test an analytical model for the initiation of

CMEs developed by Vyacheslav Titov and Pascal
Démoulin.31 They derived their model from a long
line of previous analytical models containing flux
ropes suspended in the corona by a balance be-
tween magnetic compression and tension forces.
Figure 10 shows the initial state of the simulation.

The flux rope undergoes an increasing accelera-
tion, with its upward motion eventually forming a
current sheet at the pre-existing X-line’s location.
Once the current sheet starts forming, the flux rope
begins to decelerate. The effects of the line-tying
at the ends of the flux rope also might contribute
to this deceleration. Another effect that we see at
this time (which is an entirely 3D effect) is that tor-
sional Alfvén waves transport most of the magnetic
helicity from the flux-rope’s footprints toward its
top. As a result, the restraining effect caused by the
flux-rope feet’s line-tying becomes important.

Figure 11 shows a 3D view of the magnetic field
configuration at t = 35 min. A close look at the flux-
rope footprints reveals closed loops connecting the
two flux regions. The most plausible explanation of
this structure is that there is an interchange recon-
nection between the highly twisted flux-rope field
lines and the overlying closed field lines from the di-
pole region. As a result of this process, the newly
created closed field lines connect the two flux re-
gions, while the highly twisted field lines originate
from the dipole field region. The iso-surface of Bz =
0 (shaded in gray) in Figure 10 indicates where this
process preferentially takes place.
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Figure 10. 3D view of the magnetic field configuration for the initial
state. Solid lines are magnetic field lines, where the color code
visualizes the magnetic field strength in [T]. The surface shaded in gray
is an iso-surface of Bz = 0.
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Simulations of Solar Eruptions
Only in the last few years have CME models been
produced that allow for 3D spatial structures. The

approach we take to modeling CMEs is to start with
a system that is initially out of equilibrium and sim-
ulate its subsequent time evolution. We begin by nu-
merically forming a steady-state corona model along
with a bimodal solar wind (slow solar wind near the
equator and fast wind at high solar latitudes). The
model coronal magnetic field is representative of a
solar minimum configuration with open polar field
lines and low latitude closed field lines forming a
streamer belt. Having attained this steady state, we
superimpose a 3D magnetic flux rope and its en-
trained plasma into the streamer belt of our steady-
state coronal model (see Figure 12).32 The flux rope
we employ comes from the Sarah Gibson and Boon
Chye Low33 family of analytic solutions of the ideal
MHD equations describing an idealized, self-similar
expansion of a magnetized cloud resembling a CME.
This configuration allows the system to contain sub-
stantial free energy. In the subsequent time evolution
of the system, we find that the flux rope expands
rapidly, driving a strong shock ahead of it as it is ex-
pelled from the corona along with large amounts of
plasma mimicking a CME. Including this flux rope
in a numerical, steady-state corona and solar-wind
model extends the Gibson–Low model to address its
interaction with the background solar wind.

Figure 13 displays the CME’s time evolution,
with a time series of figures showing the system at
t = 1.0, 2.0, 3.0, and 4.0 hours. The figure depicts
the system in 2D equatorial slices. The panels show
false-color images of the plasma velocity magnitude
on which solid white lines are superimposed rep-
resenting the magnetic field.

We find the flux rope rapidly expanding and being
expelled from the corona while decelerating. An
MHD shock front moves ahead of the flux rope, trav-
eling at nearly the same speed as the rope on the y
axis while propagating far ahead to the sides of the
rope. In effect, the shock front moves at relatively
uniform speed, initially forming a spherical bubble,
while the flux rope inside the front moves forward
faster than it expands to the sides. The ambient solar
wind’s structure has a profound influence on the
shock front. The wind and magnetosonic speeds are
minimal in the heliospheric current sheet and both
grow with heliospheric latitude. As a result, the shock
travels at higher latitude in the fast solar wind with a
lower Mach number than found at low latitude.

Our 3D numerical MHD model of a high-speed
CME possesses many of the observed bulk charac-
teristics such as total mass and energy and also is
representative of basic features such as shock for-
mation and related deceleration. Our model’s suc-
cess in capturing many properties of CMEs, in-
cluding pre-event structures and background solar
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Figure 11. 3D view of the magnetic field configuration at t = 35 min. As
in Figure 10, the solid lines are magnetic field lines. The color (reversed
to that in Figure 10) shows the magnetic field strength. The lower
surface shaded in purple is an iso-surface of electric current density of
magnitude 0.0015 A/m2. The upper surface shaded in maroon is an iso-
surface of flow velocity of magnitude 200 km/s.
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Figure 12. 3D representation of the coronal magnetic field drawn as
solid colored lines at t = 0 hours. Red and blue lines represent the flux
rope. Orange and yellow lines show the poloidal field of the steady-state
equatorial streamer belt. On the x-z plane, the computational mesh is
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wind, suggests its value for studying CME propa-
gation and space-weather phenomena.

Sun-to-Earth Simulation
In our most ambitious project to date, we used BATS-
R-US to simulate an entire space-weather event, from
its generation at the Sun through the formation and
evolution of a CME, to its interaction with the mag-
netosphere–ionosphere system. An earlier simulation
successfully demonstrated the feasibility of such end-
to-end simulations, but it suffered from relatively low
resolution. In the original simulations, we used a cou-
ple of million cells to describe the entire Sun–solar

wind–magnetosphere–ionosphere system with a den-
sity pulse near the Sun generating the CME.

In the present end-to-end simulation, we use the
CME generation mechanism described in the “Sim-
ulation of Solar Eruptions” section and run the sim-
ulation all the way from the solar surface to beyond
1 AU. We used up to 14 million computational cells
with AMR. The smallest cell cell size was 1/32 solar
radii (21,750 km), while the largest cell size was 4 so-
lar radii (2.785 × 106 km). We carried out the grid re-
finement so that the CME evolution along the
Sun–Earth line was well resolved, while far away
from this line the grid remained relatively coarse.
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Figure 13. Time sequence of the coronal mass ejection in the equatorial plane at (a) t = 1 hour, (b) t = 2 hours, (c) t = 3 hours,
and (d) t = 4 hours. Solid white lines display magnetic streamlines (two-dimensional projections of 3D magnetic field lines)
superimposed on a color image of the velocity magnitude.
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This method enabled us to have good spatial and
time resolution in simulating the interaction of the
CME with the magnetosphere, while still employing
a manageable total number of computational cells.

Figure 14 shows a 2D cut through the CME in
the meridional plane going through the expanding
magnetic flux-rope. White lines represent magnetic
streamlines in the meridional plane, while the color
code shows the plasma density. An accumulation of
material behind the leading shock and in front of
the leading edge of the propagating flux rope is
called the snowplow effect. You can see the mag-
netic closed-loop structure of the flux rope sur-
rounded by open field lines of the solar wind and a
significantly depleted density structure inside the
magnetic flux rope that drives the CME.

The resolution along the Sun–Earth axis near
the leading edge of the CME (near the location of
Earth) is 1/8 solar radii (approximately 14 Earth
radii). This resolution is unprecedented in
Sun–Earth simulations, and it enables us to achieve
approximately 4-minute temporal resolution in de-
scribing the interaction between the CME struc-
ture and the magnetosphere–ionosphere system.

Figure 15 shows the temporal evolution of the
solar-wind parameters just upstream of Earth as
the CME moves by. From top to bottom, the pan-
els show the three components of the magnetic

field vector and the solar-wind density and radial
velocity, respectively. We initiated the CME on 21
March, 2000 at 1210 UT. The first signature of the
CME arrived about 69 hours later in the form of
the shock. Note that the solar wind radial velocity
jumps by about 100 km/s when the CME arrives
and that efficient application of AMR makes the
shock’s leading edge very well resolved. The solar-
wind velocity remains nearly constant throughout
the density pile-up preceding the magnetic bubble
structure associated with the expanding flux rope.
When Earth enters the magnetic bubble at around
80 hours after event initiation, the velocity exhibits
a slow decrease while the density suddenly drops
nearly an order of magnitude. At this time the Bz
component of the interplanetary magnetic field ex-
hibits its most important variation from the point
of view of geo-effective interaction: first it in-
creases to about +20 nT (northward IMF) and
then it rotates to –20 nT (southward IMF) in
about three hours. This rotation is highly geo-ef-
fective and it generates all kinds of geomagnetic
activities, such as reconfiguration of magnetos-
pheric topology.

Figure 16 illustrates the geo-effectiveness of the
Bz rotation. The four panels represent noon–
midnight meridional cuts through the 3D magne-
tosphere solutions at 1800, 1900, 2000, and 2100
UT. The peak of the northward IMF is at 1800 UT
with Bz ≈< 20 nT. At 1900 UT, the Bz still is north-
ward (≈ 10 nT), and it changes sign shortly before
2000 UT. At 2000 UT, the Bz already is southward,
and the magnetosphere exhibits a transitional state.
The magnetosphere shows day side reconnection
characterizing southward IMF conditions, while at
the same time the long magnetotail looks very
much like a northward IMF configuration. Clearly,
the effect of the IMF southward turning had not
yet propagated all the way down the magnetotail.
The last panel shows a snapshot at 2100 UT, well
over an hour after the IMF turned south at the nose
of the magnetosphere. At this time, the magnetos-
phere shows a fundamentally southward configu-
ration, but the complex and long tail is a clear in-
dicator that the configuration is still changing and
this is far from equilibrium.

The ionospheric convection pattern also dra-
matically changes during the IMF southward turn-
ing. The cross-polar cap potential changes from 75
kV at 1800 UT to 190 kV at 2100 UT, consistent
with the reconfiguration of the magnetosphere.

This simulation is the first successful attempt to
use first-principles-based global simulation codes
to launch and follow a CME near the Sun and de-
scribe its highly geo-effective interaction with the
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terrestrial magnetosphere. We are confident that
researchers will routinely carry out similar space-
weather simulations in the future and use the re-
sults to forecast space-weather events.

Space-plasma simulations greatly matured
in the last decade. New simulations codes
employ modern and efficient numerical
methods and are able to run much faster

than real time on parallel computers. Our simu-
lation capabilities also are rapidly evolving. In
the next few years, model coupling will be at the
center of development. A few years from now we
will be able to simulate the individual elements
of the complex Sun–Earth system with the help
of a software framework that automatically takes
care of the coupling of various components. Our
goal is to accomplish validated predictive capa-
bilities of space weather events and hazards.
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