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SUMMARY: We examine adaptive allocation designs for the problem of determining the optimal thera-
peutic dose for subjects in early phase clinical trials. A subject can fail due to lack of efficacy or due to
a toxic reaction. Successful subjects will have both a positive response and no toxic side effects. Thus,
we seek to maximize the product of the non-toxicity and efficacy dose response curves. We are interested
in sampling rules that perform well along several criteria, including the ethical criterion that, as often as
possible, experimental subjects be treated at or close to the maximum in question. Statistically, we wish to
identify the optimum dose with high probability at the close of the experiment. Here, we propose designs
that combine new allocation policies,directed walks, with new smoothed shape constrained curve fitting
techniques. These are compared with a variety of other curve fitting techniques and with up-and-down and
equal allocation rules.
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1 Introduction

Classical dose response problems for phase I clinical trials focus on locating specified quantiles of the re-
lationship between dose and probability of toxic response to drug therapy. In the simplest case, a subject’s
response at a given dose,s, is modeled as a Bernoulli random variable with a probability of non-toxic out-
comep(s) = 1�Q(s), whereQ(s) is assumed to be continuous and non-decreasing ins � 0. Considerable
attention has been paid to such problems, and, in recent years, adaptive formulations of dose response prob-
lems have taken center stage. Two-stage designs, stochastic approximation, continual reassessment, dose
escalation and up-and-down methods have all been proposed. One reason for this is an increased empha-
sis on addressing multiple experimental criteria. Nonadaptive or fixed allocation designs tend to focus on
optimizing a single criterion such as the variability of an estimator. Potential simultaneous goals such as
reducing risk to subjects, overall costs or time to decision have typically not been well incorporated in fixed
designs.

When a range of “acceptable” doses has been established during a phase I study, then a phase II clinical
trial will often follow. The aim of the phase II trial is to examine the efficacy of the therapy as it relates
to adverse outcomes. In a variety of circumstances, it may be desirable to integrate phase I and II trials
(known as phase I/II trials). One reason for developing such designs is to accelerate the process of getting
a new drug to market. Ideally, the integrated trial will involve fewer subjects and less time. Another goal,
addressing ethical concerns, is to allocate more subjects at or near doses that are both safe and efficacious.

An increasing amount of attention is being paid to phase I/II clinical trials with the competing failure
modes of toxicity and lack of efficacy. Murtaugh and Fisher (1990) and Jennison and Turnbull (1993)
have addressed the problem by assuming parametric bivariate response functions reflecting efficacy and
toxicity. Bryant and Day (1995) propose two-stage designs that control error rates for the two failure modes
while allowing for possibly correlated outcomes. Conaway and Petroni (1996) elicit tradeoff curves to
characterize null hypotheses and develop stopping criteria to limit subject accrual. Kpamegan and Flournoy
(2001) describe a modified random walk to locate the dose that optimizes the product of the efficacy and
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non-toxicity response curves. Tackling the same goal, Hardwick and Stout (2001) use modified multi-armed
bandit rules.

Focusing more on curve estimation, Thall and Russell (1998) and O’Quigley, Hughes and Fenton (2001)
use designs related to the continual reassessment method of O’Quigley, Pepe, and Fisher (1990). The
procedure proposed in O’Quigley et al. (2001) also utilizes sequential probability ratio tests. Gooley et
al. (1994), taking a nonparametric approach, and Thall and Russell (1998) specify error rates to define
acceptable doses, incorporating elicited information about the expected response functions as a starting
point for their designs. In all of these papers, simulation is used as a design aid.

1.1 The Problem

We examine a competing failure model in which the goal is to maximize the probability that a subject being
treated exhibits both anon-toxicresponse and iscured. Throughout, we assume that observations may be
taken at one ofD fixed dose levels,0 < s1 < � � � < sD. The dose levels need not be equidistant, although
those used in our examples are.

Let R(s) be a non-decreasing response curve that models the probability that doses is effective (cures
the patient). Then we takeF (s) = R(s)f1�Q(s)g to be the probability of a “successful” outcome at dose
s. We wish to locate the dose(s),s�, that maximizesfF (sk) : 1 � k � Dg. For convenience, we often refer
to dose levelsk as “dosek”, k = 1; : : : ;D, and to the optimal doses� as dosek�.

Some authors model this problem by defining the efficacy response curve only when there has been a
nontoxic result. Call thisR0(s), and letF 0(s) = R0(s)f1�Q(s)g be the success function for this dependent
scenario. (See Thall and Russell, 1998; Kpamegan and Flournoy, 2001). In these cases, accompanying
assumptions or model definitions are thatR0 is non-decreasing and thatF 0 is unimodal. This conditional
model is particularly appropriate when toxicities are severe and censor efficacy. It may also be preferable
when there are clinical reasons to assume efficacy given non-toxicity is non-decreasing, whereas here the
marginal efficacy,R, is assumed non-decreasing.

In such cases, the Directed Walk Algorithm (DWA), introduced in Section 2.2, could be modified so that
efficacy information is updated only when a nontoxic result has occurred. This case is not pursued here.
Instead, we assume thatR(s) andQ(s) are observed for all patients. We also take the two response curves
to be independent, although this is somewhat stronger than is needed for our results. A broader approach
would be to fully model the dependency structure between the efficacy and toxicity. Two such models are
proposed in Murtaugh and Fisher (1990), but they are highly parameterized and thus not appropriate for
our purposes here. Further, in these models, the Gumbel and Cox bivariate binary models, it can arise that
the success function,F 0, is not unimodal, which violates an assumption imposed here and by most other
authors. Unimodality of the success curve helps assure consistency of estimators. In cases in whichF 0 is
unimodal, butF is used in its place, perhaps due to lack of knowledge of the dependency structure, then the
DWA still correctly targets the location of the mode as long asF 0(s) is a monotonic function ofF (s). Also
note that simple changes to the DWA exploration rule could be used to guarantee consistency even when
success is not a unimodal function, albeit at the expense of reduced efficiency.

As an illustration of the present set-up, consider Figure 1 in which a toxicity function,Q(s), and an
efficacy function,R(s) are plotted along with the resulting success curve,F (s). The valueQ�1(:3) is the
“MD(30)”, the dose at which 30% of the subjects are expected to become toxic. This value is often used
to define a smaller range of doses for a subsequent efficacy study. Note that, in Figure 1,s�, the dose that
optimizes the success function, is lower thanQ�1(:3). This suggests that the “phase I then phase II” trial
sequence would involve placing more subjects at higher doses than would a phase I/II study.

In what follows, we work with designs in which, at each stage, the toxicity and efficacy response curves
are estimated independently, and estimates of the optimum dose are obtained based on all data accrued to
date. We restrict consideration to designs in which the next dose to be sampled is movedonedose in the
direction of the updated optimum. While related to random walks, these sampling rules, which we call
“directed walks”, are not constrained by the Markov assumption, and thus they use all available information
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to determine each allocation. Such walking designs are to be contrasted with “jump to goal” sampling
designs in which the next dose to be sampled is the current estimate of the optimum. Clearly there are times
when allowing jumps would provide a more efficient design. Although jump to goal designs have been
developed in Li, Durham, and Flournoy (1995) and Hardwick and Stout (2001), we restrict to walking rules
here for space purposes.

To specify a sampling or allocation design, it is necessary to define asampling ruleand aterminal
decision rule. The sampling rule determines which dose to sample at each stage. In general, sampling
rules can include a curve fitting scheme as well as special rules to handle start-up and ending processes,
boundaries and premature convergence. The terminal decision rule determines the dose declared best at
termination. We assume a fixed, small number,n, of subjects — generally 25 to 50. Furthermore, we
assume a subject population that is uniform in prognosis throughout the phase I/II experiment.

To evaluate the sampling designs, we estimate both asamplingand adecisionerror. These measures
are based on the probability of sampling at or deciding on a sub-optimal dose weighted by the difference
between the success probabilities at that dose and the optimal one. See Section 4.

In the next section, we review an up-and-down random walk design proposed in Kpamegan and Flournoy
(2001), and outline our directed walk designs. Also discussed in this section are various special consider-
ations, such as starting and ending processes. Following this, in Section 3, we specify a number of curve
estimation approaches that are used in conjunction with the directed walks. Some of these are classical para-
metric techniques, both Bayesian and frequentist, while others are nonparametric. Included are a couple of
new smoothed shape constrained curve fitting techniques. In Section 5, the various designs are compared
via simulation, and in Section 6 we offer some final comments.

2 Sampling Rules

We first review “up-and-down” designs in which movement is a random walk and observations are obtained
only from the success curve,F . Next, we consider a class of two component directed walk designs. In this
case, outcomes are observed for both the toxicity and cure response curves, and both are used to update the
allocation rule.

2.1 An Up-and-down Design

Previous up-and-down designs targeted quantiles of the toxicity probability curve. For the opposing failure
mode problem, Kpamegan and Flournoy (2001) propose the followingoptimizing up and downdesign. At
each Stagei, i = 1; : : : ; n2 , the rule requires that two consecutive doses be observed; say atsk andsk+1.
Once the responses at Stagei have been observed, allocation for Stagei+ 1 is as follows:

1. Move up to(k+1; k+2) if there is a success at dosek + 1, a failure atk andk + 1 < D.

2. Move down to(k�1; k) if there is a success atk, a failure atk + 1 andk > 1.

3. Otherwise, stay at dose levels(k; k+1).
There are no parametric assumptions utilized in the up-and-down scheme and no form of curve estima-

tion is being used. For these reasons, this design is not expected to perform as well as the others considered.
For the evaluations herein we select the dose with the highest observed success rate. Doses not sampled
were considered to have a success rate of 0.

2.2 Two Component Directed Walk Algorithms (DWA)

As noted, the directed walk approach uses all outcomes observed to date to guide allocation of the next sub-
ject. The curvesQ(s) andR(s) are estimated at each stage using observations of previous dose assignments,
and the next dose selected is based on the estimated location of the optimal dose. Using this algorithm, one
can work with parametric or nonparametric curve estimation methods and develop terminal estimators based
on maximum likelihood, smoothed MLE, or Bayesian methods. We explore several such options.

3



Directed walk designs comprise a start-up procedure, a curve fitting and estimation routine, and a set of
rules specifying behavior under special circumstances.

Start-up Procedure: Some methods require a certain amount of information to form a valid estimator.
This is true for MLE’s, for example, although not for Bayesian estimators. Thus, depending on the curve
fitting method, the first few observations of the directed walk may follow an up-and-down scheme. Let an
observation be a pair(Xe;Xt), where

Xe =
n
0 if not efficacious
1 if efficacious

Xt =
n
0 if toxic
1 if not toxic

then when (Xe;Xt) =

8>><
>>:

(1; 1) stay
(0; 1) move up
(1; 0) move down
(0; 0) applyexploration rule

The exploration rules are discussed later in this section.

Curve Estimation: Given appropriate observations, we estimateQ andR using one of the curve estimation
routines described in Section 3. We determine the dose,bk�, that has the highest estimated probability of
success and move one step towards it. If we have just sampled that same dose then we utilize an exploration
rule which, while usually reallocating tobk�, may also indicate a move away from it.

The DWA stops the experiment aftern trials and estimates the optimum dose according to the curve
estimation scheme employed. If the observations are not sufficient for the curve estimation method, then the
dose with the highest observed success rate is chosen.

Starting Dose: The DWA can be started at any dose. Many investigators prefer taking the initial observation
at the lowest available dose based on the physician’s edict offirst, do no harm. This perspective weighs
toxicity failures more than those due to lack of efficacy. Here we weigh them equally. While one could
explicitly incorporate weights in the objective function, to implement this viewpoint consistently one would
also need to make adjustments elsewhere in the sampling decisions. Note that there are cases, such as with
AIDS drug trials, in which issuing too small a dose is deemed more hazardous than a toxic response.

If one assumes that the mode ofF is uniformly distributed among the doses, then starting at the lowest
dose is on average� D=2 doses from the optimum, while starting at random is on average� D=3 doses
away. In this case, the best choice would be to start in the middle, which is only� D=4 from the optimum.
Another reason to prefer a middle start is that an investigator with any prior knowledge is likely to attempt
to place the optimal dose near the center of the dose range.

Due to space limitations, we provide results only for the random start scenario. While this avoids
the impact of a biased start in our simulations, we would not recommend it in practice, since some prior
information is usually available.

Ending Processes:The DWA continues making observations until the sample size is reached. Since the
optimizing up-and-down design in Kpamegan and Flournoy (2001) requires an even sample size, ifn is odd
then on the last stage we randomly choose between the pair of observations that the method indicates.

Note that in much of the literature related to this problem, authors have sought stopping rules that
perform well with respect to trial goals, instead of using a fixed sample size. While a fixed sample size
is used here to simplify comparisons, note that stopping rules could easily be incorporated into the DWA
designs.

Boundary Considerations: We use the convention that whenever a rule indicates sampling at a dose outside
the rangefs1; : : : ; sDg, we instead sample at the closest endpoint. Note that for the up-and-down design,
if we have sampled at(s1; s2) the rule stays at(s1; s2) even if a downward shift is indicated. For some
purposes one might prefer to sample(s1; s1).
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Exploration Rules: In some cases, sampling rules may get “stuck” allocating repeatedly to a suboptimal
dose. To avoid this, we use anexploration ruleto force occasional, but infinitely often (i.o.), sampling at
neighbors of the dose in question. As long as the estimators employed are consistent, exploration rules
guarantee that the optimal dose will be identified in the limit. Moreover, they are extremely important for
problems with small sample sizes to ensure that sampling will eventually occur away from the starting dose
region.

The exploration rule used for the results in Section 5 forces a move to a neighbor with probability
pEi; i = 1; : : : n; when 3 consecutive failures have occurred at the given dose, where�1i=1pEi = 1
andpEn ! 0 asn ! 1. There are an infinite variety of exploration options available and developing and
analyzing them is an open area for research. For example, the rules can be created to ensure more exploratory
sampling near the beginning of a trial. Furthermore, more sophisticated rules can be developed to improve
or guarantee convergence rates of the sequence of the estimated optimal doses,ck�n to k� asn!1.

Delayed Responses:In situations where responses are delayed, the present techniques can still be used.
Depending on the type of delay and the availability of subjects, a variety of start-up allocation procedures
may be appropriate. Very little work has been done in this area, although Hardwick, Oehmke and Stout
(2000) present an exact analysis for a two treatment problem with exponential delays. Their results suggest
that moderate delays only mildly diminish efficiency. We would expect the same to hold here.

3 Curve Estimation Methods

Here we examine seven approaches to model the toxicity and efficacy response functions and to obtain esti-
mators for the mode of the success function onfs1; : : : ; sDg. These include classical maximum likelihood
and Bayes parametric methods as well as unsmoothed and smoothed shape constrained methods. Sampling
is such that estimates are updated after every observation. Naturally, this represents an assumption that all
subject responses are available prior to selecting a dose for the next subject in the study.

At any point in the experiment, if there have beenmk observations at dosek, resulting inxk nontoxic
responses andmk � xk toxic ones, then the likelihood function for toxicity is

L =

DY
k=1

�
mk

xk

�
qxkk (1� qk)

mk�xk : (1)

whereqk = Q(sk) for k = 1; : : : ;D. For the efficacy response curve, we substituteR for Q. Thus, in the
following discussion we focus on estimation methods forQ.

Method 1: Two-parameter logistic maximum likelihood estimator

Perhaps the most common assumption for toxicity response functions is that they follow a logistic dis-
tribution with two unknown parameters

Q(s) =
exp(a+ bs)

1 + exp(a+ bs)
: (2)

If b were allowed to be non-positive, we would occasionally get flat or even decreasing curve estimates,
which would result in a choice of an extreme dose. Ifb were unbounded above, we could get an estimate
with sharp corners and flat sections. Therefore we bound the parameterb by choosing a small� > 0, and
require that� � b � 1=�. This produces smooth, strictly increasing estimates ofQ. For the experiments
herein,� = 1=50. Because there are no restrictions ona, a necessary and sufficient condition for existence
of an MLE is that data be observed at two different doses, with at least one success and one failure.
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Method 2: One-parameter Bayes
As a model for the continual reassessment method for locating quantiles, O’Quigley et al. (1990) use the

one-parameter functionQ(s) = [ftanh(3s � 1:5) + 1g=2]a in examples. Since this function is increasing
convex-concave, and has already been studied, we use it as an example here as well. As in O’Quigley et
al. (1990), we assume that the unknown parameter,a, follows an exponential distribution�(a) = e�a,
a > 0, and use the mean of the posterior densityâ as an estimate fora to determine the next dose level.
While not a true Bayesian design in that we do not determine the posterior expected values at each dose,
this simplified semi-Bayesian approach is straightforward to implement. Note also that this method may be
used to estimate the curve, regardless of the observations.

Method 3: Two-parameter Bayes
For this method we again use the logistic response function (2) in the likelihood (1), and a pseudo-

conjugate (joint) prior fora andb.

�(a; b) /

DY
k=1

expf�kmk(a+ bsk)g

f1 + exp(a+ bsk)gmk
;

where�k is the prior guess for the probability of response atsk, (see Meyer and Laud, 2000). The parameter
 is a weight given to the prior which represents the amount of “faith” in the prior relative to the data.

For the simulations in Section 5, we take�k = sk since the dose ranges are conveniently between 0 and
1, and = 0:1, a small weight. The posterior is proportional to

DY
k=1

expf(�kmk + xk)(a+ bsk)g

f1 + exp(a+ bsk)gmk(1+)
:

The mode of the posterior is used as the estimate of the curve. Note that the posterior at stagem is not the
prior for the stagem+ 1. Instead, the prior is redefined at each stage using the current design points.

Method 4: Nonparametric convex-concave shape constrained MLE
A shape constrained MLE maximizes the likelihood subject to shape assumptions onQ. Meyer (1999)

gives an efficient algorithm for the non-decreasing convex-concave shape on(q1; : : : ; qD).
For the nonparametric convex-concave MLE (both smoothed and unsmoothed), the minimum range for

curve estimation is three. The MLE for the curve at the doses observed is determined, but for doses outside
the observed range, in general their values are underdetermined. Here, they are given the value of the closest
observed dose.

Method 5: Smoothed nonparametric convex-concave shape constrained MLE
One problem with nonparametric MLE’s is that they tend to be flat at ends, since most of the information

is near the estimated optimal dose. If there are several doses with equal estimated probabilities of survival,
Method 4 chooses the smallest of these as “best”. This leads to the choice of the lower extreme dose too
often, especially with the smaller sample sizes. To get a smoothed nonparametric curve fit, we include a
term in the likelihood to penalize flatness. The penalized likelihood is proportional to

DY
k=1

�
mk

xk

�
qxkk (1� qk)

mk�xk

DY
k=2

�
qk � qk�1
sk � sk�1

��
: (3)

Here� is the smoothing parameter, with� = 0 corresponding to the unsmoothed MLE. We choose� to
be small (� = 0:05 in the simulations) because fidelity to the data is important, and because only a little
smoothing is required for a better result.

Method 6: Nonparametric monotone shape constrained MLE
The unsmoothed monotone or isotonic shape constrained MLE method differs from Method 4 only in the

shape assumption. The monotone constraint is weaker, and computationally much simpler. For each dose
k such thatmk > 0, let bqk = xk=mk be the observed success rate. Then the monotone shape constrained
MLE is the weighted least squares monotone regression ofq̂k, wherebqk is weighted bymk, k = 1; : : : ;D.

6



Method 7: Smoothed nonparametric monotone shape constrained

A semi-Bayesian approach is used to smooth the monotone shape constrained MLE. The toxicity at
each dose is given a beta prior. At each stage, a weighted least squares monotone regression is fit to the
posterior distributions, using the posterior mean as the value and the sum of the posterior beta parameters
as the weight. The prior used in Section 5 was the same for all doses, Be(0.45,0.05). This is a weak prior,
so that the data dominates the behavior, and it has a high expected value to initially encourage exploration
to doses not yet sampled. In some settings one might have more information and use a stronger prior or
perhaps one that is not uniform on the doses.

4 Evaluation Criteria

Although we use various curve fitting techniques to guide the DWA, we do not evaluate designs via measures
of closeness to the entire curve. Attempts to optimize in this manner would conflict with the ethical goal
of optimizing subject well-being. As mentioned, we seek designs that behave well along two performance
measures — a sampling error to assess experimental losses and a decision error to predict future losses based
on the terminal decision.

Given any decision rule and sampling design, there exists a probability measure on the doses that reflects
the chance,�n(k), that dosek is selected as best at the end of an experiment of sizen. While one could
take�n(k�), the probability of correct selectionor P(CS), as a measure of decision efficacy, this slightly
misses the goal of diminishing harm to patients because it does not differentiate between selecting a dose
with near-optimal success rate versus one with a meager success rate. Thus, we definedecision efficiency
as:Dn =

�
�D
k=1�n(k)pk

	
=p�, wherepk = F (sk) for k = 1; : : : ;D andp� = pk�.

The sampling error is the normalized expected loss incurred when sampling from doses other thank�.
Letting En(nk) denote the expected number of observations on dosek in an experiment of sizen, we
definesampling efficiencyas:Sn =

�
�D
k=1En(nk) � pk

	
=(n � p�): This is closely related to the well known

measureexpected successes lost:np� �
PD

k=1 pkE(nk).
Note thatp�Sn is the expected success rate of patients in the experiment, andp�Dn is the same rate for

subsequent patients if they are given the treatment selected as best.

Large Sample Performance

We say that a design isefficientif Dn andSn converge to1 asn ! 1. For each method, our analysis
of efficiency assumes that the model assumptions in the curve estimation forQ andR are met and thatF is
strictly unimodal.

To establish decision efficiency, two requirements must be met. First, the estimators of(p1; : : : ; pD)
must be consistent, which they all are. Secondly, the allocation algorithm must sample the best dose,k�,
and its two neighborsi.o. For the DWA, this is guaranteed by the exploration rule. For the up-and-down and
equal allocation rules all doses are sampledi.o., so no exploration rule is required.

To obtain sampling or experimental efficiency, it is necessary and sufficient that the rate at which dosek�

is sampled goes to 1 asn!1. This is the case for the DWA although not for the optimizing up-and-down
nor equal allocation rules.

5 Data Models and Performance

The seven different curve estimation methods were evaluated and compared along with the up-and-down
rule and an equal allocation scheme, using estimated values ofDn andSn obtained via simulation. Data
were generated for every combination of the following: three models of probability curves for toxicity and
efficacy, run lengths (n=25 andn=50), and number of dose levels (D=6 andD=12). For each combination,
at least 1000 simulated experiments were performed.
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In Figure 2 (a), Model 1 is shown. The true probability curves are

Q(s) = [ftanh(5s� 3:5) + 1g=2]4 and R(s) = exp(�2 + 5s)=f1 + exp(�2 + 5s)g:

For Model 2, Figure 2 (b), the curves are

Q(s) = exp(�0:5 + 2s)=f1 + exp(�0:5 + 2s)g and R(s) = exp(�1 + 10s)=f1 + exp(�1 + 10s)g:

Note that the success probability curve is rather flat compared to that of Model 1.
Model 3 is nonparametric. The success curve has approximately the same shape as that of Model 2,

but both the toxicity and efficacy curves stay away from 0 and 1, making the individual curves harder to
estimate. Figure 2 (c) illustrates Model 3 withD=12.

5.1 Results

The tradeoffs between the two efficiency measures according to method are illustrated in Figure 3. For each
model the estimates ofDn are plotted against those forSn whenn = 50 andD=6. Methods falling in the
top-right corner of the plots are the best, and points that fall together in groups should be considered roughly
equal.

Numbers represent the methods as follows: (1) 2–param MLE; (2) 1–param Bayes; (3) 2–param Bayes;
(4) Convex-concave; (5) Smoothed convex-concave; (6) Monotone; (7) Smoothed monotone; (8) Up-and-
down; and (9) Equal allocation (EA). EA is included to represent fixed allocation techniques.

In Model 1, the underlying curves are the tanh and logistic and, as expected, the parametric models
(1–3) performed extremely well. Somewhat surprisingly, however, so did the smoothed shape constrained
methods (5,7), as did even the unsmoothed monotone method (6). The unsmoothed convex-concave (4)
performed poorly.

Model 2 results are similar to those of Model 1, with an exception being the poor performance of the
1–parameter Bayes model (2). Both underlying curves in Model 2 are logistic and thus match the models
assumed in the 2–parameter MLE (1) and Bayes (3) methods. While these methods perform well, however,
they do no better than the smoothed shape constrained methods (5,7). Again, method (6) is close to the
leaders.

The excellent performance of the 1–parameter Bayes method (2) is a bit unanticipated in Model 3. Recall
that Model 3 was included to test the robustness of the parametric methods. Note also the poor performance
of the 2–parameter MLE (1).

Since the up-and-down method (8) involves no curve fitting, the results for all three models are quite
poor. As expected, however, the decision efficiency of the up-and-down rule is much better than the sampling
efficiency. This also holds for the fixed allocation, which appears in the plots only for Model 2. The rest of
the points are out of range.

The fourth plot in Figure 3 contains efficiencies averaged over the three models withD=6 andn=50. In
this plot the 2–parameter Bayes and smoothed monotone methods appear to be preferable. In the equivalent
plot (not shown) whenD=12, the smoothed shape constrained methods outperform all the others, with the
monotone version being best.

Generally speaking the efficiency data for cases in whichD=12 and/orn=25 are quite similar to the
results presented here and have been omitted due to space constraints.

6 Discussion

In this paper, we have focused on two aspects of the design of phase I/II clinical trials. The first relates to
rules for movement of an adaptive sampling design on a discrete dose set. Along with the basic walk, there
are a number of factors such as starting sequence, endpoint conventions and exploration rules, that play an
important role in design performance. Ignoring these factors can lead to highly flawed designs.
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The second emphasis in this research has been to examine curve fitting methods and assumptions. We
took seven curve fitting techniques and two methods with no fitting at all and compared them according
to their sampling and decision efficiency. It is difficult to draw general conclusions based on the close
examination of only three sets of curves, although these results strongly hint that parametric models have
powerful competitors in smoothed shape constrained methods.

With the parametric designs, two of the three cases had underlying structure that matched the curve
schemes. However, these methods appear very sensitive to structure, whereas the simple assumption of
monotonicity seems effective for estimating a variety of response curves. Needless to say, a more variable
set of curves, perhaps even a space of curves, should be examined.

Because this is a design paper, we have not concentrated much on the analysis phase of the trials. It
should be pointed out, however, that the designs can be analyzed from a variety of perspectives. Many of the
methods described here use Bayesian concepts to some extent. This is natural when sampling adaptively,
since updating prior information is an inherent part of the methodology. Nevertheless, we support the idea,
used, for example, in Thall and Russell (1998), of evaluating designs for frequentist characteristics even
if they have resulted from a Bayesian approach. The main difficulty in the analysis phase lies in gaining
an understanding of the distribution of the estimators since these are affected by the sequential design.
Simulation studies and exact computational methods can assist in this analysis.

Next, there are a number of useful extensions of this work. For example, thetypeof failure observed
(toxicity or lack of efficacy) affects the DWA only during the starting sequence. It is possible that continuing
to use this information after the estimation step kicks in would improve the algorithm. Other enhancements
involve step size. It is likely that the greatest improvement will be garnered when variation of step size is
allowed. Large steps at the beginning are needed for exploratory purposes, but smaller steps towards the end
will typically improve both sampling and decision efficiency. One version of this process arises when the
algorithm moves directly to the best estimate of the mode (Hardwick and Stout, 2000; and Li et al., 1995).
Another version would be to define a sequence that reduces step size at a given rate. Note also that one can
easily extend the present results to include polychotomous responses.

In conclusion, while it was expected that the parameterized designs would outperform all others when
the underlying models matched those of the sampling model, this is apparently not the case. In particular,
the smoothed shape constrained methods performed roughly as well as the parametric techniques for each
model, while requiring fewer assumptions.

Acknowledgments

Research supported in part by National Science Foundation grants DMS–9504980 and DMS–0072910.
Research supported in part by University of Georgia Faculty Research Grant. We thank the referees and the
associate editor for their help in improving this manuscript.

9



References

[1] Bryant J. and Day R. (1995). Incorporating toxicity considerations into the design of two-stage phase
II clinical trials. Biometrics51, 1372–1383.

[2] Conaway, M.R. and Petroni, G.R. (1996). Designs for phase II trials allowing for a trade-off between
response and toxicity.Biometrics52, 1375–1386.

[3] Gooley, T.A., Martin P.J., Fisher L.D., and Pettinger, M. (1994). Simulation as a design tool for phase
I/II clinical trials — an example from bone-marrow transplantation.Controlled Clinical Trials15,
450–462.

[4] Hardwick, J. and Stout, Q.F. (2001). Optimizing a unimodal response function for binary variables.
In Optimum Design 2000,A. Atkinson, B. Bogacka and A. Zhigljavsky (eds), 195–210. Kluwer Aca-
demic Publishers.

[5] Hardwick, J., Ohemke, R. and Stout, Q.F. (2001). Optimal adaptive designs for delayed response mod-
els: exponential case. InMODA 6: Advances in Model Oriented Design and Analysis,A. Atkinson, P.
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Figure 1: Example of non-decreasing toxicity (Q) and efficacy (R) response curves and the unimodalsuccess
curve (F). Here,s� represents the mode ofF , while s(.3) corresponds to the dose at which 30% of the
subjects are expected to experience toxicity.

Figure 2: Model 1:Q(s) = [ftanh(5s� 3:5) + 1g=2]4 and R(s) = exp(�2 + 5s)=f1 + exp(�2 + 5s)g:
Model 2:Q(s) = exp(�0:5+2s)=f1+exp(�0:5+2s)g and R(s) = exp(�1+10s)=f1+exp(�1+10s)g:
Model 3: Arbitrary curves
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Figure 3: Efficiency Tradeoff Curves: Sampling versus Decision efficiency by Method and Model.n = 50
andD = 6. Methods that are missing from plots fall below the plot ranges. Methods are:1. 2–par
MLE; 2. 1–par Bayes;3. 2–par Bayes;4. Convex-concave;5. Smooth conv-conc;6. Monotone;7. Smooth
monotone;8. Up-down;9. EA
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