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Abstract

We present a method for approaching general domination and covering questions, tailored for cross-
product graphs, and demonstrate it for questions concerning the existence of perfect dominating sets.
Here, the definition of cross-product graphs can include families of cube-connectedcycles, cube-connected
cubes as well as families of hypercubes, tori, etc.

We introduce a condition, unique domination, which is closely related to many other domination
properties. This condition survives many variations in the notion of domination and can be explicitly
determined for any arbitrary finite graph. Considering the regularities which exist in many families of
cross-product graphs, the existence of this condition can often be demonstrated for all the members with
only simple methods. Our approach to questions of domination relies on combining proofs of the unique
domination condition with other tools. Adding only a simple graph projection technique, we demonstrate
short proofs of necessary conditions for the existence of perfect dominating sets in selected examples of
cross-product graphs.

Keywords: Coverings, Cross-Product Graphs, Dominating Sets, Unique Domination, Grid Graphs, Per-
fect Dominating Sets, Tori, Cube-Connected Cycles.

1 Introduction

A multitude of complicated domination and covering questions arise from the applications of graph theory.
For example, in the context of parallel network design, there may be replicable resources — such as code
libraries — which are prohibitively expensive to place at all individual processor nodes; yet, having each
node outside even some short, simple path distance of a resource would cause other problems. The most
efficient arrangement of the libraries would cover the whole network with no overlap. We wish to know
for which networks such an arrangement is possible. This translates to the question, “For which graphs do
perfect dominating sets exist?”

There may be complications, however, as certain simple paths may be more desirable than shorter paths
with many twists in some imposed sense of orientation; the edges themselves may be weighted; and some
constraints may be implied by bandwidth rather than path distance. Thus we are led to consider the perfect
domination problem with general dominating functions. In this context, the purpose of posing such questions
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is not to evaluate the suitability of a single underlying graph for a proposed network (even if computationally
difficult, algorithmic solutions exist); rather, the purpose is to evaluate and compare whole families of related
graphs.

In this area, as well as others, few generalizations apply to all the families of graphs under consideration.
At best, they could usually be described as having some vague property of regular structure. Part of a shared
methodology, however, is the intent to parameterize a large set of graphs with similar structural properties
and, then, to reason from the parameters rather than from the graphs themselves — e.g., asymptotic analysis
of computational power. For that reason, many interesting families of graphs are frequently specified as the
cross-products of simple atomic graphs. Examples include meshes, tori, hypercubes, cube-connected-cycles,
etc. Importantly, although each family is mathematically well-defined, the general class of families specified
in this way is not. Generalizations of the graph cross-product operation are numerous and ever-increasing.

Yet, since regularities do exist in these structures, the possibility exists for parameterized solutions to
the multitude of perfect domination questions. For example, in [6], the existence of perfect dominating sets,
generalized to domination with distanced, is completely answered for the family of cube-connected cycles.
Regrettably, this and many of the other known results in this area are deeply limited by specifics of the
problem(s) under consideration. In fact, it is difficult to separate many of the techniques in [6] for reuse with
different families of graphs.

Our intent in this paper is to provide a technique for demonstrating the nonexistence of perfect dominat-
ing sets on families of graphs, applicable to general dominating functions.

One of the two main tools we will use is graph projection. This reduces complexity in the cross-product
graph in exchange for added complexity in the specification of the domination problem.

The other tool comes from linear algebra. We specify, relative to an arbitrary graphG and some general
notion of domination, a domination matrix. We define theunique dominationproperty as the invertibility
of that matrix. The unique domination property implies that at most one perfect dominating set can exist.
In some graphs, the existence of one perfect dominating set implies the existence of another, so for these
graphs the unique domination property rules out the existence any perfect dominating set.

For arbitrary graphs, we can say little about whether or not the unique domination condition exists. Yet,
exploiting the fact that many cross-product graphs have large automorphism groups, it is often possible to
demonstrate this condition with modest algebraic and graph-theoretic tools.

2 Definitions

2.1 Graph Theory Notation

Implicitly, we restrict our discussion to finite, directed, simple graphs.
In the standard manner, whenG represents a graph, let the expressionV (G) denote its vertex set, and

E(G) denote its edge set. Anautomorphismon the graphG is a bijective function� : V (G) �! V (G)

such that
(�(v1); �(v2)) 2 E(G)() (v1; v2) 2 E(G):

A function f on the vertices ofG is said to bepreservedunder an automorphism� if 8v1; v2; : : : 2
V (G); f(v1; v2; : : :) = f(�(v1); �(v2); : : :). A set or group of automorphisms preservesf if every ele-
ment preservesf . In addition, a group of automorphismsA is said to betransitiveor act transitivelyonG
if 8v0; v1 2 V (G);9� 2 A such that�(v0) = v1. A single automorphism or a set of automorphisms which
generates a transitive group is also said toact transitivelyonG.
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In a less standard manner, many researchers prefer to separate the terms dominateand coverwith the
intent of specifying, indirectly, which graph elements are being considered in which context — a vertex
dominatesa set of vertices, but itcoversa set of edges. Selecting a set of vertices so that each edge is
covered exactly once is a different problem than selecting a set of vertices so that each vertex is dominated
exactly once. A cycle of length three is sufficient to demonstrate this.

2.2 General Domination Questions

First, we examine vertex domination in the traditional sense:

Definition 2.1 Given two vertices,vi; vj 2 V (G), vi is said todominatevj if vi = vj or there exists an
edge fromvi to vj .

Definition 2.2 A set of verticesW � V (G) is said to be adominating setfor G if for eachv 2 V (G), there
exists a vertexw 2W such thatw dominatesv.

A set of verticesW � V (G) is said to be aperfect dominating setfor G if for eachv 2 V (G), there
exists a unique vertexw 2W such thatw dominatesv.

An example of perfect domination is provided in Figure 1. We will distinguish this particular notion of
domination from the generalizations which follow as themost basicnotion of domination.

Figure 1: A Perfect Dominating Set for the5 Torus

There are many simple graph quantities/properties/questions which can be expressed relative to this
definition. Thedomination number,for example, is the minimal size of any dominating set. One of our
particular motivating questions is “Do perfect dominating sets exist for a given graphG?” A variation
which will also concern us is amulti-dominationquestion, “Can we select a multi-set (that is, a set with
possibly non-distinct elements) of vertices fromG so that each vertex inG is dominated exactlym times?”

In addition to this generalization, it will be useful to alter the basic domination problem by replacing the
definition of domination itself. This is not without precedent — there are attempts to capture abstractions
where one vertex “partially” dominates another (fractional-domination) and, separately, attempts to capture
irregular covering shapes by defining “is dominated by” as an abstract relation on the vertices ofG.

We define adominating functionasanyfunctionf mapping pairs of vertices from a graphG into the real
numbers. However, unless stated otherwise, we will assume the range to be non-negative integers. When
the rangef is further limited to the setf0; 1g, we will describe it as astandard dominating function.With
standard dominating functions, we say that a vertexvi dominatesa vertexvj iff f(vi; vj) = 1.
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The domain of a dominating functionf is properly a set of ordered triplesfG; v1; v2g whereG is a
graph andv1 andv2 are vertices inG. A dominating functionf is determined by path distanceif it can be
defined asf(G; vi; vj) = g Æ d(v1; v2) whered(v1; v2) is the [directed] path distance fromv1 to v2 in G and
g is some well-defined function. We say a dominating functionf is limited by path distanceif there exists a
constantc such thatf(G; vi; vj) = 0 wheneverd(v1; v2) > c. As with path distance itself, we will use the
expressionf(v1; v2) wheneverG is unambiguous.

For a typical example of a standard dominating function which is only slightly more general than that
given in Definition 2.1, consider domination within distanced: f(vi; vj) is defined as one when there exists
a directed path fromvi to vj of distance less than or equal tod; zero, otherwise. Relative to this notion,
we may describe both dominating sets and perfect dominating sets exactly as in Definition 2.2; however, in
order to formalize these sets for arbitrary dominating functions, we must proceed algebraically.

For simplicity, we will assume thatG hasn vertices indexed by the nonnegative integers; that is,V (G) =
fv0; v1; : : : ; vn�1g. 1 LetMG;f be then� n matrix whoseith entry in thejth column isf(vi; vj). We will
refer toMG;f as thedomination matrixfor G andf .

Next, letW be any subset ofV (G) and let ~W be then-length column vector whoseith entry is one
if vi 2 W and zero otherwise. Extending this notation to weighted subsets (and, hence, multi-sets with
elements taken fromV (G)), let ~W be then-length column vector whoseith entry is zero ifvi 62 W and
the weight ofvi in W otherwise. Define1n as then-length column with all entries set to one, and, for any
two matrices/vectorsX andY having identical dimensions, letX v Y be the relation which is true iff each
entry inX is less than or equal to the corresponding entry inY .

Now, extending Definition 2.2:

Definition 2.3 A set of verticesW � V (G) is said to be adominating setrelative tof for G if 1n v
MG;f � ~W

A set of verticesW � V (G) is said to be aperfect dominating setrelative tof for G if 1n =MG;f � ~W

With respect to multi-dominating problems, we obtain similar equations with1n replaced bym � 1n and
allowingW to be, as appropriate to the question, a multi-set or a weighted set.

2.3 Cross Product Graphs

For any graphsG andH with verticesv1; v2 2 V (G), w1; w2 2 V (H), let P(G; v1; v2;H;w1; w2) be the
property that the verticesw1 andw2 are identical and the pair(v1; v2) represents an edge inG.

DefineSP(G;H) as

f((v1; w1); (v2; w2)) : P(G; v1; v2;H;w1; w2) is trueg :

Given a graphG and a graphH, the standard cross-product operationG
H denotes the graph whose
vertex set isV (G)� V (H) and whose edge set isSP(G;H)

S
SP(H;G).

Using just the standard cross-product operation, one can build up significant classes of graphs. For
example, whenG andH are both cycles,G
H is a torus graph. WhenGi = L2 (the linear graph with two
vertices),1 � i � d, the graph

G1 
G2 
 � � � 
Gd (2.4)

is thed-dimensional hypercube (the notationQd is sometimes used for the hypercube of dimensiond).

1In general, we will begin our indexing of entries in sets and vectors with 0.
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Figure 2: Standard Cross Product Operation

WhenGi = C`i , the cycle oǹ i vertices, the graph indicated by expression 2.4 is ad-dimensional torus,
T`1;`2;:::;`d or, for brevity,T(d). When`i = ` for 1 � i � d, the graph indicated is aregular d-dimensional
torus. The expression given for both hypercubes andd-dimensional tori is considered well-defined since, up
to graph isomorphism, the standard cross-product operation is both commutative and associative.

Order is important, however. Using the implied order of operations with the natural indices of the atomic
graphs, we findd-tuples which, very naturally, index the vertices of the cross-product graph. Moreover, we
also note that, in a single cross-product operation, the edges contributed bySP(G;H) are distinct from
those contributed bySP(H;G). Extending this observation in the obvious way, the order of operations in an
expression for a cross-product graph allows us to give a well-defined label fromf1; 2; : : : ; dg to each edge.
Informally, we say that the resulting edge sets lie along different dimensions, and the labeling indicates the
dimension along which a given edge lies.

This labeling of the edges along dimensions is a significant step in generalizing the cross-product op-
eration in useful ways. As an example, suppose thatG is the hypercube of dimensiond and thatH is the
cycle of lengthd. LetDe be the intuitive mapping of edges inG onto the dimensions ofG and letDv be
the function mapping the of vertices inH to their natural indices. Note that, for the givenG andH, the
range ofDe is exactly the same as that ofDv, and letQ(G; v1; v2;H;w1; w2) be the property that both
P(G; v1; v2;H;w1; w2) holds and thatDe((v1; v2)) = Dv(w1). With this notation, thecube-connected cy-
cleof orderd is the graph whose vertex set isV (G)�V (H) and whose edge set isSQ(G;H)

S
SP(H;G).

Figure 3: A Nonstandard Cross Product Operation

Continuing in this manner, we could develop further formalizations of interesting cross-product graphs:
torus-connected cycles, cube-connected cubes, and, with a little thought, cube-connected cube-connected
cycles. In fact, we could even attempt to standardize theconnectionoperation. We will not do so here. The
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important point is that the significant kinds of graphs built from cross-product operations for general pur-
poses — meaning those which are widely-studied and/or likely to come under study for applications (such
as computer-related structures) — have common abstractable qualities. They are all constructed from ex-
tremely simple atomic graphs (linear graphs and cycles of arbitrary length), and each of these atomic graphs
has at least one automorphism; withL2 and cycles, in fact, a transitive automorphism exists. Moreover,
reasonable cross-product operations on these atomic graphs result in graphs with related automorphisms.

3 Unique Domination

We make the following definition:

Definition 3.1 A graphG has theunique dominationcondition relative to some dominating functionf iff
MG;f is invertible.

Note that this definition is independent of the indexing of vertices inG.
The existence of the unique domination condition for a graphG relative to the dominating functionf is

equivalent to the existence of a unique solution for the real vectorX in the following equation:

1n = MG;f �X (3.2)

3.1 General Observations

The existence of a perfect dominating set is equivalent to stating that there exists a setW such that~W = X

satisfies Equation 3.2. We observe:

Proposition 3.3 If a graphG has the unique domination condition, then the number of distinct perfect
dominating sets forG is at most one.

Proposition 3.4 If a graphG has the unique domination condition, thenG has a perfect dominating set (in
the simple sense of a subset of vertices) iff1n �MG;f

�1 has entries from the setf0; 1g.

Proposition 3.5 If a graphG has the unique domination condition, and given a multi-domination problem
where each vertex is required to dominated exactlym times andW is allowed to be a multi-set, this problem
has a solution iffm1n �MG;f

�1 has nonnegative integer entries.

3.2 Proving Unique Domination

Proving the existence of the unique domination condition for a single graph with a single dominating func-
tion can be done immediately by calculating the determinant. A more interesting question is, “How does
one prove invertibility over an entire family of graphs?” For the families of cross-product graphs, the auto-
morphisms will be of central concern.

To begin, we examine a general method for deciding invertibility on a particular, well-studied class of
matrices — circulant matrices. Recall that ann� n matrixM is circulant if i1 � i2 � j1 � j2 (mod n)
implies thatMi1;j1 =Mi2;j2 .

As shown in figure 4, a circulant matrix is simply an arrangement of values within the matrix such that
each successive row is the previous row “shifted” by one.
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2
66666666664

A B C � � � X Y Z

Z A B � � � W X Y

Y Z A � � � V W X
...

...
...

. ..
...

...
...

D E F � � � A B C

C D E � � � Z A B

B C D � � � Y Z A

3
77777777775

Figure 4: Example of a Circulant Matrix

Demonstrating that a matrix is circulant is not difficult; however, in order to borrow the appropriate
theorem from abstract algebra concerning its invertibility, we will require a bit of notation: For any circulant
n � n matrixM , letR be the first row vector (given that a matrixM is circulant, the entire matrix can be
uniquely specified by the entries from any given row); letRi represent the value of theith entry inR. Now,
definepR as the complex function

pR(z) =
n�1X
i=0

Riz
i:

The functionpR is called therepresenterof the circulant matrixM . Also, let!n be exp(2�i
n
), a complex

root of unity.
Our reference for the following theorem is page 75 of Davis [3]; within that source, it is suggested that

problems concerning the invertibility of circulant matrices may have been originally posed and solved by
Catalan:

Theorem 3.6 If M is a circulantn� n matrix with representerpR, then

det M =
n�1Y
j=0

pR(!
j
n):

Corollary 3.7 If M is a circulantn�nmatrix,pR the representer ofM , thenM is invertible iffpR(!jn) 6= 0

for all j 2 f0; 1; : : : n� 1g.
Equivalently,M is invertible iffpR(z) has no solutions among the complexnth roots of unity.

The following proposition allows us to apply the results about circulant matrices to a broad class of
graphs:

Proposition 3.8 LetG be a graph with dominating functionf . If there exists a transitive automorphism�
ofG which preservesf , then there exists an indexing of the vertices such thatMG;f is circulant.
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Proof: Letv0 be any vertex. Index the remaining vertices by settingvi = �(i)(v0). Supposei1�i2 � j1�j2
(mod n), and setk = i2 � i1 mod n. Clearly, the order of� is n. Then

f(vi1 ; vj1) = f(�(i1)(v0); �
(j1)(v0))

= f(�(i1+k)(v0); �
(j1+k)(v0))

= f(�(i2)(v0); �
(j2)(v0))

= f(vi2 ; vj2)

The definition of the domination matrix completes the proof.2

Once we have that shown that a particular circulant matrixM is invertible, we know that, for a fixed
column vectorY and variable column vectorX, the equationY = M �X has exactly one solution. Calcu-
latingM�1 in order to determineX is not necessary whenY has identical entries. The following lemma
will apply. We omit the trivial proof.

Lemma 3.9 LetM be a non-zeron� n matrix such that the sum of the all the entries in any row ofM is a
constant r. Then the equationm1n =M �X has a solution forX whereX = m

r
1n.

3.3 Examples for Cycles

For our first example, we examine domination within path distanced (as defined in Section 2.2) on simple
cycles, and letfd denote the assumed dominating function. To avoid a triviality, assume thatCn, the cycle
of lengthn, is such thatn � 2d+ 1.

Note that the usual indexing ofV (Cn), with edges betweenvi andvj iff ji � jj = 1 mod n suggests
the transitive automorphism (Cn may have more than one),� such thatvi = �(i)(v0). Hence, even without
re-indexing the vertices, the the matrixMCn;fd is circulant. We find thatR, the first row of this domination
matrix, has2d+ 1 consecutive nonzero entries (with some allowance for wrap-around).

Without proof, we note the following:

Lemma 3.10 The functionpR(z) =
Pp�1

i=0 z
i has a zero among thenth roots of unity iffp dividesn.

Combining this with Corollary 3.7, we obtain the following corollary:

Corollary 3.11 Letn � 2d+ 1. ThenCn has the unique domination property relative tofd iff 2d+ 1 does
not dividen.

The perfect domination problem is trivial onCn; however, to illustrate how unique domination can be
applied to perfect domination questions, we present a new proof:

If n � 2d+ 1, andn not divisible by2d+ 1, then1n =MCn;fd �X has exactly one solution forX. So
by Lemma 3.9, it follows that every entry ofX must be 1

2d+1 — not an integer value. Thus, there exists no

subsetW of V (Cn) such that~W = X; so there exists no perfect dominating set.
We proceed similarly with nonstandard dominating functions. Again we examine then-length cycleCn,

and, this time, we define the dominating function

fs(vi; vj) =

8><
>:

3 if vi = vj
1 if d(vi; vj) = 1

0 otherwise
(3.12)
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(This function will also be used in Section 4.)
The relevant polynomialz2 + 3z + 1 has real roots, both of magnitude greater than one; it follows that

the matrixMCn;fs is invertible. Immediately, the unique domination condition exists, and reasoning in a
similar manner as before, we find the only solution tom1n =MCn;fs �X in X has identical entries,m5 .

Lemma 3.13 For the notion of domination provided byfs, every cycle has the unique domination condition.

4 The Projection Technique

By a projection, we mean only a surjective mapping between finite sets, particularly one related to graphs.
Specifically, letG andH be arbitrary indexed graphs, a projection� of the vertices ofG onto the vertices of
H induces a projection�0 of the indices ofV (G) onto the indices ofV (H) and vice-versa.

Definition 4.1 A projection� from V (G) to V (H) is balancedif there exists a constantD� such that, for
all w 2 V (H), D� = j��1(w)j. The constantD� is thedepthof the projection.

Definition 4.2 Given a projection� fromV (G) to V (H) and a dominating functionf for G, and suppose
that for allw1; w2 2 V (H),

cw1;w2 =
X

v22��1(w2)

f(v1; v2)

is constant for allv1 2 ��1(w1). Define theprojected dominating function�� f for H by�� f(w1; w2) =

cw1;w2 .

The critical proposition for applying our technique to questions of perfect domination is the following:

Proposition 4.3 LetG andH be indexed graphs, and let� be a balanced projection ofG ontoH with depth
D�. Letf be a dominating function forG and suppose that�� f is well-defined.

If the equation1n = MG;f � X has a solution forX with integer entries, thenD�1 n
D�

= MH;��f � X

also has a solution forX with integer entries.

Proof: Given a solution for1n = MG;fX for X, a vector of lengthjV (G)j, we use�0 to form a vector
of lengthjV (H)j solvingD�1 n

D�
= MH;��fX. Explicitly, we construct theith entry in the new vector by

taking the sum over allj 2 �0
�1(i) of the jth entries in original. Showing that this new vector is a proper

solution for desired equation is trivial.2

Corollary 4.4 LetG andH be indexed graphs,� be a balanced projection ofG ontoH, f be a dominating
function ofG, and suppose that�� f is well-defined.

If H does not have a perfect dominating set with respect to the multi-domination problem implied by
D�1 n

D�
= MH;��fX, thenG does not have a perfect dominating set relative to the problem implied by

1n =MG;fX.
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We illustrate the application of Corollary 4.4 with an example: Consider the most basic notion of domi-
nation and letfb represent the corresponding dominating function. Also, given the torusT`1;`2 , allow us to
informally index the vertices inT`1;`2 by “row” and “column” positions (without loss of generality, let`1 be
the number of columns). We note that, if`1 > 2, `2 > 2, a vertex dominates three vertices within the same
column and one vertex in each of the adjacent columns.

The question of whether or not we can place some number of vertices appropriately in each column,
without respect to the row position, so that each column is dominated precisely — i.e., three times the
number placed in one column plus the number placed in each adjacent column will equal the number of row
positions within a column — is, in some sense, an informal version of the projected domination problem.
Formalizing, let� map vertices of the torus onto those inC`1 by sendingvi;j to vi. The depth of this
projection is clearlỳ 2, and we see that any row vector ofMT`1;`2 ;fb

, arranged in the manner of the torus has
exactly this pattern of nonzero entries:

1
1 1 1

1

Summing along rows, we obtain this pattern:1 3 1, and noting the pattern is identical for every vertex in
theT`1;`2 with the same column index, it follows that the projected dominating function is well-defined (and
can to be shown to be the functionfs defined in Equation 3.12).

Proposition 4.5 The torusT`1;`2 has a perfect dominating set (in the usual sense) iff both`1 and `2 are
divisible by 5.

Proof: When 5 does divide both̀1 and`2, the set

fvi;j 2 T`1;`2 : i+ 2j � 0 (mod 5)g

can be demonstrated to be a perfect dominating set.
Now, project the torus onto either constituent cycle in the manner implied above. WLOG, the resulting

multi-domination problem, stated in algebraic form is

`1YC`2
=MC`2

;fsX:

By Lemma 3.13, the unique domination condition exists for the cycleC`2 with respect tofs. By Lemma 3.9,
the above multi-domination problem has a solution with integer entries iff`2

5 is an integer. Corollary 4.4
completes the proof;̀1 not divisible by5 implies thatT`1;`2 has no perfect dominating set.2

5 Application of the Techniques

Many of the specific results we demonstrate here may be strictly weaker than what is generally known
and/or what the authors can show. Our intention is only to provide an example of a more general criterion
for demonstrating the unique domination condition and give evidence of its value in conjunction with the
the projection technique. Particularly, we will focus our demonstration on thed-dimensional torus graph,
T(d) = T`1;`2;:::;`d (where the number of vertices isn =

Qd
i=1 `i).

The first step in our approach to perfect domination questions for a given family of graphs is to tailor
a result similar to Theorem 3.6 and Corollary 3.7 to provide criteria for unique domination. For tori, we
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illustrate this first step, finding conditions necessary and sufficient for unique domination, using the basic
orthogonal automorphisms known to exist within that family of graphs.

For the second step, we use the principle of projection to take a domination question on an abstract cross-
product graphH, exemplified by tori, (whereH is constructed fromconstituentgraphsG1; G2; : : : ; Gd;
e.g.,H = G1 
 G2 
 G3 � � �) and produce a different domination question on simpler graphs, typically
combinations of the constituent graphs, where the simpler graphs are isomorphic to tori.

5.1 An Unique Domination Criteria for Tori

Projecting onto cycles allows us to use the results of Corollary 3.7. However, when projecting to tori, the
domination matrix for the projected graph will not necessarily be circulant. Reducing only to cycles will
preclude the most interesting results concerning the parameters.

For the general case, we must adapt Theorem 3.6 to apply to a wider notion of circulant properties; we
define the class of matrices recursively:

Definition 5.1 A matrixM is meta-circulant2 if it can be decomposed into a circulant pattern of blocks
strictly smaller thanM such that each block is either circulant or meta-circulant.

2
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Figure 5: Example of a Meta-Circulant Matrix

In order the establish the link between this class of matrices and tori, we will require some further
notation relative to the ad-dimensional torusT(d) = T`1;`2;:::;`d where the number of vertices isn =

Qd
i=1 `i.

Let� be the bijection fromf0; 1; 2; : : : ; n�1g onto the natural indices ofT(d) (d-tuples) in lexicographi-
cal order and let�k(i) be thek entry of�(i); also, for the same torus, let�k be the circulant translation which
sends thed-length indexfi1; i2; : : : ; ik�1; ik; ik+1 : : : idg to fi1; i2; : : : ; ik�1; ik + 1 mod `k; ik+1 : : : idg.

For anyk 2 f1; 2; : : : ; dg, denote the automorphism ofT(d) which maps the vertex with index~i onto

the vertex with index�k~i as thekth basic orthogonal automorphism.The set generates a group, and,

2The authors are unaware of any published reference to this class of matrices, but suspect the resulting theorem, or a variation
of it, may be well-known.
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without proof, we may index the elements of this group in the same manner as vertices from the torus.
Define�j as the automorphism which sends the vertex at locationfi1; i2; : : : ; idg to the vertex at location
fi1 + �1(j) mod n; i2 + �2(j) mod n; : : : ; : : : id + �d(j)g.

Definition 5.2 For anyn�nmeta-circulant matrixM , ad-dimensional torusT(d) = T`1;`2;:::;`d (where the

number of vertices isn =
Qd

i=1 `i) is said todescribe the circulant propertiesofM , if there exists a function
g whose domain is the vertices ofT(d) such thatMi;j = g(�j(v�(i))).

Carefully following the subscripts and indices is sufficient to prove both of the following, and we omit
the tedious proofs:

Lemma 5.3 Ann� n matrixM is meta-circulant iff there exists a torusT(d) which describes the circulant
properties.

Lemma 5.4 GivenT(d) together with a dominating functionf preserved under the basic set of orthogo-
nal automorphisms, the matrixMT(d);f is meta-circulant and the torusT(d) itself describes the circulant
properties.

There many similarities between meta-circulant matrices and circulant matrices; for example, Lemma 3.9
trivially applies, and complex roots of unity (!n = exp(2�i

n
)) will be part of the expression for the determi-

nant. To shorten the expression for the determinant, define, relative to a torusT(d), the following function:

q(i; j) =
dY

k=1

!
�k(j)�k(i)
`k

:

For any meta-circulantn�nmatrixM , letR be the first row vector; letT(d) be any torus which describes
the circulant properties ofM (by Lemma 5.3 at least one can be found). As before, letRi represent the value
of theith entry inR.

Now, definep0R relative toT(d) as the function

p0R(j) =
n�1X
i=0

Riq(i; j)

where the functionq(i; j) is defined relative toT(d). Given a meta-circulant matrixM and a particular torus
T(n) which describes the circulant properties ofM , we denote the function,p0R as therepresenter ofM
relative toT(d), and we describe the pair,fT(d), p

0
Rg as arepresenterof M .

Theorem 5.5 If M is a meta-circulantn � n matrix andfT(n); p
0
Rg is any representer ofM , thenM is

invertible iffp0R(j) 6= 0 for all j 2 f0; 1; : : : n� 1g and

det M =
n�1Y
j=0

p0R(j):

12



Proof: LetEj be the column vector of lengthn whoseith entry isq(i; j). LetE be then�nmatrix whose
jth column isEj .

The scalar productp0R(j)Ej is easily shown to equal the matrix productMEj, and it follows that each
p0R(j) must be an eigenvalue ofM with Ej as a corresponding eigenvector. By induction ond, it can be
shown thatE has rankn, hence, the multi-setfp0R(j) : j 2 0; 1; : : : ; n� 1g contains all the eigenvalues in
their proper multiplicity. The Theorem follows since the determinant is the product of the eigenvalues.2

The condition thatp0R(j) = 0 may be equivalently stated purely in terms of thenth roots of unity (at the
cost of brevity) with a polynomial in several variables,pR, and the following corollary reflects this:

Corollary 5.6 Let f a dominating function forT(d) which is preserved under the basic orthogonal auto-
morphisms ofT(d). ThenT(d) has the unique domination condition iff the function

pR(z1; z2; : : : ; zd) =
n�1X
i=0

f(v�(0); v�(i))
dY

k=1

z
�k(i)
k

has no zeros in the set ofd-tuples
n
fz1; z2; :::; zdg : each zi = !

ji
`i

for some integerji
o
:

Proof: Relative to the given torus, we note thatpR as defined has the property thatp0R(i) =

pR(!
�1(i)
`1

; !
�2(i)
`2

; : : : ; !
�d(i)
`d

).3 The Corollary is then immediate.2

As a triviality, we note that each̀i dividesn; hence, if the functionpR in the above corollary has no
solutions amongd-tuples taken from thenth roots of unity, it will have no solutions in the more restricted
set.

5.2 Supporting Material

In the particular case we examine here — the basic notion of domination on thed-dimensional torus — it is
immediate that the domination matrix is meta-circulant. In fact,MG;f may be meta-circulant for a givenG
andf — even though the graphG is neither a torus or a cycle. Applications beyond tori are certainly possible
and a proposition analogous to Proposition 3.8 may be useful. In a similar way, it is trivial to demonstrate,
for our specific needs here, that all the involved projected dominating functions are well-defined. In more
general settings, this is not a step to be overlooked. Thus, we explicitly provide the following supporting
material:

Proposition 5.7 Let G be a graph with dominating functionf . If there exists a finite abelian group of
automorphismsA which acts transitively on the vertices ofG and preservesf , then there exists an indexing
of the vertices such thatMG;f is meta-circulant.

Proof: SinceA is finite and abelian, it can be written as the direct product of finitely many cyclic groups.
The lemma follows from the repeating the steps in the proof of Proposition 3.8.2

3This function could be viewed as therepresenterof a meta-circulant matrixM .
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Proposition 5.8 LetG be a graph and letf be a dominating function, such thatG has an abelian group of
automorphismsA which both acts transitively on the vertices ofG and preservesf .

SupposeA can be written as the direct product of some groupA0 with cyclic groupsC1, C2, C3, . . . ,Cd.
where the order of eachCi is `i.

Then we can define a balanced projection� which sendsG onto the torusT(d) such that the projected
dominating function�� f is well-defined.

Proof: We first mapV (G) onto the the equivalence classes determined by the orbits ofA0. Looking at
the action of the generator for eachCi on representatives of the equivalence classes will provide an indexing
mapping the equivalence classes onto the torus. The composition will be�. Since path distance is preserved
under any automorphism ofG, the rest of the lemma follows by examining the preimages of�. 2

Carefully examining the statement and proof of Proposition 5.8, an arbitrary projection can be shown
to induce a well-defined projected dominating function if it is equivalent to the projection described and
constructed in the proof.

Now, ford-dimensional tori, the group of automorphisms generated by basic orthogonal automorphisms
is is an abelian, transitive automorphism group. Thus, Propositions 3.8 and 5.8 are more than sufficient for
our purposes.

5.3 Perfect Domination in Tori

We examine only the most basic notion of domination on thed-dimensional torus graph,T(d) = T`1;`2;:::;`d,
attempting to find necessary and sufficient conditions on the parameters`1; `2; : : : ; `d for the existence of a
perfect dominating set. Here, we presuppose that each of the constituent cycles is simple, i.e.`i � 3, and
thatd > 1.

First, a useful lemma:

Proposition 5.9 Let the finite graphG have a nonnegative dominating functionf preserved under some
abelian set of automorphismsA which acts transitively on vertices ofG, and let v0 be a vertex inG.
Suppose there exists a vertexvi such that

f(v0; vi) >
X

ff(v0; vj) : i 6= j; vj 2 V (g)g

ThenG has the unique domination condition.

Proof: SinceA is finite, abelian, and acts transitively, by Proposition 5.7, the vertices ofG can indexed
so that thatMG;f is meta-circulant. Now, ifj < k, then the sum of anyj roots of unity cannot equal, in
magnitude,k. Examining the the functionpR relevant toMG;f , we can immediately deduce that it has no
solutions among any roots of unity.2

The following two lemmas illustrate part of the difference between projecting merely onto cycles and
projecting onto tori of smaller dimension.

Lemma 5.10 GivenT(d) with d � 2, if, for somei in f1; 2; : : : ; dg, n
`i

is not divisible by2d + 1, then no
perfect dominating set exists forT(d).
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Proof: If we project the torusT(d) orthogonally onto any of its constituent cycles, sayC`1 , we have a pro-
jected dominating function satisfying the conditions of Lemma 5.9. Thus, as in the example in the previous
section, sincen

`1
is the depth of the projection, and the sum of the entries in the first row of domination

matrix is2d+ 1, an application of Lemma 3.9 completes the lemma.2

Lemma 5.11 GivenT(d), if, for someI � f1; 2; : : : ; dg such thatd � 2jIj,
Q

i2I `i is not divisible by
2d+ 1, then no perfect dominating set exists forT(d).

Proof: Let J = f1; 2; : : : ; dg � I. We project the torusT(d) orthogonally onto the torus
N

j2J C`j .
Of the2d+1 vertices dominated by a single vertex inT(d), only 2jJ j are not mapped to the same vertex

by the projection. Sinced � 2ijIj, the projected dominating function satisfies the conditions of Lemma 5.9.
Proceeding as in the previous lemma,

Q
i2I `i divisible by2d + 1 is a necessary condition for a perfect

dominating set to exist.2

Using the projection onto tori and the meta-circulant condition, we obtain a complete result forT(d)
where2d+ 1 is prime.

Proposition 5.12 Whenp = 2d+1 is prime, the torusT(d) has a perfect dominating set (in the usual sense)
iff the length of each dimension is divisible by p.

Proof: Whenp does divide the length of each dimension, the set
8<
:vi1;i2;:::;id 2 T(d) :

dX
j=1

jij � 0 (mod p)

9=
;

can be demonstrated to be a perfect dominating set.
Either Lemma 5.10 or Lemma 5.11 is sufficient to show that at least two of lengths of the dimensions

must be divisible byp in order for a perfect dominating to exist. SupposeT(d) has some set of dimensions
whose length is divisible byp, but not all dimensions have this property.

WLOG, suppose onlỳ1 and`2 are divisible byp. We project orthogonally ontoT`1;`2 , and then, letting
pki be the greatest power ofp which divides`i, we projectT`1;`2 ontoTpk1 ;pk2 by the function which sends
the vertexv with indicesi; j to the vertex with indicesi mod pk1 ; j mod pk1 .

In the general case, the relevant functionpR(z1; z2; : : :) from Corollary 5.6 will have nonnegative integer
coefficients summing top, with one coefficient larger than one. Thus, the equationpf (z1; z2; : : :) = 0 does
have forzi in the roots of unity, but does not have solutions forzi in the setf!j

pi
: i; j integersg. The

complete factorization ofzp
k
� 1 is sufficient to show this.

Hence, checking the depths of the involved projections and applying Lemma 3.9 is sufficient to reveal
the contradiction.2

Remark 5.13 The quality of Lemma 5.10 relative to that of Lemma 5.11 is apparent when considering pri-
mality conditions on the dimensions. Simply, a proof of Proposition 5.12 using only the unique domination
criterion for the cycle (examining only circulant matrices) is not immediate, although it may be possible.
By comparison, using the criterion for tori (looking at meta-circulant matrices) seems to provide amuch
shorter, clearer proof.
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Continuing in the manner demonstrated, we can apply the criterion for the unique domination condition
to investigateT(d) where2d+ 1 is composite, extend the reasoning to derive results concerning the number
of distinct perfect dominating sets, examine domination within distanced on both tori and hypercubes, etc.

5.4 Unique Domination in Tori

Tori often do not possess the unique domination property even when it is easily demonstrated that the
perfect dominating sets do not exist. In spite of this, some conditions for the unique domination property
with standard dominating functions may be found.

We begin with results for more general graphs than just tori:

Proposition 5.14 Let G be a graph withn vertices, letf be a standard domination function, and letA
be an abelian transitive automorphism group which preservesf . Also suppose that, underf , each vertex
dominates exactly 5 vertices.

If 5 does not dividen and 6 does not dividen, thenG has the unique domination property.

Proof: From Proposition 5.7, the matrixMG;f is meta-circulant. The first row of this matrix has exactly
five nonzero entries, each equal to one. From Corollary 5.6, the relevant functionPr will be the sum of five
not-necessarily-distinct roots of unity.

From [5], there are exactly two ways in which fiventh roots of unity can sum to zero: First, the five
roots are evenly spaced on the unit circle, implyingn is divisible by five. Second, when two of the roots
are evenly spaced and the three remaining roots are evenly spaced, implying thatn is divisible by six. The
proposition follows.2

Proposition 5.15 Let G be a graph withn vertices, letf be a standard domination function, and letA
be an abelian transitive automorphism group which preservesf . Also suppose that, underf , each vertex
dominates exactly 7 vertices.

If 7 does not dividen, 10 does not dividen, and 12 does not dividen, thenG has the unique domination
property.

Proof: The proof is similar to that of Proposition 5.14, again we consider the possible combinations of the
nth roots of unity which by [5] must be evenly spaced in order to sum to zero.2

Now, as corollaries, with the most basic notion of domination (that given in Definition 2.1, we obtain:

Corollary 5.16 Let T be the two-dimensional torus onn vertices. If 5 does not dividen and 6 does not
dividen, thenT has the unique domination property.

Corollary 5.17 Let T be the three-dimensional torus onn vertices. If 5 does not dividen, 10 does not
dividen, and 12 does not dividen, thenT has the unique domination property.

Remark 5.18 From [5], there are suggestions that continuing to look at conditions such as “each vertex
dominates exactlyk vertices” for increasingk will result in weaker and weaker conditions.

Moreover, examining the conditions closely in Corollaries 5.17 and 5.17, it is not a simple matter to
strengthen them. An immediate example: For the most basic notion of domination, the two dimensional
torus T3;4 does have the unique domination property. Without some deeply extended reasoning, it would
appear, at best, difficult to develop a result like Proposition 4.5 without relying on something equivalent to
a projection and the corresponding alteration of the dominating function.
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6 Extensions and Conclusions

The unique domination condition for a general cross-product graphG and dominating functionf , particu-
larly the criteria which demonstrate its existence, appear to be valuable in a variety of domination-related
problems. Ongoing work by the authors includes developing the criteria for unique domination in vari-
ous nonstandard cross-product graphs as well as considering applications to deeper questions concerning
domination.

To a very limited extent, we provide a number of observations for extending our approach into related
questions. While we cannot expect to adequately represent every area of shared concern, we do hope to
make a few connections between our basic methods and the ongoing research of others.

6.1 Reliance on Transitive Automorphisms

Even the simple technique used for proving the existence of the unique domination property on certain cycles
made strong use of an indexing of the vertices through a transitive automorphism. The critical problem
for a common cross-product graph, the mesh, is that the atomic graphs (linear graphs) have no transitive
automorphism.

However, linear graphs, here denotedLn, are “almost” cycles. (We assume the vertices are indexed in
usual manner with edges betweenvi andvj iff ji � jj = 1.) Looking at dominating functionsf which are
both determined by and limited by path distance, the matrixMLn;f has the property that it is a sub-matrix
of MCn+m;f for some constantm and variablen.

Properly, the matrixMLn;f is Toeplitz. Recall that a matrixM is Toeplitz if 8i; j 2 f0; 1; : : : ; n �
2g;Mi;j = Mi+1;j+1. Showing that the domination matrix forCn+m is invertible first may be easier than
directly approaching the dominating matrix forLn. As an example, with the dominating functionfs defined
in Equation 3.12, the invertibility ofMCn+1;fs can be used to derive the invertibility of the matrixMLn;fs .
The proof is not difficult.

Unfortunately, when extending these results toward results concerning the existence of perfect dominat-
ing sets, the usefulness of Lemma 3.9 is lost.

6.2 Reliance on Commutative Automorphisms

For some families of graphs produced by nonstandard cross-product operations — such as the cube-connected
cycle or torus-connected cycle — there is an obvious group of transitive automorphisms; but this group is
not abelian.

Developing an unique domination criterion similar to that which relied on meta-circulant matrices is not
as difficult as it may appear. With the above two examples, we find the appropriate matrix is decomposable
into blocks where each block is meta-circulant (and blocks within each diagonal are related to each other by
a rotation property).

The class of graphs implied by these matrices is vast; however, it does not include many of the more
esoteric graphs proposed for computer networks (e.g. twisted cube-connected cubes), nor does it suggest
simple, appropriate projections. As noted earlier, this is part of ongoing research by the authors.
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