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Abstract

We present a method for approaching general domination and covering questions, tailored for cross-
product graphs, and demonstrate it for questions concerning the existence of perfect dominating sets.
Here, the definition of cross-product graphs can include families of cube-connected cycles, cube-connected
cubes as well as families of hypercubes, tori, etc.

We introduce a condition, uniqgue domination, which is closely related to many other domination
properties. This condition survives many variations in the notion of domination and can be explicitly
determined for any arbitrary finite graph. Considering the regularities which exist in many families of
cross-product graphs, the existence of this condition can often be demonstrated for all the members with
only simple methods. Our approach to questions of domination relies on combining proofs of the unique
domination condition with other tools. Adding only a simple graph projection technique, we demonstrate
short proofs of necessary conditions for the existence of perfect dominating sets in selected examples of
cross-product graphs.

Keywords: Coverings, Cross-Product Graphs, Dominating Sets, Unique Domination, Grid Graphs, Per-
fect Dominating Sets, Tori, Cube-Connected Cycles.

1 Introduction

A multitude of complicated domination and covering questions arise from the applications of graph theory.
For example, in the context of parallel network design, there may be replicable resources — such as code
libraries — which are prohibitively expensive to place at all individual processor nodes; yet, having each
node outside even some short, simple path distance of a resource would cause other problems. The most
efficient arrangement of the libraries would cover the whole network with no overlap. We wish to know
for which networks such an arrangement is possible. This translates to the question, “For which graphs do
perfect dominating sets exist?”

There may be complications, however, as certain simple paths may be more desirable than shorter paths
with many twists in some imposed sense of orientation; the edges themselves may be weighted; and some
constraints may be implied by bandwidth rather than path distance. Thus we are led to consider the perfect
domination problem with general dominating functions. In this context, the purpose of posing such questions



is not to evaluate the suitability of a single underlying graph for a proposed network (even if computationally
difficult, algorithmic solutions exist); rather, the purpose is to evaluate and compare whole families of related
graphs.

In this area, as well as others, few generalizations apply to all the families of graphs under consideration.
At best, they could usually be described as having some vague property of regular structure. Part of a shared
methodology, however, is the intent to parameterize a large set of graphs with similar structural properties
and, then, to reason from the parameters rather than from the graphs themselves — e.g., asymptotic analysis
of computational power. For that reason, many interesting families of graphs are frequently specified as the
cross-products of simple atomic graphs. Examples include meshes, tori, hypercubes, cube-connected-cycles,
etc. Importantly, although each family is mathematically well-defined, the general class of families specified
in this way is not. Generalizations of the graph cross-product operation are numerous and ever-increasing.

Yet, since regularities do exist in these structures, the possibility exists for parameterized solutions to
the multitude of perfect domination questions. For example, in [6], the existence of perfect dominating sets,
generalized to domination with distandgis completely answered for the family of cube-connected cycles.
Regrettably, this and many of the other known results in this area are deeply limited by specifics of the
problem(s) under consideration. In fact, it is difficult to separate many of the techniques in [6] for reuse with
different families of graphs.

Our intent in this paper is to provide a technique for demonstrating the nonexistence of perfect dominat-
ing sets on families of graphs, applicable to general dominating functions.

One of the two main tools we will use is graph projection. This reduces complexity in the cross-product
graph in exchange for added complexity in the specification of the domination problem.

The other tool comes from linear algebra. We specify, relative to an arbitrary grapld some general
notion of domination, a domination matrix. We define tiréeque dominatiorproperty as the invertibility
of that matrix. The unique domination property implies that at most one perfect dominating set can exist.
In some graphs, the existence of one perfect dominating set implies the existence of another, so for these
graphs the unique domination property rules out the existence any perfect dominating set.

For arbitrary graphs, we can say little about whether or not the unique domination condition exists. Yet,
exploiting the fact that many cross-product graphs have large automorphism groups, it is often possible to
demonstrate this condition with modest algebraic and graph-theoretic tools.

2 Definitions

2.1 Graph Theory Notation

Implicitly, we restrict our discussion to finite, directed, simple graphs.

In the standard manner, whéhrepresents a graph, let the expressiofz) denote its vertex set, and
E(G) denote its edge set. Aamutomorphision the graphG is a bijective functiorv : V(G) — V(G)
such that

(o(v1),0(v2)) € E(G) <= (v1,v2) € E(G).

A function f on the vertices of5 is said to bepreservedunder an automorphisre if Vv, vs,... €
V(G), f(v1,v9,...) = f(o(v1),0(v2),...). A set or group of automorphisms preserves every ele-
ment preserveg. In addition, a group of automorphismsis said to beransitive or act transitivelyon G

if Yug,v1 € V(G),3o € A such thatr(vy) = v1. A single automorphism or a set of automorphisms which
generates a transitive group is also saiddbtransitivelyon G.



In a less standard manner, many researchers prefer to separate the terms damdirateewith the
intent of specifying, indirectly, which graph elements are being considered in which context — a vertex
dominatesa set of vertices, but itoversa set of edges. Selecting a set of vertices so that each edge is
covered exactly once is a different problem than selecting a set of vertices so that each vertex is dominated
exactly once. A cycle of length three is sufficient to demonstrate this.

2.2 General Domination Questions
First, we examine vertex domination in the traditional sense:

Definition 2.1 Given two verticesy;,v; € V(G), v; is said todominatev; if v; = v; or there exists an
edge fromy; to v;.

Definition 2.2 A set of vertice$V C V(G) is said to be alominating sefor G if for eachv € V(G), there
exists a vertexo € W such thatw dominatesy.

A set of verticedV C V(G) is said to be gerfect dominating sdor G if for eachv € V(G), there
exists a unique vertex € W such thatw dominates.

An example of perfect domination is provided in Figure 1. We will distinguish this particular notion of
domination from the generalizations which follow as thest basiaotion of domination.

Figure 1: A Perfect Dominating Set for theTorus

There are many simple graph quantities/properties/questions which can be expressed relative to this
definition. Thedomination numberfor example, is the minimal size of any dominating set. One of our
particular motivating questions is “Do perfect dominating sets exist for a given gr&hA variation
which will also concern us is multi-dominationquestion, “Can we select a multi-set (that is, a set with
possibly non-distinct elements) of vertices fr@irso that each vertex i@ is dominated exactlyn times?”

In addition to this generalization, it will be useful to alter the basic domination problem by replacing the
definition of domination itself. This is not without precedent — there are attempts to capture abstractions
where one vertex “partially” dominates anoth&ag€tional-dominatiof and, separately, attempts to capture
irregular covering shapes by defining “is dominated by” as an abstract relation on the vertites of

We define alominating functiorasanyfunction f mapping pairs of vertices from a graphinto the real
numbers. However, unless stated otherwise, we will assume the range to be non-negative integers. When
the rangef is further limited to the sef0, 1}, we will describe it as atandard dominating functiondith
standard dominating functions, we say that a vesiedominatesa vertexv; iff f(v;,v;) = 1.
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The domain of a dominating functiofi is properly a set of ordered triplgs7, v, v, } WhereG is a
graph and» andwvs are vertices inG. A dominating functionf is determined by path distandkit can be
defined asf (G, v;, vj) = g o d(vi,v2) whered(vi,v2) is the [directed] path distance from to v, in G and
g is some well-defined function. We say a dominating functfds limited by path distancéd there exists a
constant such thatf (G, v;,v;) = 0 wheneverd(v,v2) > ¢. As with path distance itself, we will use the
expressiory (vq, v2) WheneverG is unambiguous.

For a typical example of a standard dominating function which is only slightly more general than that
given in Definition 2.1, consider domination within distantef (v;, v;) is defined as one when there exists
a directed path fromy; to v; of distance less than or equal dp zero, otherwise. Relative to this notion,
we may describe both dominating sets and perfect dominating sets exactly as in Definition 2.2; however, in
order to formalize these sets for arbitrary dominating functions, we must proceed algebraically.

For simplicity, we will assume tha&¥ hasn vertices indexed by the nonnegative integers; thaf &) =
{vo,v1,...,v,_1}. 1 Let Mg, be then x n matrix whoseith entry in thejth column isf (v;, v;). We will
refer toMg ¢ as thedomination matriXor G and f.

Next, letW be any subset of (G) and leti¥ be then-length column vector whosih entry is one
if v; € W and zero otherwise. Extending this notation to weighted subsets (and, hence, multi-sets with
elements taken frory (@), let W be then-length column vector whosih entry is zero ify; ¢ W and
the weight ofv; in W otherwise. Defind,, as then-length column with all entries set to one, and, for any
two matrices/vector¥ andY having identical dimensions, I&f C Y be the relation which is true iff each
entry in X is less than or equal to the corresponding entry in

Now, extending Definition 2.2:

Definition 2.3 A set of verticed¥V C V(@) is said to be adominating setelative to f for G if 1, C
MG’f -W
A set of vertice$?V C V(G) is said to be gerfect dominating seelative tof for G if 1,, = M¢ - W

With respect to multi-dominating problems, we obtain similar equations Wjtheplaced bym - 1,, and
allowing W to be, as appropriate to the question, a multi-set or a weighted set.
2.3 Cross Product Graphs

For any graph&s and H with verticesvy, vy € V(G), wi,wy € V(H), let P(G,v1,vq, H, w1, wy) be the
property that the vertices; andws are identical and the pafo,, v2) represents an edge @i.
DefineSp (G, H) as

{((vl,wl), ('UQ,’LUQ)) : P(G,UI,UQ,H,wl,wg) is true} .

Given a graph and a graptf, the standard cross-product operat@m H denotes the graph whose
vertex set i3/ (G) x V(H) and whose edge set$ (G, H) | Sp(H, G).

Using just the standard cross-product operation, one can build up significant classes of graphs. For
example, wheitx and H are both cycles7 ® H is a torus graph. Whe@i; = L, (the linear graph with two
vertices),l < i < d, the graph

GI®G® - QG (2.4)

is thed-dimensional hypercube (the notati@y is sometimes used for the hypercube of dimengipn

In general, we will begin our indexing of entries in sets and vectors with 0.
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Figure 2: Standard Cross Product Operation

WhenG; = Cy,, the cycle or?; vertices, the graph indicated by expression 2.4dsdémensional torus,
To, s,...,, OF, for brevity,T(d). When/; = ¢ for 1 < i < d, the graph indicated is @gular d-dimensional
torus. The expression given for both hypercubesddinensional tori is considered well-defined since, up
to graph isomorphism, the standard cross-product operation is both commutative and associative.

Order is important, however. Using the implied order of operations with the natural indices of the atomic
graphs, we findl-tuples which, very naturally, index the vertices of the cross-product graph. Moreover, we
also note that, in a single cross-product operation, the edges contributggd (b H) are distinct from
those contributed by p (H, G). Extending this observation in the obvious way, the order of operations in an
expression for a cross-product graph allows us to give a well-defined labeffrdin. . . , d} to each edge.
Informally, we say that the resulting edge sets lie along different dimensions, and the labeling indicates the
dimension along which a given edge lies.

This labeling of the edges along dimensions is a significant step in generalizing the cross-product op-
eration in useful ways. As an example, suppose that the hypercube of dimensiahand thatH is the
cycle of lengthd. Let D, be the intuitive mapping of edges # onto the dimensions aff and letD,, be
the function mapping the of vertices # to their natural indices. Note that, for the givéhand H, the
range ofD, is exactly the same as that ®%,, and letQ(G, vy, v2, H, w1, w2) be the property that both
P(G,v1,v9, H,wy,ws) holds and thaD. ((vy,v3)) = D, (w1). With this notation, theube-connected cy-
cle of orderd is the graph whose vertex setli§G) x V(H) and whose edge set$ (G, H) U Sp(H, G).

® % =

Figure 3: A Nonstandard Cross Product Operation

Continuing in this manner, we could develop further formalizations of interesting cross-product graphs:
torus-connected cycles, cube-connected cubes, and, with a little thought, cube-connected cube-connected
cycles. In fact, we could even attempt to standardizectimnectioroperation. We will not do so here. The



important point is that the significant kinds of graphs built from cross-product operations for general pur-
poses — meaning those which are widely-studied and/or likely to come under study for applications (such
as computer-related structures) — have common abstractable qualities. They are all constructed from ex-
tremely simple atomic graphs (linear graphs and cycles of arbitrary length), and each of these atomic graphs
has at least one automorphism; with and cycles, in fact, a transitive automorphism exists. Moreover,
reasonable cross-product operations on these atomic graphs result in graphs with related automorphisms.

3 Unique Domination

We make the following definition:

Definition 3.1 A graphG has theunique dominatiorcondition relative to some dominating functigniff
Mg s is invertible.

Note that this definition is independent of the indexing of verticeS.in
The existence of the unique domination condition for a gr@plelative to the dominating functiofiis
equivalent to the existence of a unique solution for the real veXtor the following equation:

ln, = Mgy-X (3.2)

3.1 General Observations

The existence of a perfect dominating set is equivalent to stating that there exisi& &seh thatV = X
satisfies Equation 3.2. We observe:

Proposition 3.3 If a graph G has the unique domination condition, then the number of distinct perfect
dominating sets fof is at most one.

Proposition 3.4 If a graph G has the unique domination condition, th&rhas a perfect dominating set (in
the simple sense of a subset of verticed),jff MG’f_l has entries from the s€0, 1}.

Proposition 3.5 If a graph G has the unique domination condition, and given a multi-domination problem
where each vertex is required to dominated exaetlifmes and# is allowed to be a multi-set, this problem
has a solution ifinl, - Mg, ;' has nonnegative integer entries.

3.2 Proving Unigue Domination

Proving the existence of the unique domination condition for a single graph with a single dominating func-
tion can be done immediately by calculating the determinant. A more interesting question is, “How does
one prove invertibility over an entire family of graphs?” For the families of cross-product graphs, the auto-
morphisms will be of central concern.

To begin, we examine a general method for deciding invertibility on a particular, well-studied class of
matrices — circulant matrices. Recall that:arx n matrix M is circulantif iy —is = j; — j2  (mod n)
implies thatM;, ;, = M, j,.

As shown in figure 4, a circulant matrix is simply an arrangement of values within the matrix such that
each successive row is the previous row “shifted” by one.



A B C X Y Z7
Z A B W X Y
Y Z A Vv w X
D E F A B C
C D E Z A B
L B C D Y Z A ]

Figure 4: Example of a Circulant Matrix

Demonstrating that a matrix is circulant is not difficult; however, in order to borrow the appropriate
theorem from abstract algebra concerning its invertibility, we will require a bit of notation: For any circulant
n X n matrix M, let R be the first row vector (given that a mat{ is circulant, the entire matrix can be
uniquely specified by the entries from any given row);Retrepresent the value of thith entry inR. Now,
definepp as the complex function

n—1
pr(z) = Y Riz'.
=0

The functionpp, is called therepresenterof the circulant matrix)Z. Also, letw,, be exp(%), a complex
root of unity.

Our reference for the following theorem is page 75 of Davis [3]; within that source, it is suggested that
problems concerning the invertibility of circulant matrices may have been originally posed and solved by
Catalan:

Theorem 3.6 If M is a circulantn x n matrix with representepg, then

n—1
det M =[] pr(w)).
7=0

Corollary 3.7 If M is a circulantn x n matrix, pr the representer af/, thenM is invertible iffpr(w’) # 0
forall j € {0,1,...n—1}.
Equivalently,M is invertible iffpr(z) has no solutions among the comptfetk roots of unity.

The following proposition allows us to apply the results about circulant matrices to a broad class of
graphs:

Proposition 3.8 Let G be a graph with dominating functiof. If there exists a transitive automorphism
of G which preserveg, then there exists an indexing of the vertices such Aligt; is circulant.



Proof: Letw, be any vertex. Index the remaining vertices by setting o(*) (vg). Supposeé; —is = j1—Jo
(mod n), and set; = i3 — i; mod n. Clearly, the order of isn. Then

f(vilavjl) = f(U ( ) ()(UO))
= S 900), o D)
= [0 (vy), 0V (wy))
f(

= Uiy U]z)

The definition of the domination matrix completes the praof.

Once we have that shown that a particular circulant madltfixs invertible, we know that, for a fixed
column vectorY” and variable column vectaoX, the equatior” = M - X has exactly one solution. Calcu-
lating M ! in order to determineX is not necessary wher has identical entries. The following lemma
will apply. We omit the trivial proof.

Lemma 3.9 Let M be a non-zera x n matrix such that the sum of the all the entries in any roulbfs a
constantr. Then the equatiom1,, = M - X has a solution forX whereX = ™1,,.

3.3 Examples for Cycles

For our first example, we examine domination within path distah@ss defined in Section 2.2) on simple
cycles, and leff, denote the assumed dominating function. To avoid a triviality, assumé&'thdhe cycle
of lengthn, is such that > 2d + 1.

Note that the usual indexing &f(C,,), with edges between; andv; iff |i — j| = 1 mod n suggests
the transitive automorphisnC{, may have more than onej,such that; = ¢(® (vg). Hence, even without
re-indexing the vertices, the the matiX., , is circulant. We find thaf?, the first row of this domination
matrix, ha2d + 1 consecutive nonzero entries (with some allowance for wrap-around).

Without proof, we note the following:

Lemma 3.10 The functiorpg(z) = Eﬁ’;ol Z* has a zero among theth roots of unity iffp dividesn.
Combining this with Corollary 3.7, we obtain the following corollary:

Corollary 3.11 Letn > 2d + 1. ThenC,, has the unique domination property relativefipiff 2d + 1 does
not dividen.

The perfect domination problem is trivial d@i,; however, to illustrate how unique domination can be
applied to perfect domination questions, we present a new proof:

If n > 2d + 1, andn not divisible by2d + 1, thenl,, = M, , - X has exactly one solution foX. So
by Lemma 3.9, it follows that every entry &f must be2d+1 not an integer value. Thus, there exists no

subset¥ of V(C,,) such thaf¥’ = X; so there exists no perfect dominating set.
We proceed similarly with nonstandard dominating functions. Again we examineldrgth cycleC,,,
and, this time, we define the dominating function

3 if v; =v;

fs(viavj) = 1 if d(Ui,?)j) =1 (312)
0 otherwise
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(This function will also be used in Section 4.)

The relevant polynomiat? + 3z + 1 has real roots, both of magnitude greater than one; it follows that
the matrixM¢, ;, is invertible. Immediately, the unique domination condition exists, and reasoning in a
similar manner as before, we find the only solutiomtd,, = M¢, s, - X in X has identical entriesg.

Lemma 3.13 For the notion of domination provided by, every cycle has the unique domination condition.

4 The Projection Technique

By a projection we mean only a surjective mapping between finite sets, particularly one related to graphs.
Specifically, letG and H be arbitrary indexed graphs, a projectioof the vertices of7 onto the vertices of
H induces a projectiop’ of the indices ofi’(G) onto the indices o¥/ (H) and vice-versa.

Definition 4.1 A projectionp from V' (G) to V (H) is balancedf there exists a constar®, such that, for
allw e V(H), D, = |p~*(w)|. The constanD, is thedepthof the projection.

Definition 4.2 Given a projectiorp from V (G) to V(H) and a dominating functiotf for G, and suppose
that for all w,, wy € V(H),

Corn =, flv1,)
va€p~1(w2)
is constant for alby; € p~!(w,). Define theprojected dominating function® f for H by p ® f (wy,ws) =

Cwy,ws-
The critical proposition for applying our technique to questions of perfect domination is the following:

Proposition 4.3 LetG and H be indexed graphs, and lptbe a balanced projection @f onto H with depth
D,. Let f be a dominating function fo& and suppose that © f is well-defined.
If the equationl,, = M, - X has a solution forX' with integer entries, theW,1» = My o - X
P

also has a solution foX with integer entries.

Proof: Given a solution forl,, = Mg (X for X, a vector of lengtV' (G)|, we usep’ to form a vector
of length |V (H)| solving Dplo = MpyporX. Explicitly, we construct théth entry in the new vector by
P

taking the sum over all € p”l(z‘) of the jth entries in original. Showing that this new vector is a proper
solution for desired equation is trividl

Corollary 4.4 LetG and H be indexed graphg; be a balanced projection @¥ onto H, f be a dominating
function ofG, and suppose that® f is well-defined.

If H does not have a perfect dominating set with respect to the multi-domination problem implied by
DplDLp = My 51X, thenG does not have a perfect dominating set relative to the problem implied by

1, = Mg ; X.



We illustrate the application of Corollary 4.4 with an example: Consider the most basic notion of domi-
nation and letf, represent the corresponding dominating function. Also, given the frys, allow us to
informally index the vertices iff;, ,, by “row” and “column” positions (without loss of generality, lgtbe
the number of columns). We note that/if > 2, 5 > 2, a vertex dominates three vertices within the same
column and one vertex in each of the adjacent columns.

The question of whether or not we can place some number of vertices appropriately in each column,
without respect to the row position, so that each column is dominated precisely — i.e., three times the
number placed in one column plus the number placed in each adjacent column will equal the number of row
positions within a column — is, in some sense, an informal version of the projected domination problem.
Formalizing, letp map vertices of the torus onto thosedh, by sendingv; ; to v;. The depth of this
projection is clearlys, and we see that any row vectorMFp[l, 1S arranged in the manner of the torus has
exactly this pattern of nonzero entries:

[a—y
—_ = =
—

Summing along rows, we obtain this pattein3 1, and noting the pattern is identical for every vertex in
theT}, 4, with the same column index, it follows that the projected dominating function is well-defined (and
can to be shown to be the functigip defined in Equation 3.12).

Proposition 4.5 The torusTy, ¢, has a perfect dominating set (in the usual sense) iff Wptand /, are
divisible by 5.

Proof: When 5 does divide botty and/,, the set
{vij €Tppp:i+2j=0 (mod 5)}

can be demonstrated to be a perfect dominating set.
Now, project the torus onto either constituent cycle in the manner implied above. WLOG, the resulting
multi-domination problem, stated in algebraic form is

tL¥e,, = Mg, 1, X.

By Lemma 3.13, the unique domination condition exists for the a¢glewith respect tof;. By Lemma 3.9,
the above multi-domination problem has a solution with integer entrie@ if6 an integer. Corollary 4.4
completes the proof,; not divisible by5 implies thatTy, ,, has no perfect dominating sei.

5 Application of the Techniques

Many of the specific results we demonstrate here may be strictly weaker than what is generally known
and/or what the authors can show. Our intention is only to provide an example of a more general criterion
for demonstrating the unique domination condition and give evidence of its value in conjunction with the
the projection technique. Particularly, we will focus our demonstration om-tienensional torus graph,
Tiay = Toy s,...,0, (Where the number of verticessis= 1L, ).

The first step in our approach to perfect domination questions for a given family of graphs is to tailor
a result similar to Theorem 3.6 and Corollary 3.7 to provide criteria for uniqgue domination. For tori, we
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illustrate this first step, finding conditions necessary and sufficient for unigue domination, using the basic
orthogonal automorphisms known to exist within that family of graphs.

For the second step, we use the principle of projection to take a domination question on an abstract cross-
product graphH, exemplified by tori, (whered is constructed frontonstituentgraphsG,, G, ..., Gq;
eg.,.H = G ® G, ® G3---) and produce a different domination question on simpler graphs, typically
combinations of the constituent graphs, where the simpler graphs are isomorphic to tori.

5.1 An Unique Domination Criteria for Tori

Projecting onto cycles allows us to use the results of Corollary 3.7. However, when projecting to tori, the
domination matrix for the projected graph will not necessarily be circulant. Reducing only to cycles will
preclude the most interesting results concerning the parameters.

For the general case, we must adapt Theorem 3.6 to apply to a wider notion of circulant properties; we
define the class of matrices recursively:

Definition 5.1 A matrix M is meta-circulartt if it can be decomposed into a circulant pattern of blocks
strictly smaller than) such that each block is either circulant or meta-circulant.

'{ABC] D EF] [G H 1] [J K L]]
C A B F D E I G H L J K
[BCAJ 'E FD| |H I G| |K L J|
J K L] [ABcCc] [DEF] [G H I]
L J K C A B F D E I G H
K L J| |BC A|] |EFD| |H I G|
¢ H Il [J K L] [ABcC] [D E F]
I G H L J K C A B F D E
H I G| |K L J]| |BC A|] |E F D|
D EF] [GH 1] [J K L [A B C]
F D E I G H L J K C A B
|E FD| |H I G| |K L J B C A

Figure 5: Example of a Meta-Circulant Matrix

In order the establish the link between this class of matrices and tori, we will require some further
notation relative to the édimensional toru§ 4y = Ty, 4,,....,, Where the number of verticesris= 1%, 4.

Lety be the bijection from{0, 1,2, ... ,n—1} onto the natural indices df ;) (d-tuples) in lexicographi-
cal order and letu;,(7) be thek entry of.(4); also, for the same torus, I¢}, be the circulant translation which
sends thel-length index{il,ig, R Y S T Y% Y S ’id} to {il, 19y« -y 0g 1,06 + 1 mod g, ipyq ... ’id}.

For anyk € {1,2,...,d}, denote the automorphism @f,;) which maps the vertex with indexonto
the vertex with indexp;i as thekth basic orthogonal automorphismThe set generates a group, and,

2The authors are unaware of any published reference to this class of matrices, but suspect the resulting theorem, or a variation
of it, may be well-known.
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without proof, we may index the elements of this group in the same manner as vertices from the torus.
Definec; as the automorphism which sends the vertex at locdtionis, . . ., 74} to the vertex at location

{i1 + p1(5) mod n, iz + po(j) mod n, ..., ... 0q + pa(j) }-

Definition 5.2 For anyn x n meta-circulant matrix\/, ad-dimensional toru§y) = T, ¢,,... ¢, (Where the

number of vertices is = H;izl ¢;) is said todescribe the circulant propertie§ M, if there exists a function
g whose domain is the vertices'fif;, such thatM; ; = g(o(v,)))-

Carefully following the subscripts and indices is sufficient to prove both of the following, and we omit
the tedious proofs:

Lemma 5.3 Ann x n matrix M is meta-circulant iff there exists a tord3,) which describes the circulant
properties.

Lemma 5.4 GivenT|, together with a dominating functiofi preserved under the basic set of orthogo-
nal automorphisms, the matri¥/r,,, r is meta-circulant and the torug|, itself describes the circulant
properties.

There many similarities between meta-circulant matrices and circulant matrices; for example, Lemma 3.9
trivially applies, and complex roots of unityf = exp(%)) will be part of the expression for the determi-
nant. To shorten the expression for the determinant, define, relative to &tgyuthe following function:

d . .
q(Z,]) _ H wgkk(])ﬂk(z).
k=1
For any meta-circulant xn matrix M, let R be the first row vector; |€f};) be any torus which describes
the circulant properties af/ (by Lemma 5.3 at least one can be found). As beforeR)etpresent the value

of theith entry inR.
Now, definep’, relative toT(d) as the function

n—1
pr() = D Riq(i,j)
=0

where the function(i, j) is defined relative td7,. Given a meta-circulant matrix/ and a particular torus
T\, which describes the circulant properties /df, we denote the functiony, as therepresenter of\/
relative to7{,), and we describe the pa{7 ), p;} as arepresenteiof M.

Theorem 5.5 If M is a meta-circulant x n matrix and{T(,), pr} is any representer ai/, then M is
invertible iffp', (j) # 0 forall j € {0,1,...n — 1} and

n—1
det M = Hp;z(j).
§=0
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Proof: Let E; be the column vector of lengthwhoseith entry isq(4, j). Let £ be then x n matrix whose
jth column isE);.

The scalar produgt, () E; is easily shown to equal the matrix produdtE;, and it follows that each
pR(7) must be an eigenvalue @ff with E; as a corresponding eigenvector. By inductiondpit can be
shown thatE has rankn, hence, the multi-seftp', () : j € 0,1,...,n — 1} contains all the eigenvalues in
their proper multiplicity. The Theorem follows since the determinant is the product of the eigenvalues.

The condition thap’, (j) = 0 may be equivalently stated purely in terms of ttth roots of unity (at the
cost of brevity) with a polynomial in several variables;, and the following corollary reflects this:

Corollary 5.6 Let f a dominating function foff{4 which is preserved under the basic orthogonal auto-
morphisms off{4). ThenT|4 has the unique domination condition iff the function

n—1 d )
pr(21,22,--,20) = > Fuo)vui) [ 2w
i=0 k=1

has no zeros in the set dftuples

{{Zl,ZQ, w24} eachz; = wg for some integerji}.

Proof: Relative to the given torus, we note that as defined has the property thgt(i) =
pR(wZ(Z), wé‘;(l), . ,wfdd(l))? The Corollary is then immediatél

As a triviality, we note that each dividesn; hence, if the functiomy in the above corollary has no
solutions among-tuples taken from theth roots of unity, it will have no solutions in the more restricted
set.

5.2 Supporting Material

In the particular case we examine here — the basic notion of domination @rdineensional torus — it is
immediate that the domination matrix is meta-circulant. In fagg; ; may be meta-circulant for a gived

andf — even though the grapf is neither a torus or a cycle. Applications beyond tori are certainly possible
and a proposition analogous to Proposition 3.8 may be useful. In a similar way, it is trivial to demonstrate,
for our specific needs here, that all the involved projected dominating functions are well-defined. In more
general settings, this is not a step to be overlooked. Thus, we explicitly provide the following supporting
material:

Proposition 5.7 Let G be a graph with dominating functiofi. If there exists a finite abelian group of
automorphismsA which acts transitively on the vertices@fand preserveg, then there exists an indexing
of the vertices such that/; ; is meta-circulant.

Proof: SinceA is finite and abelian, it can be written as the direct product of finitely many cyclic groups.
The lemma follows from the repeating the steps in the proof of Proposition13.8.

3This function could be viewed as thepresenteiof a meta-circulant matrid/.
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Proposition 5.8 LetG be a graph and lef be a dominating function, such th@thas an abelian group of
automorphismsi which both acts transitively on the vertices@fand preserveg.

Supposed can be written as the direct product of some grotipwith cyclic groupsCy, Cs, C3, ...,Cq4.
where the order of eactj; is ;.

Then we can define a balanced projectjpwhich sendsx onto the torusT ) such that the projected
dominating functiorp ® f is well-defined.

Proof: We first mapV (G) onto the the equivalence classes determined by the orbits. of ooking at

the action of the generator for ea€hon representatives of the equivalence classes will provide an indexing
mapping the equivalence classes onto the torus. The composition will®iace path distance is preserved
under any automorphism df, the rest of the lemma follows by examining the preimages of

Carefully examining the statement and proof of Proposition 5.8, an arbitrary projection can be shown
to induce a well-defined projected dominating function if it is equivalent to the projection described and
constructed in the proof.

Now, for d-dimensional tori, the group of automorphisms generated by basic orthogonal automorphisms
is is an abelian, transitive automorphism group. Thus, Propositions 3.8 and 5.8 are more than sufficient for
our purposes.

5.3 Perfect Domination in Tori

We examine only the most basic notion of domination ondftemensional torus grapfiy ) = T, ¢,.... ¢,
attempting to find necessary and sufficient conditions on the parandetéss. . ., ¢, for the existence of a
perfect dominating set. Here, we presuppose that each of the constituent cycles is simfjle; i3.and
thatd > 1.

First, a useful lemma:

Proposition 5.9 Let the finite graphZ have a nonnegative dominating functigrpreserved under some
abelian set of automorphismd which acts transitively on vertices @f, and letvy be a vertex inG.
Suppose there exists a vertgxsuch that

f('UOan) > Z{f(v()avj) 274.771)] EV(Q)}
ThenG has the unigue domination condition.

Proof: SinceA is finite, abelian, and acts transitively, by Proposition 5.7, the vertic€s cdn indexed
so that thatM;,; is meta-circulant. Now, ifi < k, then the sum of any roots of unity cannot equal, in
magnitude k. Examining the the functiopy relevant todM ;, we can immediately deduce that it has no
solutions among any roots of unityl

The following two lemmas illustrate part of the difference between projecting merely onto cycles and
projecting onto tori of smaller dimension.

Lemma 5.10 GivenT|4 with d > 2, if, for somei in {1,2,...,d}, ?7 is not divisible by2d + 1, then no
perfect dominating set exists f@y,,.
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Proof: If we project the torud,, orthogonally onto any of its constituent cycles, €3y, we have a pro-
jected dominating function satisfying the conditions of Lemma 5.9. Thus, as in the example in the previous
section, sinceén—1 is the depth of the projection, and the sum of the entries in the first row of domination
matrix is2d + 1, an application of Lemma 3.9 completes the lemma.

Lemma 5.11 GivenT(y), if, for somel C {1,2,...,d} such thatd < 2|1, [];c, ¢; is not divisible by
2d + 1, then no perfect dominating set exists 1gj.

Proof: LetJ = {1,2,...,d} ~ I. We project the toru§, orthogonally onto the toru®) ;. Cy, .
Of the2d + 1 vertices dominated by a single vertexiiy,, only 2.J| are not mapped to the same vertex
by the projection. Sincé < 2i|I|, the projected dominating function satisfies the conditions of Lemma 5.9.
Proceeding as in the previous lemn§,; ¢; divisible by2d + 1 is a necessary condition for a perfect
dominating set to exista

Using the projection onto tori and the meta-circulant condition, we obtain a complete restll;for
where2d + 1 is prime.

Proposition 5.12 Whenp = 2d + 1 is prime, the torud has a perfect dominating set (in the usual sense)
iff the length of each dimension is divisible by p.

Proof: Whenp does divide the length of each dimension, the set

d
{UilyiQr"aid 6 T(d) : Z]Z] = 0 (mOd p)}
1

J

can be demonstrated to be a perfect dominating set.

Either Lemma 5.10 or Lemma 5.11 is sufficient to show that at least two of lengths of the dimensions
must be divisible by in order for a perfect dominating to exist. Suppd3g has some set of dimensions
whose length is divisible by, but not all dimensions have this property.

WLOG, suppose only; and/, are divisible byp. We project orthogonally ontd,, ¢,, and then, letting
p" be the greatest power pfwhich divides?;, we projectly, o, onto T, .k, by the function which sends
the vertexv with indicesi, j to the vertex with indices mod p*', j mod p*1.

In the general case, the relevant functigg(z1, 2o, . . .) from Corollary 5.6 will have nonnegative integer
coefficients summing tp, with one coefficient larger than one. Thus, the equatig(?;, 22, ...) = 0 does
have forz; in the roots of unity, but does not have solutions fptin the set{w;i : 4,7 integerg. The

complete factorization of?" — 1is sufficient to show this.
Hence, checking the depths of the involved projections and applying Lemma 3.9 is sufficient to reveal
the contradictiond

Remark 5.13 The quality of Lemma 5.10 relative to that of Lemma 5.11 is apparent when considering pri-
mality conditions on the dimensions. Simply, a proof of Proposition 5.12 using only the unique domination
criterion for the cycle (examining only circulant matrices) is not immediate, although it may be possible.
By comparison, using the criterion for tori (looking at meta-circulant matrices) seems to prowviciech
shorter, clearer proof.
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Continuing in the manner demonstrated, we can apply the criterion for the uniqgue domination condition
to investigatel;) where2d + 1 is composite, extend the reasoning to derive results concerning the number
of distinct perfect dominating sets, examine domination within distamme both tori and hypercubes, etc.

5.4 Unique Domination in Tori

Tori often do not possess the unique domination property even when it is easily demonstrated that the
perfect dominating sets do not exist. In spite of this, some conditions for the unique domination property
with standard dominating functions may be found.

We begin with results for more general graphs than just tori:

Proposition 5.14 Let G be a graph withn vertices, letf be a standard domination function, and lét
be an abelian transitive automorphism group which presereslso suppose that, undgr, each vertex
dominates exactly 5 vertices.

If 5 does not divide: and 6 does not divide, thenG has the unique domination property.

Proof: From Proposition 5.7, the matrik/ ; is meta-circulant. The first row of this matrix has exactly
five nonzero entries, each equal to one. From Corollary 5.6, the relevant fui:tisiti be the sum of five
not-necessarily-distinct roots of unity.

From [5], there are exactly two ways in which fiwgh roots of unity can sum to zero: First, the five
roots are evenly spaced on the unit circle, implyings divisible by five. Second, when two of the roots
are evenly spaced and the three remaining roots are evenly spaced, implyingtiotisible by six. The
proposition follows.O

Proposition 5.15 Let G be a graph withn vertices, letf be a standard domination function, and lét
be an abelian transitive automorphism group which preseifieélso suppose that, undgr, each vertex
dominates exactly 7 vertices.

If 7 does not divide:, 10 does not divide, and 12 does not divide, thenG has the unique domination

property.

Proof: The proof is similar to that of Proposition 5.14, again we consider the possible combinations of the
nth roots of unity which by [5] must be evenly spaced in order to sum to zero.

Now, as corollaries, with the most basic notion of domination (that given in Definition 2.1, we obtain:

Corollary 5.16 LetT be the two-dimensional torus onvertices. If 5 does not divide and 6 does not
divide n, thenT has the unique domination property.

Corollary 5.17 Let T be the three-dimensional torus envertices. If 5 does not divide, 10 does not
dividen, and 12 does not divide, thenT has the unique domination property.

Remark 5.18 From [5], there are suggestions that continuing to look at conditions such as “each vertex
dominates exactli vertices” for increasingk will result in weaker and weaker conditions.

Moreover, examining the conditions closely in Corollaries 5.17 and 5.17, it is not a simple matter to
strengthen them. An immediate example: For the most basic notion of domination, the two dimensional
torus T3 4 does have the unique domination property. Without some deeply extended reasoning, it would
appear, at best, difficult to develop a result like Proposition 4.5 without relying on something equivalent to
a projection and the corresponding alteration of the dominating function.
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6 Extensions and Conclusions

The unique domination condition for a general cross-product géaphd dominating functiorf, particu-
larly the criteria which demonstrate its existence, appear to be valuable in a variety of domination-related
problems. Ongoing work by the authors includes developing the criteria for unique domination in vari-
ous nonstandard cross-product graphs as well as considering applications to deeper questions concerning
domination.

To a very limited extent, we provide a number of observations for extending our approach into related
guestions. While we cannot expect to adequately represent every area of shared concern, we do hope to
make a few connections between our basic methods and the ongoing research of others.

6.1 Reliance on Transitive Automorphisms

Even the simple technique used for proving the existence of the unique domination property on certain cycles
made strong use of an indexing of the vertices through a transitive automorphism. The critical problem
for a common cross-product graph, the mesh, is that the atomic graphs (linear graphs) have no transitive
automorphism.

However, linear graphs, here denoteg, are “almost” cycles. (We assume the vertices are indexed in
usual manner with edges betwegrandv; iff |¢ — j| = 1.) Looking at dominating functiong which are
both determined by and limited by path distance, the malfix, ; has the property that it is a sub-matrix
of M¢,_,..; for some constant: and variablen.

Properly, the matrix\;,, ; is Toeplitz Recall that a matrix\/ is Toeplitz if Vi,j € {0,1,...,n —
2}, M; j = M4 1. Showing that the domination matrix f6¥, ., is invertible first may be easier than
directly approaching the dominating matrix fby,. As an example, with the dominating functigndefined
in Equation 3.12, the invertibility oM can be used to derive the invertibility of the matrik;,, ;..
The proof is not difficult.

Unfortunately, when extending these results toward results concerning the existence of perfect dominat-
ing sets, the usefulness of Lemma 3.9 is lost.

n+1,fs

6.2 Reliance on Commutative Automorphisms

For some families of graphs produced by nonstandard cross-product operations — such as the cube-connected
cycle or torus-connected cycle — there is an obvious group of transitive automorphisms; but this group is
not abelian.

Developing an unique domination criterion similar to that which relied on meta-circulant matrices is not
as difficult as it may appear. With the above two examples, we find the appropriate matrix is decomposable
into blocks where each block is meta-circulant (and blocks within each diagonal are related to each other by
a rotation property).

The class of graphs implied by these matrices is vast; however, it does not include many of the more
esoteric graphs proposed for computer networks (e.g. twisted cube-connected cubes), nor does it suggest
simple, appropriate projections. As noted earlier, this is part of ongoing research by the authors.
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