
In Congressus Numerantium105(1994), pp. 116–128.

Constant Time Computation of
Minimum Dominating Sets

Marilynn Livingston Quentin F. Stout�

Dept. of Computer Science Elec. Eng. and Comp. Sci.
Southern Illinois University University of Michigan

Edwardsville, IL 62026-1653 Ann Arbor, MI 48109-2122

Abstract
LetG be a graph and letP (n) denote an element from a one-parameter family of graphs, such as a path

of lengthn, a cycle of lengthn, or a complete binary tree of heightn. We are concerned with determining
minimum dominating sets of graphs of the formG� P (n). Using dynamic programming and properties of
finite state spaces, we show a constant time algorithm to produce a minimum dominating set ofG� P (n),
for fixed G and alln, for the one-parameter families mentioned. Previous researchers had used similar
techniques but obtained only linear-time algorithms. We also show how a closed form expression can be
obtained for the minimum domination number ofG� P (n). We discuss extensions of the algorithm to the
determination of all minimum dominating sets forG�P (n), and to related problems of coverings, packings,
and codes. In addition, we discuss algorithm extensions to several different types of domination, including
perfect domination, and to other ways of composing graphs.

Key Words: codes, covering, domination, packing, matching, perfect domination, grid graph, product
graph, mesh, torus.

1 Introduction

Let G = (V;E) denote an undirected graph. A subset ofD vertices is called adominating setof G if for
everyv 2 V � D there is someu 2 D such that(u; v) 2 E(G). Sometimes a dominating set is referred
to as avertex-vertex cover. The minimum cardinality of the dominating sets ofG is called thedomination
numberof G and is denoted by(G).

The general problem of determining(G) for a given graphG, and of finding a dominating setD of
G of this minimum cardinality, has been an active area of research for many years [HL90]. When properly
stated, this problem has been shown to be NP-complete [GJ79], and remains so even whenG is restricted to
certain simple classes of graphs. One example of this is the family of grid graphs, formed from products of
paths, wherePn denotes the path withn vertices. Them� n complete grid graph, Pm � Pn, has vertex set
V = f(i; j) j 1 � i � m; 1 � j � ng and an edge between pairs of vertices(i; j) and(u; v) if and only
if ji � uj + jj � vj = 1. A grid graph is any subgraph of a complete grid graph. T. Leighton proved that
determining the domination number of an arbitary grid graph is NP-complete [Jo85]. The complexity of the
domination problem for complete grid graphs is not known, however.

�Partially supported by NSF/ARPA grant CCR-9004727

1



M. Jacobson and L. F. Kinch [JK84] found closed form expressions for(Pm � Pn) for m = 2; 3; 4.
E. Cockayne, E. Hare, S. T. Hedetniemi, and T. Wimer [CHHW] reported that they had inductive proofs for
m = 2; 3 and alln, and form = 4 with n = 4k. Using an IBM 3081 to perform exhaustive search, they
found exact values forPm�Pn for m = 4 and4 � n � 10,m = 5 and5 � n � 8,m = 6, andn = 10; 11,
and used 20 CPU hours to determine(P7 � P7). In addition, they constructed elementary arguments to
establish the inequality

(n2 + n� 3)=5 � (Pn � Pn) � (n2 + 4n� c)=5

wherec is 16, 17, or 20, depending on the remainder ofn modulo 5. E. Hare, S. Hedetniemi, and W.
Hare [HHH] gave a�(n) algorithm for computing(Pm � Pn) for fixed m. Their algorithm was based
on dynamic programming techniques with an associated state table. Using an IBM 3081, one of their im-
plementations took one and a half minutes to construct the state table and then one additional minute to
compute(P7 � P300). Using a less memory-intensive implementation, they computed(P8 � P8) in 2.5
minutes and(P8 � P19) in approximately 7 minutes. In [SP87], H.G. Singh and R.P. Pargas described a
parallel implementation to compute the domination number ofPm � Pn. They obtained results form � 9

andn � 10. Time requirements became prohibitive form = 10, even for the 16-node FPS T series hyper-
cube. More recently, T.Y. Chang and W.E. Clark [CC93] gave a lengthy proof of a closed form expression
for (Pm � Pn) for m = 5; 6, thus extending the results of E. Hare [H89] to alln � 1 for these values of
m.

In this paper we show how to use the properties of finite state spaces, together with dynamic program-
ming, to produce a�(1) time algorithm for computing(Pm � Pn) for fixed m. In fact, we show how
to obtain closed form expressions for(G � Pn) for fixed graphG and alln. Moreover, we show how to
explicitly describe a minimum dominating set forG� Pn in terms of a regular grammar over states derived
from G. Using only an IBM PC, we have been able to rapidly replicate the earlier results mentioned above,
and obtain closed form expressions for(Pm � Pn) for even largerm than was previously considered.
Further details of the algorithm implementation, and tables of(Pm � Pn), will appear in [LS94].

Many domination-related concepts defined for arbitrary graphs enjoy easy solutions or at least fast algo-
rithms when restricted to the family of trees. S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar [HHL] give
an extensive coverage of domination and domination-related algorithms for trees, most of which are linear
time algorithms. The approach we describe in this paper can be easily modified to determine minimum
dominating sets for(G� P (n)) whenP (n) is a completet-ary tree of heightn, for fixedt and alln.

Our approach can be adapted to allow different types of domination as well, such as perfect [LS90],
efficient [BBHS, BBS] and total domination [HL90], and still retain the�(1) time complexity. We will
illustrate with an example of this in Section 3.2.

A closely related concept to dominating sets is that of packing. Letk be a positive integer. A subset
K � V is called ak-packingof the graphG = (V;E) if the distance between every pair of vertices inK
is greater thank. Thek-packing numberof G is the cardinality of the largestk-packing ofG. Note that
the 1-packing number ofG is also known as theindependence numberof G, the largest size of a subset of
nonadjacent vertices ofG. E. Hare and W. Hare [HH91] gave a linear time algorithm for determining the
2-packing number of the complete grid graphPm�Pn for fixedm. Recently, D.C. Fisher [F93] determined
the 2-packing number ofPm�Pn for all m andn. He established a recursive inequality which enabled him
to deal with the cases form � 8 with elementary arguments in the same spirit as those in [CHHW]. Several
cases had to be treated separately, some of which were handled with a branch and bound algorithm, others
by ad hoc arguments. Using the techniques outlined in this paper, we have found a closed form expression
for the 2-packing number ofPm�Pn for eachm < 9 and alln, which allowed us to produce a considerably
shorter and simpler determination of the 2-packing numbers for allm andn. Further, our techniques easily
extend tok-packings ofG� Pn for arbitraryG andk.

2



Figure 1: A dominating set forP2 � P8

s1 s2 s3 s4 s5 s6 s7
! !   l � �
!  !  � l �

Figure 2:S2, states forP2 � Pn

2 An Illustrative Example

Before launching into the general description of the method, we illustrate it with a small example, show-
ing how to compute minimal dominating sets forP2 � Pn. Consider the graphP2 � P8 and letS =

f(2; 1); (1; 3); (1; 5); (2; 5); (1; 8); (2; 8)g be one of its dominating sets. (S is a minimal dominating set, but
is not a dominating set of minimum size.) This is shown in Figure 1, where each vertex inS is labeled with
a�, and all other vertices are labeled with an arrow pointing to an element ofS that dominates them.

At vertex(1; 4) of Figure 1 there is a choice as to which dominating set element to point to. We force a
specific choice through the following interpretation of the labels, which will be critical for the constructions
in this paper. Vertex(j; k) labeled

� means that vertex(j; k) is in S,

l means that vertex(j; k) is not inS but at least one of the vertices(j � 1; k) is in S,

 means that none of the vertices(j; k); (j � 1; k) are inS, but (j; k � 1) is in S.

! means that none of the vertices(j; k); (j � 1; k); (j; k � 1) are inS, but (j; k + 1) is in S.

2.1 States

Note that if we consider any column of the graph we have a copy ofP2 with its vertices labeled by elements
of f�; l; ;!g. Such a labeling ofP2 which can arise from a dominating set inP2 � Pk for somek will
be called astate. There are42 possible labelings, but some reflection upon the interpretation of the labels
shows that a labeling is a state if and only if it satisfies the following conditions:

(S–i) if one entry is�, then the other entry is� or l.

(S–ii) if one entry isl, then the other entry is�.

We will let S2 denote the set of all labelings ofP2 which satisfy these conditions. It is easy to verify thatS2
has 7 elements, given in Figure 2, where we show the states as column vectors of length 2. Note that all of
these states occur in Figure 1.

We will be constructing dominating sets forP2 � Pk+1 from dominating sets (and sets that nearly
nominate) forP2 � Pk. To help in this, we use the notion ofstate transitionsto describe which states are
possible for columnk+1, given a particular state for columnk. In general, it is possible to go from statesi
in column` to statesj in column`+ 1 if and only if the following conditions hold for all rowsp:

3



s1 s2 s3 s4 s5 s6 s7
s1 0 0 0 0 0 0 1
s2 0 0 0 0 0 1 1
s3 0 0 0 0 1 0 1
s4 1 0 0 0 1 1 1
s5 0 1 0 0 1 1 1
s6 0 0 1 0 1 1 1
s7 0 0 0 1 1 1 1

Figure 3: The State Transition TableT2

final
state

initial
state

Figure 4: The State Transition Graph forP2

(T–i) if si(p) =!, thensj(p) = �.

(T–ii) if si(p) = �, thensj(p) 6=!.

(T–iii) if sj(p) = , thensi(p) = �.

This information can be presented in the form of astate transition tableT2, given in Figure 3. The state
transition table consists of 7 rows and 7 columns in which a 1 appears in rowi, columnj if it is possible to
go directly from statesi to statesj, and a 0 otherwise.

States which could be the first column of a dominating set will be calledinitial states, denoted byI2,
while those which could be the last column will be calledfinal states, denoted byF2. Note that a state is
initial if and only if it has no entries, while a state is final if and only if it has no! entries. We see from
Figure 2 thatI2 = fs1; s5; s6; s7g, andF2 = fs4; s5; s6; s7g.

Let G2 denote the directed graph (with loops) whose vertices are the states inS2 and whose edges are
determined by the condition that(si; sj) is an edge if and only ifT2(si; sj) = 1, for all si; sj 2 S2. We call
G2 thestate-transition graphfor the pairS2;T2, and illustrate it in Figure 4. Adding the identification of
the initial and final states, one has a precursor of afinite state automaton, though no alphabet has yet been
specified.

4



2.2 State Sequences

Let S be a dominating set ofGn = P2 � Pn. S induces a labeling of the vertices ofGn with elements of
f�; l; ;!g. The pair(Gn; S) can be associated with the sequence of states� = h�1; �2; : : : ; �ni, where
column j of Gn has the state�j in S2 induced byS. We call� the state sequence induced by the pair
(Gn; S) and express this by writinghGn; Si = �. For example, for the graph and dominating set given in
Figure 1, the induced state sequence ishs5; s2; s6; s3; s7; s4; s1; s7i.

For any state sequence� = h�1; : : : ; �ni induced by a dominating setS, we see that we must have
T2(�i; �i+1) = 1 for i = 1; 2; : : : ; n � 1. Furthermore, the first state�1 must be inI2, and the final state
�n must be inF2. Thus� corresponds to a path inG2 of lengthn� 1, starting inI2 and ending inF2.

Let U denote a set of vertices ofG2, and, forj � 1, let P(U; j) denote the set of all paths inG2 of
lengthj� 1 which begin at a vertex inI2 and end at a vertex inU . We shall be particularly interested in the
case whenU is a single state or the set of final states. IfS is a dominating set ofGn, we see thathGn; Si
determines an elementp of P(F2; n). Conversely, ifp is an element ofP(F2; n), then the sequence ofn
vertices on the pathp corresponds to a sequence of statesha1; a2; : : : ; ani which can be identified with a
unique dominating setA of P2 � Pn, where

A = f(i; j) j the element in thei th row of stateaj is �g:

We express this relationship by writinghha1; a2; : : : ; akii = A or, equivalently,hhpii = A. Thus,

there is a natural 1-1 correspondence between the dominating sets ofGn and the paths of length
n� 1 in the state-transition graphG2 which begin at an initial state and end at a final state.

Now, if we define theweightof the pathp, w(p), as the total number of� entries in all the columns of its
associated state sequenceha1; a2; : : : ; ani, then we see thatw(p) is just the cardinality of the setA = hhpii.
Furthermore, the above 1-1 correspondence maps the minimum dominating sets ofGn onto the minimum
weight paths inP(F2; n).

2.3 The Cost Matrix

We organize our computational process in a7 � n matrix, Cn, which we call thecost matrix. The element
Cn(i; j), in row i and columnj, contains the quantitiesc(i; j) andf(i; j). The costc(i; j) is defined as

c(i; j) =

(
minimum weight of the elements ofP(fsig; j) if P(fsig; j) 6= ;
1 otherwise.

The quantityf(i; j) informs us of the most recent state from which we have made the transition to the
present state. More specifically, ifj � 2 anda = ha1; a2; : : : ; aji is an element ofP(fsig; j) of weight
c(i; j), thenf(i; j) “points” to the second last vertex on the patha. If there is more than one such state
sequence of weightc(i; j), we choose the smallest suchk. So, forj � 2,

f(i; j) = k; where aj�1 = sk:

To complete the definition off(i; j), we setf(i; 1) = 0 for 1 � i � 7.
Before we describe the recursive relations that exist forc(i; j) andf(i; j), we need some additional

notation. Fors 2 S2, let
Pred(s) = fw j w 2 S2 andT2(w; s) = 1g:

5



1 2 3 4 5 6 7

s1 0;0 1;0 2;4 2;4 3;4 4;4 4;4
s2 1;0 1;5 2;5 2;5 3;5 3;5 4;5
s3 1;0 1;6 2;6 2;6 3;6 3;6 4;6
s4 1;0 2;7 2;7 3;7 4;7 4;7 5;7
s5 1;0 2;5 2;3 3;3 3;3 4;3 4;3
s6 1;0 2;5 2;2 3;2 3;2 4;2 4;2
s7 2;0 2;1 3;2 4;1 4;1 5;1 5;2

Figure 5: The Cost MatrixC7

Then, since each element ofP(si; j + 1) can be viewed as consisting of an element ofP(sk; j), for some
sk 2 Pred(si), with the edge fromsk to si appended to the path, we have the following recursive relation
for thec(i; j):

c(i; j + 1) = w(si) + minfc(k; j) j sk 2 Pred(si)g; for j � 1; (1)

c(i; 1) =

(
w(si) if si 2 I2
1 otherwise

The cost matrixC7 is shown in Figure 5, where the entry in rowi and columnj is exhibited asc(i; j); f(i; j).
For j � 2, let the sequencek1; k2; : : : ; kj�1 be defined in terms off(i; j) as follows:

k1 = f(i; j); and (2)

kt+1 = f(kt; j � t); for 1 � t � j � 2:

Let hfi;ji denote the associated state sequencehskj�1
; : : : ; sk1 ; sii. It follows that

hfi;j+1i = hfk1;jisi for j � 1:

To illustrate this notation, let us find a minimum dominating set forP2 � P6 from C7. Arbitrarily choosing
s4 from among the four states inF2 with minimumc(i; 6) values, we use thef(i; j) entries to find the state
sequencehf4;6i = hs1; s7; s4; s1; s7; s4i. The minimum dominating set forP2 � P6 corresponding to this
minimum weight path ishhf4;6ii = f(1; 2); (2; 2); (1; 5); (2; 5)g.

2.4 Periodic Behavior

An examination of Figure 5 reveals that

c(i; 7) = c(i; 5) + 1

for all i. We will refer to this behavior of the columns ofCn asperiodic, for, once two columns,j1 and
j2 have the property thatc(i; j1) = c(i; j2) + b for some constantb and all1 � i � 7, it will be the case
that columnsk andk + jj1 � j2j must differ by this constantb for all k � max(j1; j2). This relationship,
together with Equation 1, implies that

c(i; j) =

(
c(i; 5) + b(j � 5)=2c if j � 1 (mod 2)

c(i; 6) + b(j � 5)=2c otherwise

6



for j � 7, and alli. It follows that(Gn) = d
n�5
2 e+3 for n � 5. A check of the cost matrix for1 � n � 4

completes the proof of that

(P2 � Pn) =

�
n+ 1

2

�
for n � 1:

Now, let us turn to the construction of a minimum dominating set forP2 � Pn. The periodic behavior
of thec(i; j) guarantees that

f(i; j) =

(
f(i; 6) if j � 0 (mod 2)

f(i; 7) otherwise

for j � 7 and alli. Thus, ifj is even andj � 8, then Equation 2 becomes

k1 = f(i; 6)

k2t+� = f(k2t+��1; 7� �)

for � = 0; 1 andt � 1. Similarly, for j odd andj � 7, we obtain

k1 = f(i; 7)

k2t+� = f(k2t+��1; 6 + �)

for � = 0; 1 andt � 1. Consequently, the associated state sequenceshfi;ji satisfy recurrence relations for
eachi. For example, takingi = 5,

hf5;ji = hf5;j�4is2s6s3s5

for j � 10. Let � denote the sequences2s6s3s5, then

hf5;ji = hf5;6+(j�6 mod 4)i�
b(j�6)=4c for j � 10:

Further, we may express the sequenceshf5;ji for 6 � j � 9 as

hf5;9i = hf2;6is6s3s5 = s5�
2

hf5;8i = hf6;6is3s5 = s5s6s3s5�
hf5;7i = hf3;6is5 = s6s3s5�
hf5;6i = s5

2�

Thus, from the periodic behaviour of the cost matrix, we see that, for alln, not only can we give the
value of(P2 � Pn), but we can also describe explicitly a minimum dominating set forP2 � Pn, namely
hhf5;nii.

3 The Algorithm

To extend our methods fromP2�Pn toG�Pn for an arbitrary graphG, we have to slightly generalize the
definition of state. A state is a labeling of the vertices ofG with elements off�; l; ;!g, satisfying the
restrictions

(S0–i) if a vertex is labeled�, then its neighbors are all labeled� or l.

(S0–ii) if a vertex is labeledl, then at least one of its neighbors is labeled�.

The definitions of state transition, final state, and initial states are all exactly as they were in Section 2.
In Algorithm 3.1 we outline our algorithm for the cost matrix, from which we can compute domination
numbers and dominating sets of minimal size. As can be seen, both the time and space complexity of this
algorithm depend only on the graphG, although each will be exponential in the size ofG.

The proof that the periodic behavior must occur, forcing the loop in steps 5-13 to terminate, appears
in [LS94].

7



Algorithm 3.1 (Domination Algorithm)
The logical variable periodic remains false until we discover periodic behavior between two columnsK1

andK2 of the cost matrix.

1 DetermineS, the set of states,I, the initial states,F , the final states, andN , the number of states.

2 Determine the state transition tableT .

3 Compute column 1 of the cost matrixC(�; 1).

4 j := 1, periodic:= false

5 repeat

6 j :=j + 1.

7 for i := 1 to N do

8 Computec(i; j) andf(i; j)

9 for t := 1 to j � 1 do

10 If c(�; j) � c(�; t) is a constant vector then

11 periodic := true.

12 K1 := t, K2 := j.

13 until periodic.

3.1 Main Theorem

When Algorithm 3.1 terminates, post-processing of the cost matrix gives the following result.

Theorem 3.1 LetG be an arbitrary graph. Then there are integer constantsm � 1, n0 � 0, a � 1, andbi,
0 � i � m� 1, such that, for alln � n0,

(G� Pn) = abn=mc+ bi; wherei = n mod m:

Additionally, for all 0 � i � m � 1, there are statess1i;j and si;k of G, where1 � j � n0 + i, and
1 � k � m, such that, for anyn � n0, the set

Sn = hhs1i;1; : : : ; s
1
i;n0+i; (si;1; : : : ; si;m)

b(n�n0)=mcii;

wherei = n mod m, is a dominating set ofG� Pn, with cardinality(G� Pn).
Further, these constants and states are determined by Algorithm 3.1 in a time which depends solely on

G. 2

We note that, while Theorem 3.1 emphasizes the asymptotic behavior, we also obtain the corresponding
results forn < n0 during the running of the algorithm, and hence determine(G� Pn) for all n.

8



Figure 6: Finite State Automaton for Perfect Domination

3.2 Perfect Domination

While we do not have space to show all of the variations that can be solved by this approach, we will
outline another example. One form of domination isperfect domination, where a subsetS of verticesV
of a graphG is a perfect dominating set if it is a dominating set, and for every pair of verticesu, v in S,
N(u)\N(v) = ;, whereN(v) denotes the neighborhood set ofv, i.e.,v and all vertices adjacent tov. Not
all graphs have perfect dominating sets: the smallest counterexample is a square of 4 vertices.

To determine thosek for which G � Pk has a perfect dominating set, we need to modify the defini-
tions of states and of transitions. Still using a vertex labeling with the labelsf�; l; ;!g, with the same
interpretations, we impose the following restrictions on states:

(S00–i) if a vertex is labeled�, then all of its neighbors are labeledl.

(S00–ii) if a vertex is labeledl, then exactly one neighbor is labeled�.

For state transitions, we impose the following restrictions on going from statesi to sj, for all verticesp of
G:

(T00–i) si(p) =! if and only if sj(p) = �.

(T00–ii) si(p) = � if and only if sj(p) = .

Figure 6 shows the automaton forG = P2. From this, it is easy to see thatP2�Pn has a perfect dominating
set if and only if(n mod 2) = 1. We also see that states in which a pair of neighbors are both labeled , or
are both labeled!, can never contribute to a solution because they can have no predecessor or successor,
respectively. Thus we can add the following restrictions to states without changing our results:

(S00–iii) if a vertex is labeled!, then none of its neighbors are labeled!

(S00–iv) if a vertex is labeled , then none of its neighbors are labeled 

Using this automaton specially constructed for perfect domination, we obtain:

Theorem 3.2 LetG be an arbitrary graph. Then there are integer constantsn0 � 1, m � 1, and (possibly
empty) setsI � f1; : : : ; n0 � 1g andJ � f0; : : : ;m� 1g, such thatG� Pn has a perfect dominating set
if and only if

n 2 I if n < n0
(n mod m) 2 J otherwise.

Further, these constants and sets can be determined by an algorithm whose running time depends solely on
G.

9



Proof: G � Pn has a perfect dominating set if and only if there is a path of lengthn � 1, starting at an
initial state and ending at a final state, in the state transition graph described above. It is well known that the
lengths of paths of accepting sequences in a finite state automaton can be written in the form given in the
theorem, and that they can be determined from the state transition graph.2

4 Conclusion

We have shown that, for any graphG, there is a closed-form formula for(G � Pn) as a function ofn,
and that our algorithm finds this formula in time depending only onG. Further, dominating sets of minimal
size can be given as a regular grammar over states derived fromG. We showed this by reducing the original
problem to one involving paths in a state space, and then solving this automata problem for alln by utilizing
dynamic programming and the periodic nature of the solution. While others had also noted that a state space
and dynamic programming could be used for this problem, apparently none had noticed that the periodic
properties of finite state spaces could be exploited to eliminate the time dependence onn.

By changing the definitions of the states (perhaps including labels of edges) and their transitions, this
approach can be extended to a great many other problems involving domination and domination-related
concepts such as packings, coverings, matchings, etc. For example, we can solve problems such as per-
fect domination, domination involving distances greater than 1, domination of nonconvex regions such as
knight’s moves ([HH87]), independent domination, edge-edge domination, etc. For packings, we can solve
problems such ask-packings, vertex-disjoint (or edge-disjoint) packings of subgraphs, etc. Covers can
include vertex covers, edge covers, covers by subgraphs, etc.

We can also change some of the information kept along with the dynamic programing, and use it to
answer various counting problems. For example, we can develop formulas for the number of dominating
sets, number of minimal dominating sets, number of dominating sets of minimal size, number of perfect
dominating sets, etc. We can count number of matchings, number of perfect matchings, and so on. Other
variations, still producing closed-form solutions, include replacingPn by completet-ary trees of heightn
(for fixed t), or by cycles ofn vertices. One can also vary the definition of product used, allowing us to
analyze, for example, grid graphs where each vertex is connected to its eight nearest neighbors, rather than
its four nearest neighbors.

Several of the extensions mentioned above will be explored in [LS94] and subsequent papers. Those
papers will include more details of material outlined here, including tables of(Pm � Pn).

References

[BBHS] D.W. Bange, A.E. Barkauskas, L.H. Host, and P.J. Slater, “Efficient near-domination of grid
graphs”,Congressus Numerantium58 (1987) 83–92.

[BBS] D.W. Bange, A.E. Barkauskas, and P.J. Slater, “Efficient dominating sets in graphs”,Applications
of Discrete Mathematics, R.D. Ringeisen and F.S. Roberts, eds., SIAM (1988).

[CC93] T.Y. Chang and W.E. Clark, “The domination numbers of the5�n and6�n grid graphs”,J. Graph
Theory17 (1993) 81–107.

[CHHW] E.J. Cockayne, E.O. Hare, S.T. Hedetniemi and T.V. Wimer, “Bounds for the domination number
of grid graphs”,Congressus Numerantium47 (1985) 217–228.

[F93] D.C. Fisher, “The 2-packing number of complete grid graphs”,Ars Combinatoria36 (1993) 261–
270.

10



[GJ79] M.R. Garey and D.S. Johnson,Computers and Intractability. A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco (1979).

[H89] E.O. Hare, “Algorithms for grid and grid-like graphs”. Ph. D. thesis, Dept. Comp. Sc., Clemson
University, Clemson, SC (1989).

[HH91] E.O. Hare and W.R. Hare, “k-Packing ofPm � Pn”, Congressus Numerantium84 (1991) 33–39.

[HH87] E.O. Hare and S.T. Hedetniemi, “A linear algorithm for computing the knight’s domination problem
of ak � n chessboard”,Congressus Numerantium59 (1987) 115–130.

[HHH] E.O. Hare, S.T. Hedetniemi and W.R. Hare, “Algorithms for computing the domination number of
k � n complete grid graphs”,Congressus Numerantium55 (1986) 81–92.

[HL90] S.T. Hedetniemi and R.C. Laskar, “Bibliography on domination in graphs and some basic defini-
tions of domination parameters”,Discrete Math.86 (1990) 257–277.

[HHL] S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, “Domination in trees: models and algorithms”,
Graph Theory with Applications to Algorithms and Computer Science, Y. Alavi, G. Chartrand, L.
Lesniak, D. Lick, and C. Wall, eds., (1985) Wiley, 423–442.

[JK84] M.S. Jacobson and L.F. Kinch, “On the domination number of products of graphs”,Ars Combina-
toria 18 (1984) 33–44.

[Jo85] D.S. Johnson, “The NP-Completeness column: an ongoing guide”,J. Algorithms6 (1985) 434–451.

[KYK] T. Kikuno, N. Yoshida, and Y. Kakkuda, “A linear algorithm for the domination number of a series-
parallel graph”,Discrete Appl. Math., 37 (1983) 299–311.

[LS90] M. Livingston and Q.F. Stout, “Perfect dominating sets”,Congressus Numerantium79 (1990) 187–
203.

[LS94] M. Livingston and Q.F. Stout, “Constant time computation of properties of product graph families”,
in preparation

[SP87] H.G. Singh and R.P. Pargas, “A parallel implementation for the domination number of a grid graph”,
Congressus Numerantium59 (1987) 297–311.

11


