BLE Security

EECS 582 -- Spring 2015

Overview

BLE Refresher Attacks Improvements Authentication Privacy Discussion

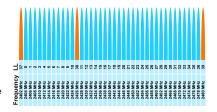
BLE: Quick/Simplified Refresh

Application Layer
GATT
ATT
L2CAP
Link Layer
Physical Layer

Link Layer State Machine

Link Layer Connections - Steps

- 1. Initiate Connection
- 2. Exchange keys <- Attack!
- 3. Authenticate
- 4. Send encrypted messages


BLE CONNECT_REQ Packet

	Payload	
InitA	AdvA	LLData
(6 octets)	(6 octets)	(22 octets)

LLData											
AA	CRCInit	WinSize	WinOffset	Interval	Latency	Timeout	ChM	Нор	SCA		
(4 octets)	(3 octets)	(1 octet)	(2 octets)	(2 octets)	(2 octets)	(2 octets)	(5 octets)	(5 bits)	(3 bits)		

Initiating a BLE Connection

- · Peripheral advertises
- · Initiator starts connection
 - hopInterval
 - o hopIncrement
 - o accessAddress
- Initiator and peripheral move to next channel

Sniffing an on going connection

- Eliminate false positives (how do you know what is a packet)
 - o Look for 16-bit header for empty packet, take prior 32-bits as AA
 - o crclnit can be reversed, by running the packet through the LFSR in reverse (magic, magic, math, math...)
- o Access Address is set in each packet.
- Wait on a channel and observe subsequent packets, record time between

$$\textit{hopInterval} = \frac{\Delta t}{37 \times 1.25 \text{ ms}}$$

Wait for a packet on two separate data channels

$$\textit{channelsHopped} = \frac{\Delta t}{1.25 \text{ ms} \times \textit{hopInterval}} \quad \textit{hopIncrement} \equiv \textit{channelsHopped}^{-1} \pmod{37}$$

Encryption - BLE 4.0 & 4.1

- Custom key exchange
- Select TK (128 bit AES key)
- Use TK to agree upon LTK
- What's TK?
 - o Just Works™: key == 0
 - o 6-digit passkey: key in 0-999,999
 - Out of Band: You're on your own.

BLE 4.2 - Secure Simple Pairing

- Elliptic Curve Diffie Hellman
 - o 96 bits of entropy with P-192 or 128 bits with P-256
- Protects against passive eavesdropping
- Does not protect against MITM
- Association models (anti-MITM)
 - o Numeric comparison
 - Out of Band
 - Passkey
- Secure Connections Only Mode

Initiating Non-in Device A Devi	tiating ce B
Step 1: Same for all protocols	Public Key Exchange
Steps 2-8: Protocol dependent	Authentication Stage 1
Steps 9-11: Same for all protocols	Authentication Stage 2
Step 12: Same for all protocols	Link Key Calculation
Step 13: Same for all protocols	Encryption

Link Layer Encryption

- TCP/IP
 - No encryption
 - No authentication
 - o Relies on application layer
 - o Vulnerable to passive listener
- BLE
 - Node-to-node encryption
 - o Impractical authentication (for many IoT)
 - o Simply Secure is safe from passive listener

Could I be tracked?

- · Device Address Randomization
 - o Access Address generated by identity key (IRK)
 - o IRK exchanged during bonding
- Do people use it?
 - "We do not currently employ Bluetooth Smart in this capability."
 "...we do not use randomize device address."

 - "As far as we are aware, our two products that use BLE do not utilize this feature."

Summary

- Proven link-layer encryption scheme node to node (in 4.2)
- No protection against MITM without traditional I/O
- Option for randomizing device address

Wishlist

- Better way to do authentication
 - o Many IoT class devices don't have classical I/O
 - How to I control what devices are connected to my gateway?
 - o How can I control what gateways I connect to?
- Multihop communication
 - o Do I trust the nodes in between the gateway and destination?
 - o What happens if one of my devices is compromised?
- Do I trust my gateway?

References

https://lacklustre.net/bluetooth/ Ryan Bluetooth Low Energy USENIX WOOT.pdf https://eprint.iacr.org/2013/309.pdf https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx? doc_id=286439

What does IoT need?

- - I don't want people monitoring my habits at home
 ...but people can already see if my lights are on...
 Communication between nodes should be kept secret
- Authentication
- We want to know what nodes are on our network and that they're legit.
 Preventing pivots
- I revening pivols
 I a node is compromised, it should be hard for that node to pop other devices.
 Do I want people to know what devices I have in my house?
- Prevent neighbors from turning off lights
- . General framework that different classes of devices can "inherit" from: medical IoT can specify something that fitness IoT needn't have.