VMX: Synthesizing Scalable Runtime Environments for
Sensor Networks®

Joel Koshy
Department of Computer Science
University of California, Davis
Davis, California 95616

koshy@cs.ucdavis.edu

ABSTRACT

Sensor networks are being deployed at massive scales, containing
a range of platforms. Programming paradigms for sensor networks
should meet the attendant challenges of scale and heterogeneity.
Researchers have considered virtual machines as a means to ad-
dress these challenges. However, in order to satisfy the resource
limitations of sensor nodes, they export only a minimal set of ser-
vices to the application programmer. This makes applications of
even moderate complexity difficult to implement. We present VM*
— a framework for building resource-efficient virtual machines that
scale and export comprehensive service suites on a per-application
basis. We advocate the use of fine-grained software synthesis to
build resource-efficient system software, and facilitate both appli-
cation changes and system software upgrades at runtime through an
efficient incremental update scheme. We have used our framework
to build virtual machines on the Mica platform and describe how
virtual machines are effective in meeting the difficult demands of
heterogeneity and reprogrammability.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems — Network operating systems; C.2.1 [Computer Communi-
cation Networks]: Network Architecture and Design — Wireless
communication

General Terms
Design, Experimentation, Languages, Measurement, Performance

Keywords

Wireless Sensor Networks, Virtual Machines, Operating Systems,
Software Synthesis, Programming Languages, Network Reprogram-
ming

*This work is supported in part by NSF grants CNS-0435531 and
EIA-0224469.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SenSys' 05, November 2-4, 2005, San Diego, California, USA.

Copyright 2005 ACM 1-59593-054-X/05/0011 ...$5.00.

Raju Pandey
Department of Computer Science
University of California, Davis
Davis, California 95616

pandey@cs.ucdavis.edu

1. INTRODUCTION

Wireless sensor networks (WSN) show considerable promise in
bringing the vision of ubiquitous computing [26] to reality. There
is growing interest in their use for a variety of applications, and
researchers are constantly aiming toward developing smaller and
better hardware platforms. It is quite likely that as the field ma-
tures, we will see a wide variety of highly efficient hardware spe-
cialized to perform specific tasks. Even today, there are several
platforms in popular use for research [9]. While this yields signif-
icant benefits from an overall system design viewpoint, it throws
considerable burden on the programmer who needs to be aware of
the idiosyncrasies of each platform. Most of the variation across
these platforms is in the implementation of subsystems; e.g., differ-
ent processors, radio, and sensing modules. The actual operational
patterns are more or less uniform, and having to rewrite applica-
tions for multiple platforms is redundant and burdensome.

The correct choice of system software used in application de-
velopment is critical to manage the complexity in this regime. We
use the term system software to describe software such as operat-
ing systems (OS), virtual machines (VM), and middleware, which
export services for applications to build upon. The main challenges
to deal with are: (i) heterogeneity of end systems, (ii) allowing
dynamic updates in deployed software, and (iii) exporting a rich
programming interface while respecting the resource constraints
of end devices. There are inherent tradeoffs involved in meeting
these challenges. For example, platform-independence is usually
achieved through layers of abstraction, which inevitably compro-
mises performance and resource constraints. Existing OS solutions
are mostly special-purpose system software optimized for specific
sensor platforms. These approaches are designed for performance,
but are unsatisfactory with regard to interoperability and repro-
grammability. Thus, existing OS and VM system software address
only a subset of these challenges.

In this paper, we present VM* — a software framework for syn-
thesizing runtime environments for WSNSs, keeping the key chal-
lenges in focus. The approach is VM-based: programmers write
applications over a common abstract interface. Device-specific fea-
tures are accessed through a lightweight native interface. Porting
the VM across various node architectures allows applications to be
deployed uniformly in heterogeneous environments.

There are several advantages to using a VM-based approach in
WSN applications. First, hardware abstraction allows applications
to run transparently over the varied architectures of WSN nodes,
so programs do not need to be rewritten for different architectures.
Second, VMs can use well-designed instruction sets for specific ap-
plication domains. This allows rapid prototyping of highly compact
application binaries which can be distributed in the network with
low energy overheads. The VM instruction set becomes the basis

for code sharing, interoperability, and application binary distribu-
tion and management. Third, using platform-independent code fa-
cilitates the application of basic distributed computing paradigms
such as mobile agents and in-network processing.

While the concept of an abstract machine is appealing, WSN ap-
plication and domain characteristics impose significant challenges
on the nature and scope of the VM that can be realized. The first
challenge arises from the extreme resource variability among sen-
sor platforms. At one extreme, Mica, Telos, and EYES platforms [9,
18] have fairly slow CPUs with memory resources in the order of
kilobytes. Higher end platforms such as the Stargate have faster
CPUs and more memory. Thus, a suitable methodology is needed
for implementing VMs on a wide variety of devices. The second
challenge involves long term management of applications after they
have been deployed. All software artifacts change over their life-
time — to add capabilities, fix bugs, etc. Since sensing devices may
be embedded in physical settings that are hard to reach, the ability
to dynamically update deployed applications and system software
is necessary. The third challenge comes from the requirement that
WSN applications must be energy efficient. VVM-based applica-
tions tend to be slower, as they use an interpreter-based execution
engine. For VMs to be viable as WSN system software, they need
to be made sufficiently efficient in operation.

VM* is based on the key insight that the VM that actually runs
on a specific device does not need to reflect the full VM specifica-
tion. It only needs to provide services that are needed by the ap-
plication running on the device. Further, different services can be
implemented differently on devices based on resource availability.
VM* contains a general description of a VM which is instantiated
and specialized for each application and each device. It also im-
plements a continuous update model in which WSN nodes can be
updated incrementally when changes occur in applications and the
VM. By tracking program changes at the VM abstraction level, the
cost of distributing and applying application updates is significantly
reduced. Costs of corresponding updates in the system software are
also low due to incremental updates.

The VM* framework runs on the Mica family of nodes, with
ongoing work on the Telos, XYZ, Stargate and handheld devices.
Our current implementation includes a component language for
representing system software components [13], tools for analyz-
ing and compacting Java classes, a component-based OS [19], a
component-based implementation of a subset of the Java Virtual
Machine (JVM) [17], tools for synthesizing the VM and underly-
ing OS, and an incremental linker [14] to facilitate energy-efficient
updates. Application programmers can write programs in Java,
and access 1/0 and sensing devices through native interfaces. The
framework is not tightly coupled to either the Java language or the
JVM, and the concepts can be applied to other languages and VMs.
Indeed, one of our broader research goals is to explore the VM de-
sign space in WSN applications. The framework provides us with
the necessary software infrastructure and tools to do so. Our results
show that we can construct a range of VMs with different resource
requirements and capabilities. The runtime performance behavior
of Java applications, while lower than native implementations, is
acceptable. We have implemented various optimizations that re-
duce the runtime overheads of the VM.

The paper is organized as follows. Section 2 surveys related
work, and highlights VM™*’s differentiating characteristics. In Sec-
tion 3, we give a conceptual overview of our framework and its key
components. Section 4 provides implementation details. Our eval-
uation is presented in Section 5, and Section 6 contains conclusions
and future work.

2. RELATED WORK

Existing system software for WSNs can be classified into two
main approaches: (i) OS-based approaches such as TinyOS [10],
SOS [8], Mantis [1], and PEEROS [18], and (ii) VM-based ap-
proaches such as Maté [15]. Due to space constraints, we focus on
TinyOS, Maté and SOS.

TinyOS [10] is a component-based OS developed at UC Berke-
ley. It is characterized by an event-driven programming model
well-suited for most WSN applications. Applications are written
in nesC [7], and are defined by wiring together user-defined and
library components. Wirings specify dependencies and bind im-
plementations to abstract components. Concurrency is supported
through split-phase non-blocking execution. Short-running atomic
computations can post long-running tasks that run to completion if
not preempted by events. The scheduler puts the processor to sleep
when there are no pending tasks in the task queue. The component-
based programming model facilitates reuse of software and OS
components, and the generation of compact application-OS com-
posite binaries. Although reprogrammability is not a major consid-
eration in its design, the Deluge component [11] allows over-the-
air whole system reprogramming after deployment by distributing
new application-OS composite binaries.

Maté [15] is a stack oriented VM implemented using TinyOS.
It is built over several system components providing access to sen-
sors, transceivers, and external storage. Maté instructions hide the
asynchronous nature of the TinyOS event model to provide a sim-
pler synchronous programming interface. It implements a fixed
thread-pool of contexts that react to hardware events and commands
from the application. Each context has its own operand stack for
passing data between operations. Contexts can share variables, and
run concurrently at instruction granularity. Each instruction is ex-
ecuted as a TinyOS task. The instruction set is designed for com-
pactness. For example, frequently used opcodes contain embedded
operands. Users can also define custom instructions for a domain-
specific instruction set. A key goal of Maté is reprogrammability.
VM applications are injected as code capsules into deployments of
nodes programmed with Maté. A viral code distribution scheme
infects nodes in the network with the application capsules. More
recent work on Maté generalizes the framework for building appli-
cation specific VMs [16].

SOS [8] is an OS with a small kernel, and uses dynamically
loadable modules to facilitate software evolution. It features a flexi-
ble priority-based scheduling system that queues messages between
modules for future execution. Applications are composed of a set of
modules interacting via asynchronous messages, or indirect func-
tion calls made through function handles obtained from function
control blocks. SOS also provides a simple dynamic memory sub-
system. In terms of reprogrammability, it offers a middle-ground
between the TinyOS-Deluge combination and Maté. With Deluge,
entire binaries are distributed at high cost. While Maté’s code dis-
tribution is energy-efficient due to small code capsules, the system
software itself cannot be changed after deployment. SOS allows
energy-efficient updates by reprogramming at module granularity.
Modules can be loaded and removed on the fly, with any necessary
updates made to the function control blocks.

VM* differs from the above approaches in two main ways. First,
it contains a rich service layer which allows programmers to write
applications easily. Software synthesis is used to precisely tailor
and scale the system software to the needs of each application,
within the constraints of end devices. The current implementation
of Maté is more domain-specific, although similar principles can
be applied to make it genuinely application-specific. Second, the
update model is flexible and low cost. Maté allows updates of VM

applications, but the VM itself cannot be changed easily after de-
ployment. Our incremental linking feature adds flexibility to the
system by allowing fine-grained updates to both the VM applica-
tion and the system software. It is more flexible than the scheme
used in SOS which is based on indirection. To avoid indirect func-
tion calls, we by use an enhanced linker that patches calls to up-
dated functions directly.

3. THE VM* FRAMEWORK

VM* is a software framework for building and maintaining run-
time environments for WSN applications. A key design goal has
been to develop programming languages and tools that allow us
to capture components and relationships among the components of
system software at very fine granularity. Finer granularity of sys-
tem components yields higher control over system construction and
updates. The components and relationships between them are uti-
lized to identify, instantiate, and update specific components. At
its core, the framework features a component language to represent
software systems, a composition tool for selecting and composing
specific components, and infrastructure for updating applications
and system software.

We begin this discussion by introducing the programming mod-
els available in the framework. We then describe how the applica-
tion, device, and component specifications are used to synthesize a
runtime environment. Finally, we describe the incremental update
mechanism which enables dynamic adaptation of the statically con-
figured runtime environment.

3.1 Programming model and concurrency

In this section, we briefly describe how WSN applications can be
written using the VM* framework. The programming models we
discuss here do not require any extensions to the Java programming
language. Programs import natively implemented Java libraries
for accessing hardware functions such as sensing and communi-
cation. We see these models as enablers for more domain-specific
programming models.

There is considerable variation in the use cases and degree of
concurrency in WSN applications. Some applications are special-
ized to perform a dedicated sensing task. For example, a node may
periodically sample its sensor and maintain a running average over
time, transmitting averages at regular intervals. At the system soft-
ware level this requires various handler routines for events such as
communication and timer events. Thus, system software service
threads® will be running, but from the application programmer’s
view an imperative programming style with synchronous calls to
native services is sufficient and natural to use. In the synchronous
programming model, much of the concurrency is hidden from the
application, and is implemented through blocking calls. For ex-
ample, periodic sampling of a sensor can be implemented through
synchronous sense and sleep calls.

More complex applications require custom event handling for re-
acting to external stimuli and radio events. For example, in a data
aggregation service, nodes may need to process or filter incoming
data packets instead of simply forwarding them up the aggregation
tree. In some applications, nodes may adaptively form clusters due
to dynamic nature of link qualities or mobility of target phenom-
ena. In general, such cooperative applications require the ability to
have custom event handling and application level threads of control
in addition to lower layer services that run concurrently. Even in
minimally cooperative applications, lower layer services can bene-

11n this discussion, we refer to threads as control flows that may be
interleaved or executed in sequence.

fit from application level control. In all these cases, the program-
ming model should support event detection and handling. VM*
currently provides two event-based programming approaches. The
first is a select model in which the application can register interests
in a number of events. The application then blocks on a select call.
When one of the registered events occurs, the call returns and event
masks are used to determine which event handler to execute. This
is similar to the UNIX select call. The second is an action listener
model in which the native event handlers invoke callbacks to per-
form application specific handling. The applications described in
this paper use the select interface.

To illustrate their use, consider an application that periodically
reads a sensor, and needs custom photo sensor and radio handling.
Figure 1 shows how the select call is used to handle these events.
The application subscribes to the timer, photo sensor, and radio
events, and acquires a select handle. After initialization, the ap-
plication blocks on the select call until at least one of the events
occurs. The appropriate handling method is then invoked for ap-
plication specific event handling. These methods make calls to the
native layer to fetch any native values such as the sensor reading
or packets received by the radio. Figure 2 shows the same func-
tionality with action listeners. Application specific event handling
classes are extended from default handlers in library classes. For
clarity, only the relevant portions are shown. When an event occurs,
the native event handler invokes the registered callback method.
Although we have used Java 1.5 generics [4], the native layer can
be modified to work without generic support.

char eList, eVector;

byte sHandl e;

eList = Select.setEventld(eList, Events. PHOTOSENSOR | Events. RADI ORECV |
Events. TI MEOUT) ;

sHandl e = Sel ect. request Sel ect Handl e() ;

while (true) {
eVector = Sel ect.sel ect(sHandl e, eList); // blocking call

if (Select.eventQccurred(eVector, Events.PHOTOSENSOR)) {
handl ePhot oSensor () ;

if (Select.eventQccurred(eVector, Events.RADIORECV)) {
handl ePacket () ;

}
-

Figure 1: Using blocking select calls to handle events.

The select call offers a centralized control point for dispatching
handlers, while action listeners offer decentralized control through
implicit callbacks. The select interface can block against multiple
events but executes event handlers sequentially. Action listeners
can allow concurrent event handling provided multithreading sup-
port is in place. Each event handling thread blocks until the event
occurs and then handles it. Threads need to be scheduled properly
to reduce contention and avoid race conditions. Although our un-
derlying OS supports multithreading, the current implementation
of the VM only supports single threaded Java applications.

3.2 Specification and composition of system
software

Fine-grained specification of the system software is an important
first step in the overall process of generating a runtime environment
for a wide variety of devices, especially those that have limited re-
sources. A commonly used technique to build customized software
systems is through the use of components. The components cap-
ture specific services exported and imported by a software entity.
A software system can be defined by a set of components and de-
pendencies among components. The second step in the process
involves using the specification to generate a system software stack

package System

abstract class HWEvent <T extends EventDataCol | ector> {
public byte eventld;
abstract public void hwCal |l Back(T ed);

cl ass HWEvent Handl er <T extends HWEvent> {
publ i c HWEvent Handl er (T obj) {
addHWLi st ener (obj) ;

}
public native void addHW.i stener (T obj);

final class PhotoCollector extends EventDataCollector {
private final char photoVval ue;
publ i ¢ Phot oCol | ector() {
phot oVal ue = 0;

}
public char getValue() {
return photoVal ue;

}

abstract class PhotoSensor Event extends HWEvent <Phot oCol | ector> {
public PhotoEvent () {
this.eventld = Events. PHOTOSENSOR;

package Applications;
cl ass AppPhot oSensor Event extends Phot oSensor Event

char phot oVval ue;

public void hwCal | Back(Phot oCol | ector c) {
this. photoVal ue = c. get Val ue();
{ I+ custom handling code */ }

}
public class Application {
public static void main(String argv[]) {
Phot oSensor Event phot oE = new AppPhot oSensor Event () ;
HWEvent Handl er <Phot oSensor Event > phot oH =
new HWEvent Handl er <Phot oSensor Event >(phot oE) ;

Radi oRecvEvent rrE = new AppRadi oRecvEvent ();
HWEvent Handl er <Radi oRecvEvent> rrH =
new HWEvent Handl er <Radi oRecvEvent >(rrE);

Ti neout Event tE = new AppTi meout Event () ;
HWEvent Hand| er <Ti meout Event > t H = new HWEvent Handl er <Ti neout Event >(tE) ;

while (true) {
Cd ock. sl eep();

Figure 2: Using action listeners to handle events.

for a specific application-device pair. A composition tool reifies
the software system by determining dependencies, and instantiat-
ing and composing the components. For the approach to be effec-
tive, components should be fine-grained, and the composition tool
should be capable of selecting various components on the basis of
their suitability for specific platforms.

\We have designed and implemented a component language called
BOTS [13] in which components also include the notion of at-
tributes. Attributes specify properties of components, and are in-
stantiated with different values in the actual implementations. For
example, a GC component can have an attribute specifying the ob-
ject header overhead. Attributes drive the selection of specific com-
ponents during a composition process. A software system is built
by defining a set of components, connections among components,
and conditions under which specific components can be selected.
The composition tool then analyzes the components, determines
dependencies among the components, evaluates the constraints on
the attributes, and selects those components that satisfy specific
constraints.

Figure 3 shows how synthesis and scaling are used to build a
runtime environment. The application binary app.class is ana-
lyzed to determine the configuration of a runtime environment for
app.java. The software synthesis and scaling tool uses the appli-
cation specification, component descriptions, and target node char-
acteristics to build an annotated component dependency graph. The

v

Byte code analysis

VM Instructions used
Runtime services required|

v

Device

Specification

Fine-grained
Component-based
VM* Spe

Application and
device-specific
components

v

Build
VM* binary

Resolve
Native Calls

Download

Download

Figure 3: Synthesizing a VM for a device and application.

tool then selects all components that satisfy specific constraints and
builds a VM binary. During the process, a binary image map stores
various information such as addresses of symbols, sizes, etc., and is
used to patch native calls made by the VM application. The nodes
are then programmed with the generated system software and VM
application.

3.3 Application and system software evolution

After deployment, application requirements may change or soft-
ware enhancements may need to be made. With synthesized system
software, this means the updated application may depend on addi-
tional system software components. A mechanism should be in
place to allow applications and system software to evolve in sync.
We support application evolution by determining additional VM
services required and computing an incremental update that is dis-
tributed with the new application. Incremental binary update so-
lutions [22, 12] have been proposed to reduce the cost of sending
application and system software binary updates. The modified ap-
plication is recompiled and rebuilt, and a diff is computed with the
original program image. The diffs are injected into the network,
and a bootloader applies patches by executing the scripts.

However, diff algorithms can only track structural changes, and
ignore application semantic changes. This can result in unneces-
sarily large diffs caused mainly by code shifts, and have adverse
impact on the cost of program memory rewriting at the recipient
node. When functions in an application change, they may grow or
shrink. The resulting code shift requires a large number of pages
to be rewritten. Additionally, addresses of subsequent functions
change and all references to these functions need to be updated.
Thus, even small changes in application structure may require large
diff scripts to patch these references, and shift code. To deal with
this, we apply our incremental update technique described in [14].
The technique allows us to capture the actual changes, as opposed
to structural changes that occur due to dependencies among pro-
gram elements. We describe the incremental update method further
in Section 4.3.

4. IMPLEMENTATION

VM* is a large framework, with components that encompass a
broad design space. At the network management level, a base sta-
tion serves as a repository for application classes and orchestrates
the tasks of synthesis, application deployment, and software evo-
lution. Due to space constraints, we focus on the implementations
of the core components of VM*. The current implementation is
for the Mica family of nodes [5]. These nodes may be interfaced
to external sensor boards and include 512K of external flash mem-
ory. They contain the Atmel ATMegal28 microcontroller [2] with
128K program memory and 4K internal SRAM.

4.1 Application preparation

Java class files contain substantial symbolic information and re-
dundant constant pool (CP) 2 entries, which make them large. In
fact, only 20% of an average class file is taken up by the method
bytecodes [21]. The CP itself occupies 60% of an average class
file. Thus, class compaction is a priority. Doing so also reduces the
cost of transmitting classes over-the-air for reprogramming. We
distinguish between compacted and compressed (or wire) formats.
Compacted classes are stripped down classes that can be directly
understood by the execution engine, while compressed classes re-
quire decompression prior to execution. Compression by itself is
not helpful because the decompressed class may still be too large
for end devices. Compaction is necessary, while compression may
be optionally used for further savings in code distribution cost.

Our main compaction strategy is to eliminate redundant string
information representing symbolic references from the CP. We en-
code strings and directly refer to these encodings in place of CP
references. This effectively preresolves references, which is nor-
mally done at runtime in the JVM. Some application-specific CP
entries (e.g., constant values used by Idc instructions) are retained,
but shifted out into specialized structures. We also remove class at-
tributes and meta-information normally used by debuggers but not
necessary for interpretation. These operations yield 75-80% size
reduction for class files (Section 5).

Runtime class representation:

Runtime representations of classes and their instances (objects) in
most VM implementations tend to use organized data structures
with pointers to internal details such as method tables, etc. We
opted for a serialized representation. Doing so eliminates most
memory pointers, saving at least 25-30 bytes for typical classes
depending on the number of methods, implemented interfaces, etc.
Also, classes can be stored in the SRAM or flash (if SRAM space
is limited), with minimal changes to the execution engine. Mem-
ory switches are difficult with traditional runtime representations
because flash and SRAM are accessed very differently. With a se-
rialized format, the only memory pointers to deal with are the class
structure’s pointers to static field tables. Another advantage is that
class and object serialization if required are much simpler because
the representation itself is serialized. Appendix A describes the
runtime representation for classes. The flat class format, and pre-
resolution of class references required a few changes to some Java
bytecodes. Most of these changes are due to the elimination of the
CP, and are summarized in Appendix B.

The base station parses and analyzes class files. It also main-
tains a registry of classes, augmented with meta information such
as dependencies, and references to native methods. After classes
are registered, they are rewritten to conform to our modified byte-

2The constant pool is similar to a symbol table, containing strings,
class names, constants, etc., referenced by the class.

code format. During rewriting, targets of some goto instructions
need to be fixed, as sections of bytecode can shift due to rewriting.
Also, native method relocations are created for method invocations
through the native interface. These relocations are patched after the
VM is built and addresses of native methods are known.

4.2 Runtime environment

VM*’s runtime environment consists of an interpreter-based ex-
ecution engine which executes Java bytecode, a lightweight native
interface for device-specific functions, and OS support for schedul-
ing and dynamic memory management.

4.2.1 Interpreter implementation

The flexibility afforded by a VM approach comes at the cost of
runtime performance overhead. Considerable work has been done
on narrowing the performance gap between interpretive schemes
and native execution [6]. This is especially important in the WSN
domain because performance overheads translate to increased en-
ergy requirements. The most effective approaches to mitigate in-
terpretation overhead use either Java to native code compilers [25]
or Just-In-Time (JIT) techniques [3]. Java to native code compi-
lation destroys the platform independence that we desire and JIT
compilers are more practical on higher end platforms.

In order to preserve platform-independence, we decided to op-
timize the interpreter by identifying and addressing the primary
sources of overhead. Interpreter overhead consists of (i) fetching
the next bytecode, (ii) decoding and starting the instruction, and
(iii) executing the bytecode implementation. The first two steps
constitute the dispatch overhead. When simple bytecodes are ex-
ecuted, the dispatch sequence is comparable in complexity to the
bytecode implementations, and incurs considerable overhead. This
calls for a more efficient fetch and decode loop. A simple switch
based dispatch scheme is straightforward to implement, but it can
be inefficient due to range checks enforced by some compilers.
An immediate alternative is to use a bytecode table containing ad-
dresses of bytecode implementations. Another approach that works
well in practice is threaded dispatch [6]. There are several varia-
tions of this technique, but the fundamental idea is to incorporate
the dispatch operation at the tail of every bytecode implementation
instead of returning to a central interpreter loop. Classic threaded
dispatch replaces bytecodes with the address of their implemen-
tations so the interpreter can directly jump to the implementation
without any decoding overhead. Since we use Java bytecode, we
cannot directly encode program memory addresses which are two
bytes wide on the AVR in the bytestream. Instead, we implement
our system in GNU C and approximate threaded dispatch by using
labels as values and storing them in an opcode table. This is only
an implementation choice — threaded interpretation can be real-
ized without this feature in a few lines of assembly. Because we
have to decode the bytecode through a table lookup, we call this
scheme quasi-threading. Simplified versions of the baseline (non-
threaded) and quasi-threaded interpreter are shown in Figure 4.

/* NON- THREADED DI SPATCH */
while (1)

/* QUASI - THREADED DI SPATCH */
static void xop.abels = {&opl, &8op2..};
opcode = fetch_1lbyte();
opcode = fetch_l byte(); goto *(op.l abel s[opcode]);
i = opcode_t abl e[opcode] ; opl:
i(); <opl inplementation> ...
opcode = fetch-l.byte();
goto *op.l abel s[opcode] ;
op2:

Figure 4: Interpreter implementation.

Table 1 summarizes the overheads of the dispatch sequence in
various interpreter modes. Classes may be stored in flash or in

SRAM. When stored in flash, they are said to be ROMized. SRAM
is scarce, but reading bytecodes from SRAM is faster than reading
from program memory. The cycle count for the decode/start phase
includes the table lookup and instruction start. The non-threaded
interpreter uses a function call to start the bytecode execution. Im-
plementing bytecodes using functions ensures maximum benefit
from using the fine-grained update model we outline in Section 4.3.
The table lookup and indirect call incurs a 18 cycle fixed cost and
a variable penalty depending on how many registers are pushed
by the bytecode implementation. Most of the fixed cost is due to
the table lookup. With the threaded interpreter, the instruction de-
code and indirect jump to the bytecode implementation costs 13
cycles. The loop count accounts for the return from the bytecode
implementation and jump in the main loop of the non-threaded in-
terpreter. With the threaded interpreter, there is no explicit looping
since the interpreter loop is effectively unrolled at the tail of each
bytecode implementation.

Non-threaded Threaded

ROMized | SRAM || ROMized | SRAM
Fetch 27 13 27 13
Decode/Start 18 18 13 13
Loop 10 6 - -

Table 1: Interpreter overheads in clock cycles.

Almost all embedded platforms in wide use for WSN research
use RISC processors, but most VMs (including VM*) are stack
oriented. Stack machines are popular because they can be imple-
mented with an interpreter more easily. For example, operands do
not need to be directly present in the bytestream, as they are im-
plicitly available on the stack. Also, high level languages are easily
compiled to stack machine code, and the compiled code tends to
be more compact than register oriented code. Unfortunately, this
places heavy demands on the register architecture of the under-
lying hardware. Several researchers have studied the problem of
efficiently implementing stack machines in software over register-
based hardware. Most of the solutions require architectural support
such as superscalar units and deep instruction pipelines which are
not available on the devices typical in WSNs. The stack-register
impedance mismatch causes several data memory loads and stores
because the bytecode, stack, and VM registers are in data space.
In some cases, it is helpful to place key VM registers such as the
stack pointer, current frame pointer, and instruction pointer in ac-
tual hardware registers. However, reserving too many registers will
eventually reach a point of diminishing returns due to limited alter-
natives for the native compiler’s register allocation.

Although even carefully crafted interpreters cannot match the
performance of native execution, the benefits of the VM approach
outweigh the moderate performance penalty that is incurred. We
believe the use of threaded dispatch, register mapping, and other
optimizations whenever possible, strikes a right balance between
performance and platform independence.

4.2.2 Bytecodeimplementation

We designed the implementation of the JVM instruction set in
VMX* to be flexible along a number of dimensions. For example,
the bytecode fetch is implemented as a macro that is selected during
synthesis from a family of macros depending on where classes are
stored (flash or SRAM). Non-threaded and threaded versions are
also selected during synthesis depending on which interpreter mode
is used. A typical implementation is shown in Figure 5 for the iinc
(increment local variable by constant) Java bytecode. Bytecode

#i f QUASI _THREADED val = (s4)stackfrane_getlocal (|ocal .num);
I+ sign extend the const to a byte */

instructiondinc: val += ((s1)(fetchl.byte())):

#el se

voi d instructiondiinc()

#endi f

stackfrane.setlocal (| ocal .num val);

#i f QUASI _THREADED
ul | ocal -.num opcode = fetch_l.byte();
s4 val; goto *opcode.l abel s[opcode] ;

}
I ocal .num = fetch_l.byte(); #endi f

Figure 5: Bytecode implementation.

implementations vary in complexity, but are similar in structure.

Interpreter designs prefer jump instructions to function calls to
execute bytecode implementations. We use this approach in the
quasi-threaded version of the interpreter. However, this increases
the cost of extending VM at runtime if necessary. Using functions
to implement bytecodes allows more fine-grained evolution. The
tradeoffs are described further in Section 4.3.

4.2.3 Nativeinterface

VMs require access to native functions in order to perform mean-
ingful operations that depend on underlying OS services. VM*
provides a lightweight native interface to provide low-level access
to device-specific features. Native interfaces are important because
some WSN applications can benefit by doing their own specialized
hardware resource management. It is also useful for implement-
ing critical sections of computation that need greater execution ef-
ficiency than possible with interpreted bytecode. The VM-native
layer boundary is a classic tradeoff between efficiency and flex-
ibility. A thin native layer that pushes functionality to the VM,
increases portability and may also decrease the static footprint of
the implementation. However, performance is worse, which often
justifies a larger native layer. Also, having an expressive native
interface allows for efficient application-level control over lower
layer functions.

VM* s native interface maps Java types to native types, and ex-
ports a set of routines that pass parameters to and from the Java
stack. Native method implementations can use these routines to
safely exchange data between the VM and native data spaces. Fig-
ure 6 contains an example of a native method implementation that
uses these exchange routines. The current native interface does not
support the ability to access Java references (with the exception of
arrays) from the native side. Although we have found the current
interface to be more than sufficient for implementing a useful na-
tive layer for VM access, we plan to add comprehensive support for
VM data space access in the future.

Native functions are statically linked into the VM when it is built.
After building the VM, addresses of native methods are read from
the VM binary and patched into the method headers in the applica-
tion classes. Thus, the patching process interacts with our linker,
which we describe in Section 4.3. The method header for a native
method sets the code_length field to 0, with the address field set
to the actual address of the native implementation. Method invo-
cation instructions check the code_length field to determine if a
native call or virtual method call is to be made.

We have implemented native interfaces for the Mica platform.
These include the radio, UART, timers, sensor boards, leds, inter-
nal EEPROM and external flash. Synchronous and asynchronous
interfaces are provided when relevant. We chose to implement most
of the interfaces using static native methods. Using Java interfaces
to represent abstract classes that can be implemented by device-
specific classes is more elegant, but interface method invocations
tend to be inefficient, as interface vtables need to be searched at
each invocation for the implementing method.

Il Java cl ass
package senses. pl atform nica2. net;

public class CC1000 {
static byte state;
static {
CC1000.init();

private static native void init();
public static native byte sendRadi oMsg(byte []data, char sz);
public static native byte asendRadi oMsg(byte []data, char sz);
public static native byte sendRadi oMsgunti | Ti meout
(byte []data, char sz, long ns);
public static native char recvRadi oMsg(byte []data);
public static native char arecvRadi oMsg(byte []data);
public static native char recvRadi oMsgUntil Ti meout
(byte []data, long ms);
}

/* Native (C) inplenentation */
RETURNTYPEBYTE Java.CC1000_sendRadi oMsg() {
JRef erence array.ref;
ul result, n;
ul *buf;

arrayref = GetReferenceParameter(1);

n = (ul) GetCharParaneter(0);

buf = (ul *) GetArrayContents(array-ref);
result = send.radi o.msg(buf, n);
ReturnByte(result);

Figure 6: CC1000 radio native interface.

4.2.4 Operating system support

OS* [19] is a scalable component-based operating system that
implements device drivers, memory and resource management, and
provides the concurrency framework necessary for scheduling VM
tasks and low level event handlers. It currently identifies two kinds
of tasks: long running tasks (LRT) and run to completion tasks
(RCT). LRTs denote computations that typically span application
life time, and can block, yield to other tasks, and be rescheduled
by the scheduler. An example of a LRT is the VM interpreter.
RCTSs denote small amounts of computation that must be performed
quickly (typically, event handlers). RCTs do not block, and have
higher priority than LRTs. When the scheduler selects a LRT task
for execution, it runs until it yields to the scheduler, or until an
event occurs. If the LRT yields, the scheduler selects another LRT
for execution. If an event occurs, the LRT is preempted and the
RCT associated with the event is executed to completion.

Sensor | Receive
RO e
s, U

- =
S
TimerRCT | SP g - E
» Beacon
Scheduler Interpreter task

Scheduler Interpreter Beacon
thread thread

Figure 7: VM* concurrency example: running three threads
with outstanding events.

Figure 7 shows a Java application executing in parallel with a
beacon thread which transmits radio beacons periodically. This is
typical in applications that require dynamic routing tree mainte-
nance as a background service. The interpreter and beacon threads
are represented by LRTs and are bound to separate execution con-
texts. The scheduler runs all RCTs on its own stack, and switches
between different LRTs based on task priorities and scheduling
policies. The interpreter executes bytecodes until it encounters a
blocking call, in which case it yields to another thread, or is inter-
rupted by the hardware. Control is then transferred to the kernel
scheduler, which schedules all RCTs for execution before resum-

ing the interpreter thread. In our current implementation for Mica
nodes, we allocate 256 bytes for all non-main stacks. The cost of
switching between different execution contexts on the Mica plat-
form is about 100 clock cycles. We are currently examining vari-
ous scheduling policies that may be selected by the synthesis tool
based on application and hardware characteristics. Simple appli-
cations may use a scheduler optimized for managing a few tasks,
while more complex applications will use more advanced policies
such as priority-based scheduling.

OS* also contains a two level memory management subsystem
for managing SRAM. A low level manager takes care of allocating
stacks, neighbor lists, and radio message queues. A VM level man-
ager handles allocation requests for application objects, and imple-
ments a mark-sweep garbage collector [27]. The VM’s memory
manager contains a region-based allocator in which regions con-
solidate a fixed number of memory objects. This allows sharing of
object type information, size, and other fields used by the garbage
collector reducing the average object header overhead. The appli-
cations considered in this paper were written with the select in-
terface and did not require object allocation. Applications written
using the action listener model use dynamically allocated events
and event handlers.

4.3 Incremental linking and extensibility

The incremental linker adds tremendous flexibility to our frame-
work, as it provides a fine-grained yet general model for extensi-
bility. While it is primarily intended to allow for seamless evolu-
tion of system software with applications, almost any functionality
can be incrementally added. The linker is also used to patch na-
tive method calls during class registration. The incremental linker
is only needed if application evolution is likely, in which case the
necessary code distribution and bootloader routines are included
in the system software. Otherwise, a standalone VVM-application
composite binary can be programmed into the node.

Our approach is primarily based on the idea that delta sizes can
be reduced if code shifts are reduced. Especially in small, incre-
mental updates (e.g., a function grows by a few statements), code
shifts reflect structural changes and not necessarily changes in ap-
plication semantics. To deal with the complications of code shift
when system software needs to change, we modified the linking
process to function incrementally. When laying out code in mem-
ory, functions are provided with a small amount of slop space. If
an update causes a function to shrink or grow, it can do so with-
out running into the following function. If an overflow occurs, it
is moved to a fresh region with additional slop, without shifting
subsequent code. Only references to shifted functions need to be
patched. This effectively ensures that the diff process is driven by
changes in application semantics. The pages of flash that need to
be rewritten are diffed with corresponding pages from the previ-
ous image, and a concise delta is generated. This scheme results in
substantial savings both in delta size and number of pages that need
to be rewritten, over non-incremental approaches (Section 5.6). By
making the linker incremental, the program’s structural changes are
proportional to the semantic changes in the application. As a result,
computing a diff between the original program memory image and
the updated image results in deltas that are consistent with the ex-
tent of actual adaptation.

There are tradeoffs in using the incremental linker when func-
tions are inlined and compiled with optimization. With the threaded
interpreter, bytecode implementations are effectively inlined in the
interpreter loop, creating a large interpreter function. If several new
bytecodes are added due to application changes, the entire inter-
preter function needs to be shifted. A non-threaded interpreter, on

the other hand, is not affected by the addition of new bytecodes
— only the individual bytecode implementations need to be added.
Even in such cases, using the incremental update model maintains
its advantages over pure diff or whole system reprogramming ap-
proaches. Details of the linker may be found in [14].

5. EVALUATION

To evaluate VM™*, we first studied the relative tradeoffs of the
interpreter implementations outlined in Section 4.2.1. The results
of these experiments motivated the use of the threaded interpreter
with ROMized classes in subsequent experiments. We also wrote
a number of applications in VM*, TinyOS and Maté’s networking
variant (Bombilla), and performed comparisons of their static and
dynamic memory footprints, and CPU overheads. These included
simple applications such as CntToLeds (CTL), CntToRfm (CTR),
RfmToLeds (RTL), and SenseToRfm (STR), similar to the exam-
ples provided in the TinyOS distribution. To evaluate a more prac-
tical networking application, we implemented a multihop data col-
lection system (Surge) using our system. Performance studies were
done mainly through simulations in the AVRORA framework [24]
with custom monitors to extract information such as bytecode over-
heads, interpreter instruction issue rate, memory usage, etc. Due
to AVRORA’s simplified radio model, the Surge application was
evaluated with a real deployment. In addition to the basic exper-
iments, our evaluation for Surge included actual deployments in
which we measured the packet delivery ratio for various topolo-
gies. Finally, overheads in updates were evaluated by performing
transformations between application pairs and generating deltas.

5.1 Interpreter performance

We compared the performance of the non-threaded and threaded
interpreters, using three synthetic benchmarks. The parameters of
interest are average instruction issue rate, and bytecode execution
costs. All three tests involved computation in tight loops, and mea-
surements were made for runs lasting 480 seconds. The first test is
a loop with simple arithmetic which when compiled, contains only
simple bytecodes such as iinc and bipush. The second test evalu-
ates the cost of virtual method invocation by performing the same
computation in a virtual method invoked from the loop. The third
test is a tight loop containing a single invocation of a simple native
method, to evaluate the cost of native method invocation.

Non-threaded Threaded
ROMized ROMized % SRAM %
| 69994.55 81019.32 | 15.75 | 114306.32 | 63.31
1l 38712.34 47585.66 | 22.92 | 56992.42 | 47.22
1l 27346.31 30900.75 | 13.00 | 31162.05 | 13.95

Table 2: Interpreter instruction issue rate (instructions per sec-
ond).

Table 2 shows the instruction issue rates of the two interpreter
variants, with classes stored in flash and in SRAM. The percent-
age improvement reported is with respect to the non-threaded inter-
preter with ROMized classes. Threaded interpretation yields 15-20
percent improvement in issue rate with ROMized classes, and up to
60 percent improvement with classes in SRAM. The third test does
not yield comparable improvement with classes in SRAM because
of an issue with the C compiler that forced us to manually push
certain registers onto the stack prior to the native method invoca-
tion. Although issue rate is much higher with classes in SRAM,
SRAM memory is scarce on the ATMegal28, and may be a more
suitable configuration on platforms such as the Telos. The appli-

cation comparisons in the following sections were performed using
the threaded interpreter with ROMized classes.

The numbers indicate that reduction in instruction issue rate is
about 45 percent for virtual method invocation and 60-70 percent
for native method invocation. The apparent slow down is caused by
two factors. First, virtual method tables record method addresses
using 4 byte fields that need to be parsed into 2 byte program mem-
ory addresses on the ATMegal28. The code length field also needs
to be checked, to decide between a native and non-native method
invocation. Second, for native methods, several cycles may be
spent in the native layer, outside the interpreter loop. Thus, the in-
struction issue rate will decrease when specialized computation is
implemented natively, but the effective CPU utilization of the appli-
cation will be higher. This also applies to complex bytecode imple-
mentations. For example, the threaded interpreter with ROMized
classes has an overhead of 40 cycles (Table 1). With a sequence of
trivial bytecodes such as bipush, the interpreter overhead will be
nearly 50 percent, even though instruction issue rate will be higher
than when executing complex bytecodes. This suggests that it will
be beneficial to identify patterns of computation in an application,
and isolate them into complex application-specific bytecodes [20].

Bytecode cycles | Ocycles
bipush 48.0 0.0
iadd 50.0 0.0
goto 59.0 3.67
return 159.06 6.45
put field 238.10 7.88
get field 311.13 9.11
invokestatic 461.18 | 10.92
invokevirtual | 546.22 | 11.97

Table 3: Bytecode overhead in clock cycles.

Table 3 shows the average cost in cycles of selected bytecodes.
The non-zero standard deviations are due to branches within byte-
code implementations, and can vary across applications. Although
bytecodes can be rigorously optimized, performance will be limited
by the overheads inherent in the stack oriented JVM architecture.
For example, the iadd bytecode costs 50 cycles, while a native
implementation of 4 byte signed addition costs less than 10 cycles.
Moreover, the JVM specification requires stack entries to be 4 bytes
wide, which results in expensive stack operations: most of the val-
ues pushed on the stack are 1 or 2 bytes wide, but are promoted
to 4 byte values prior to pushing. This also makes the implemen-
tation of optimizations such as stack caching difficult because the
number of possible stack states becomes very large. It is possible
to implement 2 byte stacks, but this requires modifying the Java
compiler.

5.2 Application development

The basic applications we considered have very simple oper-
ational patterns easily expressed using synchronous native calls.
Surge was implemented using the select interface. A snippet from
the Surge application’s core is shown in Figure 8. Surge is a mul-
tihop application in which nodes take photo sensor readings ev-
ery 2 seconds and send them to a base station through a multihop
routing layer. The multihop routing algorithm is similar to the al-
gorithm used in TinyOS, and is implemented natively. The Surge
implementation in Maté also sends data to the base station using a
send primitive, which is implemented in the native multihop rout-
ing component. The routing service handles tree maintenance by
periodic transmissions of beacons containing neighborhood infor-

mation. Each node selects a parent based on estimated link qualities
of immediate neighbors.

Sur gePacket sgPkt;
char elist, eVector;
byte sHandl e;
sgPkt = new SurgePacket ();
evList = Select.setEventld(eList, Events.TIMEQUT | Events.RADI ORECV);
sHandl e = Sel ect. request Sel ect Handl e() ;
char val;
Cl ock. startTi meout (2048);
while (true) {
eVector = Select.sel ect(sHandl e, eList);
if (Select.eventCQccurred(eVector, Events.TIMEOUT)) {
val = PhotoSensor. sense();
sgPkt . set Readi ng(val);
Sur ge. sendPacket (sgPkt);
Cl ock. start Ti meout (2048);

}
else if (Select.eventCccurred(eVector, Events.RADIORECV)) {
handl eRadi oEvent (sgPkt); // if base, forward to uart

Figure 8: Surge application snippet.

The multihop routing service includes a beacon thread that pe-
riodically sends out beacons for dynamic tree maintenance and a
second thread for processing incoming packets. These tasks and
the interpreter task are scheduled as LRTs, with context switches
occurring when interrupts fire.

5.3 Memory footprint

Figure 9 shows the total size of all the classes in each appli-
cation. Eliminating redundant CP entries and bytecode rewriting
yields savings of 75-80% in class size. Sizes of class files can be
reduced even further, if application extraction techniques [23] are
used. Since we do not use application extraction, footprints of some
applications are similar because they include a common set of sys-
tem classes (e.g., Led, CC1000) even if they invoke only a small
subset of the methods exported by them.

3000 @ Origina
O Compacted
2750
2500
2250
@ 2000
S 1750
ke)
=
o 1500
N
D 1250
1000
750
500
250
0
CTL CTR RTL STR Surge

Figure 9: Original and compacted class sizes.

As a result of using software synthesis, only bytecode imple-
mentations that are used by the application are included. This is
significant because most applications use only a small subset of the
JVM instruction set. CTL, CTR, RTL, and STR all use approxi-
mately 10% of the instruction set, while Surge uses 14.5% of the
instruction set.

Figure 10(a) summarizes the program memory footprints of the
applications, and the breakup between the application, VM, and
OS. Both TinyOS and Maté benefit from being built using a single

generated source file, which allows for better inlining, dead code
and variable elimination, and other inter-procedural optimizations.
For these experiments, we used the standalone mode of the VM,
with the VM binary and application bytecodes flashed in together.
Thus, the code distribution and bootloader code are not included in
the footprints shown. Miscellaneous code such as standard library
functions, and startup code inserted during the final link are in-
cluded in the OS footprint. By building upon a comprehensive ser-
vice suite in the system software, class binaries become extremely
small. This lends to efficient application distribution, which is crit-
ical in the presence of stringent energy and bandwidth constraints.
Most embedded processors in WSNSs are RISC architectures, char-
acterized by very large code sizes. Thus, the potential energy sav-
ings in code distribution are significant.

For comparison with Maté, we used the Bombilla variant which
has a flash footprint of 38K. It includes the multihop routing and
code distribution components by default, and always contains all
bytecode implementations. It also implements a capsule analyzer
to determine shared resources used by capsule handlers, for im-
plicit synchronization between contexts. Thus, Maté’s approach
is to support low-cost application reprogrammability within a do-
main, at the expense of a one-time deployment of a large VM. A
significant domain shift, however, will necessitate deployment of a
new VM built from scratch.

Figure 10(b) gives the SRAM footprints of the applications. It
also reports the maximum stack depths and dynamic memory us-
age observed during execution. For VM*, the Java stack depth
is also shown. As mentioned earlier, the JVM requires stack en-
tries to be 4 bytes wide. For example, although the maximum Java
stack depth for CTL is 44 bytes, this corresponds to 11 pushes.
The larger data section in VM™* is mainly due to the threaded inter-
preter’s opcode table, which is between 40 and 70 bytes for these
applications. In addition to objects created at runtime, the VM dy-
namically allocates structures such as the class table and field tables
at startup. The applications we considered did not require dynam-
ically allocated objects, except for a Surge packet object created
in the Surge application. The OS also uses dynamic memory for
stacks, message buffers, execution context state, and neighbor en-
tries as needed within the routing component. Both TinyOS and
Maté statically allocate all their variables, which is why the foot-
prints are higher for the Surge application. Maté’s application foot-
print is minimal, due to the specialized instruction set. Application
capsules are injected at runtime, and loaded in SRAM for execu-
tion.

5.4 Energy overhead

In order to maximize application lifetime, most WSN applica-
tions place nodes in a sleep state for most of the time, waking up in-
termittently to handle events. To satisfy this requirement, the over-
heads of the system software itself should be low. We measured
active times for the test applications over 480 second simulations.
The results are shown in Table 4, with corresponding numbers for
TinyOS and Maté implementations.

Application | VM* | TinyOS | Maté
CTL 0.23 0.06 6.14
CTR 6.48 6.13 6.43
RTL 6.04 5.65 6.63
STR 5.92 5.78 6.62
Surge 6.09 5.90 6.20

Table 4: CPU activity as percentage of total time in active
mode.

40000
37500-]
35000-]

_.32500-]

& 30000+

§ 27500+

= 25000

-E 22500

£ 20000

S 17500

£ 15000

© 12500

- 100004

7500-]
5000-]
2500-]

o

1
|
-
gé
.
|
|
-
'
éé
-
.
|
-
.

2,

Maté—

VM
TinyOS

Maté

Surge
(a) Flash memory footprint

SRAM footprint (bytes)

Figure 10: Memory footprints of application and system software.

VM* s overhead is higher than TinyOS primarily due to the OS
scheduler. In TinyOS, the FIFO scheduler schedules tasks that run
to completion without any context switching required, except when
events occur, in which case short running event handlers are exe-
cuted. In addition to the scheduler overhead, the interpreter and
bytecode overheads contribute to the active time. However, these
overheads are not as severe as the scheduler, especially in applica-
tions that sleep most of the time. VM* compares favorably with
Maté. Maté’s overheads are mainly due to scheduling (each byte-
code is executed as a TinyOS task), and the code update mechanism
which runs in the background.

5.5 Surge evaluation

We implemented Surge in VM* and compared the average packet
delivery ratio with TinyOS and Maté. The main objective was to
determine if the additional overheads in system software resulted in
any noticeable degradation in the communication layer. A collec-
tor at the base station processed packets received from the network
during 30 minute runs to compute packet delivery ratio.

All Surge and routing service parameters were identical in the
three systems. The routing component transmits a beacon every 20
seconds, with parent selection performed every 5 beacons. Sensor
readings are transmitted every 2 seconds. We repeated the experi-
ment with a 5-hop chain, and 2x2, 3x3, and 4x4 grids, with the base
station placed at a corner of the mesh. Packet delivery ratio in any
topology is affected by a number of factors. During a run, a sin-
gle node may become a transit point for multiple disjoint paths and
choke descendants in those paths. In grid topologies, nodes change
their parent relatively frequently, especially in the presence of a
number of candidate neighbors. For fair comparison, we avoided
these effects by setting up a fixed routing tree. Nodes continue to
send beacons and incur the overhead of parent selection, but the
parent selection function is forced to set the parent to a fixed node.
Radio transmission power was at a low setting to reduce conges-
tion.

Table 5 shows the packet delivery ratios for the topologies con-
sidered. In the sparser topologies, in-degrees of nodes are usually
low resulting in higher delivery ratios. The 4x4 deployment is af-
fected by higher in-degrees, larger network diameter, and collisions
in dense neighborhoods. The results are comparable on all systems.

5.6 Incremental linking

| data
@ .bss
@ OS stack

VM*
0O Java stacl
O Dynamic

L QL 0@ L Qe P Ju38]
$8% 8% 8% 8% 8%
= = F F F
CTL CTR RTL STR Surge
(b) SRAM memory footprint

Topology | VM* [TinyOS | Maté
2x2 97.60 | 99.15 | 98.60
3x3 92.44 | 92.32 | 90.77
4x4 78.10 | 79.32 | 77.24

5 hop chain | 95.66 98.88 | 93.47

Table 5: Surge average packet delivery ratio.

The incremental linking technique was designed to reduce the ef-
fects of code shift. Most updates in deployed WSN applications are
likely to be incremental in nature. In some cases, complete retask-
ing may be necessary. Even in these extreme scenarios, significant
portions of the system software such as device drivers may remain
the same.

To evaluate the update mechanism’s performance, we incremen-
tally transformed CTL to CTR, and then CTR to Surge. CTL to
CTR requires the addition of communication device drivers at the
system software level. CTR to Surge requires the addition of the
multihop routing component. Even in application upgrades, the
system software delta tends to be much larger than the application
delta.

Table 6 shows the two update scenarios we considered. In both
experiments, the non-threaded version of the interpreter was used.
In Table 7, the copy, run, and add instructions are diff-script op-
codes. The copy’s copy data from the existing image, while run
and add opcodes introduce new data. The data column indicates
the total size of the added data, opcodes, and address tables in the
diff encoding. The percent value of the new binary size is the mea-
sure of improvement over whole system reprogramming.

Application pair | Old size | New size
(bytes) (bytes)

CTL—CTR 16795 29239

CTR—Surge 29239 34834

Table 6: Incremental update scenarios.

Application copy | run | add | Data %
pair (bytes) | Binary
Pure diff

CTL — CTR | 1125 6 671 | 13233 | 45.26
CTR — Surge | 1426 | 5 | 812 | 15280 | 43.87
Incremental linking
CTL — CTR 884 13 | 495 | 9070 31.02
CTR — Surge | 734 15 | 428 | 8161 23.43

Table 7: Delta footprint with pure diff and incremental linking.

Both diff and incremental linking approaches perform signifi-
cantly better than whole system reprogramming. Delta sizes for
incremental linking are 30-45 percent smaller than the pure diff
delta. For updates that are more incremental in nature, such as
modifying a few functions as opposed to introducing new ones in
an application upgrade, the benefits of the incremental approach
will be more substantial.

6. CONCLUSION

Developing applications in mainstream distributed systems is dif-
ficult. WSNs pose additional challenges due to diverse platforms,
large scale, and resource limitations. Meeting the impressive po-
tential of WSN applications forecast by researchers in various dis-
ciplines is only possible with the right system software. We have
surveyed the critical challenges in ensuring long-term viability of
WSN applications, and described a framework which implements
a VM approach to prepare for the heterogeneity likely in realis-
tic deployments in the near future. Through fine-grained software
synthesis of a virtualized architecture, an optimized execution en-
gine, and a flexible model for extensibility, the framework achieves
a balance between a number of competing concerns. Although it
implements a VM approach, and is tailored around the JVM, we
believe other system software approaches can benefit from using
software synthesis in tandem with incremental linking for applica-
tion and system software co-evolution.

6.1 Future work

VM* is ongoing work, and we are in the process of implement-
ing the framework on various platforms. We are also exploring
the VM design space to understand what programming and com-
putation models are suitable for WSN applications. Our experi-
ences with VM™ suggest that an efficient computation model and
well designed OS support are prerequisites for the viability of the
approach. In particular, we will evaluate options such as register
oriented VMs that may yield better performance on the RISC mi-
crocontrollers typical in WSNs. Using register oriented VMs that
are close to the native architecture may also enable lightweight JIT
compilers. We also plan to explore various instruction sets tailored
to specific application domains. We anticipate that further stud-
ies will lead to more powerful programming models, better system
software, and hints for architectural choices in sensor node design.

7. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and our shep-
herd Matt Welsh for valuable feedback. We also thank our col-
laborators at UC Davis: Earl Barr, Eric Bergstrom, Paul Hans,
Jeyasankar Kottalam, Ingwar Wirjawan, and Jeff Wu. Special thanks
to Ben Titzer and the UCLA Compilers Group for providing the
AVRORA toolset, Kiem Vo (AT&T Research, NJ) for useful ad-
vice on diff algorithms, and Ram Kumar (UCLA) for suggestions
on the experimental evaluation.

8. REFERENCES

[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. MANTIS: System Support
For MultimodAl NeTworks of In-situ Sensors. In
Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications, pages 50-59, San Diego,
CA, September 2003. ACM Press.

[2] Atmel Corporation. ATMegal28 Datasheet.

[3] J. Aycock. A Brief History of Just-In-Time. ACM Computing
Surveys, 35(2):97-113, 2003.

[4] G.Bracha, N. Cohen, C. Kemper, M. Odersky,

D. Stoutamire, K. Thorup, and P. Wadler. Adding generics to
the Java programming language. Java Community Process
JSR-000014, September 2004.

[5] Crossbow Technology Inc. Mica Motes.
htt p: // ww. xbow. com

[6] M. Ertl and D. Gregg. The Behavior of Efficient Virtual
Machine Interpreters on Modern Architectures. In
Proceedings of the European Conference on Parallel
Computing, volume 2150 of Lecture Notes in Computer
Science, pages 403-412, Manchester, UK, August 2001.
Springer Verlag.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, pages 1-11, San Diego, CA, 2003. ACM
Press.

[8] C.Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
Dynamic Operating System for Sensor Nodes. In
Proceedings of the International Conference on Mobile
Systems, Applications, and Services, pages 163-176, Seattle,
WA, June 2005. ACM Press.

[9] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The
Platforms Enabling Wireless Sensor Networks.
Communications of the ACM, 47(6):41-46, 2004.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 93—-104, Cambridge, MA, 2000.
ACM Press.

[11] J. Hui and D. Culler. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale.
In Proceedings of the International Conference on
Embedded Networked Sensor Systems, pages 81-94,
Baltimore, MD, November 2004. ACM Press.

[12] J. Jong and D. Culler. Incremental Network Programming for
Wireless Sensors. In Proceedings of the International
Conference on Sensor and Ad Hoc Communications and
Networks, Santa Clara, California, October 2004.

[13] J.Wu and R. Pandey. BOTS: A Constraint-Based Component
System for Synthesizing Scalable Software Systems.
Technical Report CSE-2005-18, University of California,
Davis, August 2005.

[14] J. Koshy and R. Pandey. Remote Incremental Linking for
Energy-Efficient Reprogramming of Sensor Networks. In
Proceedings of the European Workshop on Sensor Networks,
pages 354-365, Istanbul, Turkey, January 2005.

[15] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for
Sensor Networks. In Proceedings of the International
Conference on Architectural Support for Programming

Languages and Operating Systems, pages 85-95, San Jose,
CA, 2002. ACM Press.

[16] P. Levis and D. Culler. Active Sensor Networks. In
Proceedings of the Symposium on Networked Systems
Design and Implementation, Boston, MA, May 2005.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, April 1999.

[18] J. Mulder, S. Dulman, L. van Hoesel, and P. Havinga.
PEEROS — System Software for Wireless Sensor Networks.
Preprint, August 2003.

[19] R. Pandey, J. Kottalam, Y. Ramin, I. Wirjawan, and J. Koshy.
OS*: A Scalable Component-Based Operating System for
Sensor Networks (in preparation), 2005.

[20] T. Proebsting. Optimizing an ANSI C interpreter with
superoperators. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 322-332, San
Francisco, CA, 1995. ACM Press.

[21] W. Pugh. Compressing Java Class Files. In Proceedings of
the ACM Conference on Programming Language Design and
Implementation, pages 247-258, Atlanta, GA, May 1999.
ACM Press.

[22] N. Reijers and K. Langendoen. Efficient Code Distribution in
Wireless Sensor Networks. In Proceedings of the ACM
International Conference on Wireless Sensor Networks and
Applications, pages 60-67, San Diego, CA, 2003. ACM
Press.

[23] F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter.
Practical Extraction Techniques for Java. ACM Transactions
on Programming Languages and Systems, 24(6):625-666,
2002.

[24] B. Titzer and J. Palsberg. Nonintrusive Precision
Instrumentation of Microcontroller Software. In Proceedings
of the ACM Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 59-68, Chicago, IL, June
2005.

[25] A.Varmaand S. Bhattacharyya. Java-through-C
Compilation: An Enabling Technology for Java in
Embedded Systems. In Proceedings of Design Automation
and Test in Europe, pages 161-167, Paris, France, February
2004. IEEE Computer Society.

[26] M. Weiser. Some Computer Science Issues in Ubiquitous
Computing. Communications of the ACM, July 1993.

[27] P. Wilson. Uniprocessor Garbage Collection Techniques. In
Proceedings of the International Workshop on Memory
Management, pages 1-42, London, UK, 1992.
Springer-Verlag.

APPENDIX
A. CLASS FORMAT

Method invocation involves obtaining a pointer to the method
header from the vtable. From the header, the code length, number
of arguments, local variables, and method address itself are ob-
tained. A subclass includes the vtable of superclasses so that invo-
cations of methods implemented in superclasses can be done with-
out having to search through the class hierarchy. Native methods
have their code_length field set to 0 so that an indirect call can be
made to the function at the address specified in the code area. The
iwtable is essentially a mapping from interface methods to their
implementations. Invoking an interface method involves search-
ing for the interface in the ivtable and obtaining the implementing
method’s index in the vtable. The instance (or object) format is

FIELD SIZE | DESCRIPTION
class_address 4 class address (fesh/SRAM).
class_size 2 class size (bytes).
class_id 2 encoding assigned during registration.
super_id 2 class ID of the super class.
n_inter faces 1 number of interfaces implemented.
n_ventries 1 number of methodsin vtable.
sf-table_length 2 length of static fi eld table (bytes).
if _table_length 2 length of instance fi eld table (bytes).
main_id 1 vtable index of main method.
clinit 1 vtableindex of static initializer.
Interface list
inter facel D 2 encoding assigned to the implemented in-
terface during registration.
n_ventries 1 number of methods implemented for this
interface.
Vtable
codeaddress 4 address of method header.
Interface vtable(s)
Interfacei
— ml index 1 vtableindex of fi rstimplemented method.
— m2index 1 vtable index of second implemented
method.
Method section(s)
Method header
— code_length 2 method code length in bytes (0 if native).
— n_args 1 number of arguments to method.
— n_locals 1 number of local variables in method.
— code - bytecode for method, or native address if
method is native.

simply a flattened instance field table preceded by an object header
which includes information required by the garbage collector and
meta information about the object’s class type.

B. BYTECODE EXTENSIONS

Sizes of bytecode operands if any, are indicated in parenthe-
ses. Most of the changes are due to the elimination of the con-
stant pool (CP). For example, in the JVM, the two byte argument
to the checkcast instruction is an index into the CP which contains
the referenced class. Since we preresolve references, this index is
replaced by the runtime encoding of the referenced class.

BYTECODE
ldc{descriptor(2)}

DESCRIPTION

descriptor[15:14] indicates size of
constant, [13:0] encodes offset into
specialized constant table.

cid is the 2 byte encoding assigned to
the class during registration.

cid and fid are the 2 byte encodings
assigned during registration.

checkcast, instanceof, new
{cid(2)}

get field, put field
getstatic, putstatic

{cid(2)}{fid(2)}
invokeinter face cid and mid are the 2 and 1 byte
invokespecial encodings assigned during registration.

invokestatic{cid(2)}{mid(1)}| Index mid of the vtable points to the
header of the method to be invoked.
Object is retrieved at offset o from
top of stack. Index mid of the ob-
ject’s vtable points to the header of the
method to be invoked.

Same as JVM specifi cation, with
padding removed.

invokevirtual

{o(1) }{mid(1)}

lookupswitch, tableswitch

