
november 2011 | vol. 54 | no. 11 | communications of the acm 93

doi:10.1145/2018396.2018419

Making Information Flow
Explicit in HiStar
By Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières

Abstract
HiStar is a new operating system designed to minimize the
amount of code that must be trusted. HiStar provides strict
information flow control, which allows users to specify
precise data security policies without unduly limiting the
structure of applications. HiStar’s security features make it
possible to implement a Unix-like environment with accept-
able performance almost entirely in an untrusted user-level
library. The system has no notion of superuser and no fully
trusted code other than the kernel. HiStar’s features permit
several novel applications, including privacy-preserving,
untrusted virus scanners and a dynamic Web server with
only a few thousand lines of trusted code.

1. INTRODUCTION
Many serious security breaches stem from vulnerabili-
ties in application software. Despite an extensive body of
research in preventing, detecting, and mitigating the effects
of software bugs, the security of most systems ultimately
depends on a large fraction of the code behaving correctly.
Unfortunately, experience has shown that only a handful of
programmers have the right mind-set to write secure code,
and few applications have the luxury of being written by
such programmers. As a result, we see a steady stream of
high-profile security incidents.

How can we build secure systems when we cannot trust
programmers to write secure code? One hope is to separate
the security critical portions of an application from the
untrusted bulk of its implementation; if security depends
on only a small amount of code, this code can be verified
or implemented by trustworthy parties regardless of the
complexity of the application as a whole. Unfortunately,
traditional operating systems do not lend themselves to
such a division: they make it too difficult to predict the full
implications of every action by untrusted code.7 HiStar is a
new operating system designed to overcome this limitation.

HiStar enforces security by controlling how information
flows through the system. Hence, one can reason about
which components of a system may affect which others
and how, without having to understand those components
themselves. Specifying policies in terms of information
flow is often much easier than reasoning about the security
implications of individual operations.

As an example, let us consider anti-virus software, which
often has full access to all files on a user’s computer. There
have been critical vulnerabilities discovered in virus scan-
ners from Norton,14 McAfee,10 and others15 that allow attack-
ers to take full control of the scanner. Such vulnerabilities
can easily be exploited to, at the very least, steal private data

from millions of users. To prevent such a disaster, we might
switch to the simpler, open-source ClamAV virus scanner.
However, it has suffered from security vulnerabilities in the
past,21 and is over 40,000 lines of code—large enough that
hand-auditing the system to eliminate vulnerabilities would
be an expensive and lengthy process at best. Yet a virus scan-
ner must periodically be updated on short notice to counter
new threats, in which case users would face the unfortunate
choice of running either an outdated virus scanner or an
unaudited one. A better solution would be for the operat-
ing system to enforce security without trusting ClamAV to
keep the user’s data private, thereby minimizing potential
damage from ClamAV’s vulnerabilities.

Figure 1 illustrates ClamAV’s components. How can
we protect a system should these components be compro-
mised? Among other things, we must ensure a compromised
ClamAV cannot purloin private data from the files it scans,
or corrupt those files. In doing so, we must also avoid impos-
ing restrictions that might interfere with ClamAV’s proper
operation—for example, the scanner needs to spawn a wide
variety of external helper programs to decode input files.
Here are just a few ways in which, on Linux, a maliciously
controlled scanner and update daemon can collude to copy
private data to an attacker’s machine:

•	 The scanner can send the data directly to the destination
host over a TCP connection.

•• The scanner can trick another program, such as a mail
server running on the same machine, into transmitting
the data.

•• The scanner can take over an existing process using
debug mechanisms (e.g., ptrace on Unix), and send the
data via that process.

•• The scanner can write the data to a file in /tmp. The
update daemon can then read the file and leak the data
by encoding it in the contents, ordering, or timing of
subsequent network packets.

•• The scanner can use any number of less efficient and
subtler techniques to impart the data to the update
daemon—for example, use file locking to lock differ-
ent ranges of the database, bind particular TCP or
UDP port numbers, modulate memory or disk usage
in a detectable way, or change the title of the scanner
process.

This work was originally presented at the 7th Symposium
on Operating Systems Design and Implementation and
the 5th Symposium on Networked Systems Design and
Implementation.

94 communications of the acm | november 2011 | vol. 54 | no. 11

is to allow only the system administrator—root—access to
this mechanism, but doing so both hampers the ability of
other applications to use this mechanism and increases the
amount of fully privileged code running as root.

HiStar addresses these challenges with three key ideas.
First, instead of implementing a traditional Unix interface, the
kernel provides a lower-level interface, consisting of six types
of kernel objects and a small number of operations that make
any information flows between objects explicit. This provides
a correspondingly small number of places where the kernel
must perform data flow checks. Second, the only protection
mechanism provided by the kernel is an information flow con-
trol mechanism, which generalizes the intuition behind taint.
All other forms of protection, including Unix user IDs, pro-
cess memory protection, and tainting itself, are implemented
in terms of information flow control. This both reduces the
amount of trusted kernel code and avoids any ambiguity about
how the mechanisms will form a coherent policy. Finally,
HiStar’s information flow control mechanism is egalitarian,
meaning that it can be used by any process, not just by supe-
ruser, which further reduces the amount of fully trusted code.

Though we used the virus scanner as an example, many
security problems can be couched in terms of information
flow. For example, protecting users’ private profiles on a
Web site often boils down to ensuring one person’s infor-
mation (Social Security number, credit card, etc.) cannot
be sent to another user’s browser. Protecting against trojan
horses means ensuring network payloads do not affect the
contents of system files. Protecting passwords means ensur-
ing that whatever code verifies them can reveal only the sin-
gle bit signifying whether or not authentication succeeded.
The rest of this paper describes how HiStar provides a new,
Unix-like environment in which small amounts of code can
secure much larger, untrusted applications by enforcing
such policies.

2. DESIGN
The HiStar kernel is organized around six object types,
shown in Figure 3: a segment (a variable-length byte array
similar to a file), an address space (a mapping from virtual
memory addresses to segment object names), a network

Some of these attacks can be mitigated by running the
scanner with its own user ID in a chroot jail.7 However, doing
so requires highly privileged, application-specific code to set
up the chroot environment, and risks breaking the scanner
or one of its helper programs due to missing files.7 Other
attacks, such as those involving sockets or System V IPC,
can be prevented only by modifying the kernel to restrict
certain system calls. Unfortunately, devising an appropriate
policy in terms of system call arguments is an error-prone
task, which, if incorrectly done, risks leaking private data or
interfering with operation of a legitimate scanner.

A better way to specify the desired policy is in terms of
where information should flow—namely, along the arrows in
the figure. While Linux cannot enforce such a policy, HiStar
can. Figure 2 shows our port of ClamAV to HiStar. There are
two differences from Linux. First, we have labeled files with
private user data as tainted. Tainting a file restricts the flow
of its contents to any untainted component, including the
network. The second difference from Linux is that we have
launched the scanner from a new, 110-line program called
wrap, which has untainting privileges. wrap untaints the
virus scanner’s result and reports back to the user. The scan-
ner cannot read tainted user files without first tainting itself.
Once tainted, it can no longer convey information to the net-
work or update daemon. As long as wrap is correctly imple-
mented, ClamAV cannot leak the contents of the files it scans.

Although HiStar’s tainting mechanism appears simple
at a high level, making it work in practice requires address-
ing a number of challenges. First, there are myriad ways
in which data can leak out onto the network, as illustrated
above with Linux. How would an operating system like
HiStar know to check the taint of the data being leaked for
each and every one of them? Second, a typical OS kernel
already provides a wide range of protection mechanisms,
including user IDs, process memory protection, chroot jails,
and so on. How can we avoid further complicating the ker-
nel with yet another mechanism, or at very least, avoid unex-
pected interactions between the many disparate protection
mechanisms? Finally, managing the tainting of files and
the untainting privileges requires a separate mechanism,
which can equally well be the target of attacks. One answer

research highlights

AV
Scanner

AV
Helper

/tmp User Data Network

Update
Daemon

User
TTY

Virus DB

Figure 1. The ClamAV virus scanner. Circles represent processes,
rectangles represent files and directories, and rounded rectangles
represent devices. Arrows represent the expected data flow for a
well-behaved virus scanner.

Figure 2. ClamAV running in HiStar. Lightly shaded components
are tainted, which prevents them from conveying any information
to untainted (unshaded) components. The strongly shaded wrap
has untainting privileges, allowing it to relay the scanner’s output
to the terminal.

Virus DB Network

Update
Daemon

User
TTY

wrap

User Data

AV
Helper

AV
Scanner

Private/tmp

november 2011 | vol. 54 | no. 11 | communications of the acm 95

device (which can send and receive packets), a thread (a set
of CPU registers, along with the name of an address space
object), a gate (an IPC mechanism), and a container (a
directory-like object in which all other objects reside).

Each object has a unique 64-bit object ID and a label that
is used to control information flow to or from that object. All
of the state accessible to user processes is stored in kernel
objects (except for a few global variables, such as the counter
used to allocate fresh object IDs). Thus, to read or write any
data, processes must invoke the kernel (e.g., issue a system call
or trigger a page fault to access a memory-mapped file). Upon
receiving such a request, the kernel compares the labels of the
currently executing thread and the objects being accessed to
decide whether the operation should be permitted. While it is
not possible to interpose on every read and write to memory-
mapped files, the kernel remembers all active memory map-
pings and invalidates them when it suspects access should no
longer be allowed (e.g., when a thread's label changes).

2.1. Labels
Before discussing the kernel interface further, we first
describe HiStar’s labels more precisely. HiStar associates a
label with every kernel object. The purpose of a label is to
provide a conservative estimate of what kind of data might
be present in an object.

Generalizing the virus-scanner example shown in
Figure 2, there may be multiple kinds of secret data in a sys-
tem, perhaps belonging to different users. HiStar uses the
notion of secrecy categories to distinguish between different
kinds of secret data (a category is just an opaque 64-bit iden-
tifier), and a label is simply a set of categories. For example,
in Figure 2, lightly shaded components have one specific
secrecy category in their label; processes and files not shown
in the figure can be labeled with one or more other catego-
ries. Data can flow from object A to object B only if B’s label
includes all of the secrecy categories in A’s label. This is sim-
ilar to the Bell-LaPadula model,1 and ensures that any data
marked secret remains in objects marked secret.

Secrecy categories help control where secret data can
end up, but it is also important to control where data comes
from. For instance, the virus scanner may want to ensure

its virus database has not been corrupted by another appli-
cation, and one user may want to prevent other users from
overwriting his files. To address this problem, HiStar pro-
vides a second type of category—an integrity category. The
type of a category is stored in the high bit of the category’s
64-bit identifier, but in the rest of this paper we will use
the notation cr to indicate a secrecy (read) category and cw
to indicate an integrity (write) category. Object labels can
include both secrecy and integrity categories, but the rules
for integrity categories are the opposite of secrecy: data can
flow from A to B only if A’s label includes all of the integrity
categories in B’s label. This is analogous to the Biba integ-
rity model,2 and ensures that high-integrity files can be
modified only by high-integrity sources.

Given these two types of categories, we can formalize
when data can flow between two objects. For any two objects
A and B, with labels LA and LB, data can flow from A to B if
and only if every secrecy category in LA is present in LB, and
every integrity category in LB is present in LA. This relation
is checked frequently by HiStar, and we denote it by LA  LB
(pronounced LA can flow to LB). Note that the  relation is
transitive, meaning that one can understand if data can flow
between two objects without having to consider all possible
intermediate objects through which the data may flow.

While these rules ensure that secret data can propagate
only to secret-labeled objects, a practical system requires
occasionally extracting secret data from the system. For
example, the wrap program shown in Figure 2 needs to send
the output of the virus scanner to the user’s terminal. HiStar
allows this using the notion of category ownership. Each
thread T, in addition to having a label LT, owns a set of cat-
egories OT, and these categories are ignored when perform-
ing operations on behalf of T. For example, T can read object
A if LA – OT  LT – OT, which we write as LA OT LT (pronounced
LA can flow using privileges OT to LT).

In our virus scanner example, a user’s files could be labeled
Lf = {ur, uw}, where ur and uw are categories owned by the user
that protect the secrecy and integrity of that user’s data. The
virus scanner runs with label Ls = {ur} and empty ownership set
Os = ∅, which allows it to read the user’s files (Lf Os

 Ls), but not
to modify them (Ls / Os Lf) or export them (since the network is
labeled ∅ and Ls /Os

 ∅). The wrap process has label Lw = ∅ and
ownership set Ow = {ur}, which allows it to read data from the
scanner (Ls Ow Lw) and write it to the user’s terminal (Lw Ow

 ∅).
Typically, a process trusted by the user owns both ur and uw, giv-
ing it the privileges to read, write, and export that user’s data.

A key property of HiStar’s labels is that ownership of
one category confers no privileges with respect to other cat-
egories. This means that, for any secrecy category cr, data
labeled with cr will flow only to objects labeled with cr, unless
a thread that owns cr intervenes, and vice versa for integrity.
This makes it possible to provide end-to-end guarantees
on how different components can affect each other, by just
inspecting components that own the relevant categories. For
example, in Figure 2, it suffices to examine wrap to under-
stand how shaded components can affect unshaded ones.

2.2. Labeling kernel state
HiStar’s kernel enforces information flow control by

Address
SpaceSegment

(thread-local)

Segment
Network
Device

Hard link

Soft link

ThreadGate

Container

Figure 3. Kernel object types in HiStar. Soft links name objects by
a particular 〈container ID, object ID〉 container entry. Threads and
gates are represented by rounded rectangles to indicate they are
the only objects that have ownership privileges.

96 communications of the acm | november 2011 | vol. 54 | no. 11

research highlights

associating a label with every piece of user-visible state in
the system—such as the registers of a thread, the length of
a segment, and even the label of an object itself—and using
the  relation to decide if a given thread should be allowed
to observe or modify that state. As long as every piece of ker-
nel state that can, directly or indirectly, influence execution
of user code has a consistent label, then ’s transitivity guar-
antees security: if data from thread A can affect some piece of
kernel state X, and data from X can flow to some other thread
B, then we must have checked that LA  LX and LX  LB, which
implies LA  LB, so it was safe for data to flow from A to B. The
key to ensuring transitivity lies in associating a consistent
label with each piece of kernel state regardless of how the user
code tries to, directly or indirectly, learn its value or modify it.

The bulk of HiStar’s kernel state resides in kernel objects.
For example, the simplest type of object is a segment, which
contains a variable-length byte array. When thread T attempts
to read segment S, either by issuing a system call or by trig-
gering a page fault, the kernel checks that LS OT LT. Likewise,
when thread T attempts to write S, the kernel checks that
LT OT LS OT LT . (The kernel ensures that data is allowed to
flow from T to S and vice versa; our experience suggests it is
difficult to write to an object without receiving some informa-
tion as to whether the write succeeded.) As another example, a
network device object’s payload is (logically) all of the packets
on the Ethernet network. To send or receive a packet, a thread
must be able to write or read the network device, respectively,
with rules identical to those for a segment.

Each object also contains the object’s ID, the label, and
a 64-byte mutable, user-defined metadata buffer (used by
user-level code to, for instance, track modification times).
The metadata buffer can logically be thought of as part of
the mutable object contents, and is subject to the same read
and write rules as the object contents. On the other hand,
the label of an object O, LO, presents a challenge: how should
we label LO’s bytes? Suppose that we used LO as the label of
the entire object O, including LO itself. If a thread tries to
read O and is denied access, it learns something about the
contents of LO, even though this flow was prohibited.

To solve this chicken-and-egg problem, HiStar logically
associates O’s parent container’s label with the bytes com-
prising LO (as a special case, the root container is its own
parent). Furthermore, because O might reside in multiple
parent containers, HiStar requires that object labels be spec-
ified at creation and then immutable (except for threads,
as we discuss later).

To deal with on-disk state, HiStar provides a single-level
store: on bootup, the entire system (including threads)
is restored from the most recent on-disk snapshot. This
eliminates the need for trusted boot scripts to reinitialize
processes that would not survive a reboot on traditional
operating systems. It also achieves economy of mechanism
by allowing the file system to be implemented with the same
kernel abstractions as virtual memory, without any addi-
tional mechanisms for labeling on-disk state.

Finally, the kernel maintains a small amount of state out-
side of kernel objects, namely, the counter used to generate
new object and category IDs. Newly allocated IDs must have
two properties: first, they must be unique, and second, they

must disclose almost no information about the state of the
system, such as the number of previously allocated objects
(almost because by definition, a new ID reveals the fact that this
exact ID value was never allocated before). HiStar generates
IDs by encrypting a counter with a block cipher. Since the block
cipher is a pseudo-random one-way function, an attacker can-
not learn any information from the value of the ID itself, and
since the block cipher is a permutation, the IDs are unique.

2.3. Threads
Each thread T has a label LT and an ownership set OT, which
can be changed through two mechanisms. First, a thread
can allocate a fresh category by invoking the system call

•	 cat_t create_category (cat_type t),

which chooses a previously unused category, c, and adds c to OT.
The type of the category (secrecy or integrity) is specified by t. At
this point, T is the only thread that owns c, and since c was never
used before, granting T ownership of c confers no other privi-
leges. In this sense, labels are egalitarian: no thread has any
inherent privileges with respect to categories created by other
threads. T can also drop categories from its ownership set.

T may change its own label through the system call

•	 int self_set_label (label_t L),

which sets LT ← L, as long as LT OT L. This can, for example,
let T read a tainted object, or to untaint its label in categories
it owns. HiStar also includes a clearance mechanism,18 which
prevents a thread from arbitrarily raising its label to read all
possible data, but its discussion is omitted here for clarity.

A thread T can allocate new objects with label L as long as
LT OT L. Threads and gates (which will be discussed shortly)
can be created with an ownership set O as long as O ⊆ OT.

2.4. Containers
Because HiStar has no notion of superuser yet allows any
software to create protection domains, nothing prevents a
buggy thread from allocating resources in some new, unob-
servable, unmodifiable protection domain. To ensure that
such resources can nonetheless be reclaimed, HiStar pro-
vides hierarchical control over object allocation and deallo-
cation through containers. Like Unix directories, containers
hold hard links to objects. There is a specially designated root
container, which can never be deallocated. Any other object is
deallocated once there is no path to it from the root container.
Figure 3 shows the possible links between containers and
other types of objects.

When allocating an object, a thread must specify the con-
tainer into which to place the object. For example, to create
a container, thread T makes the system call

•	 id_t container_create (id_t C, label_t L).

Here C is the object ID of an existing container, into which the
newly created container will be placed. L is the desired label
for the new container. The system call succeeds only if T can
write to C (i.e., LT OT LC OT LT) and allocate an object of label L

november 2011 | vol. 54 | no. 11 | communications of the acm 97

(i.e., LT OT L). Objects can be likewise unreferenced from con-
tainer C by any thread that can write to C. When an object has
no more references, the kernel deallocates it. Unreferencing
a container causes the kernel to recursively unreference the
entire subtree of objects rooted at that container.

Containers also help HiStar address a possible covert
channel through object reference counting. Any thread T can
create a hard link to segment S in container C if it can write C
(i.e., LT OT LC OT LT). T can thus prolong S’s life even without
permission to modify S; in our virus-scanner example from
Figure 2, this might be the malicious scanner process sig-
naling secret information by prolonging or not prolonging
the life of the database file. Another thread T′, such as the
update process, could then remove any known links to S and
observe whether it can still access S by its object ID, even if T
was not allowed to communicate to T′.

To avoid this problem, most system calls name objects by
〈container ID, object ID〉 pairs, called container entries. For
T′ to use container entry 〈C, S〉, C must contain a link to S
and T′ must be able to read C (i.e., LC OT′ LT′). In the virus-
scanner example, the untainted update process would not
be able to use any container entry created by the tainted
scanner. Container entries allow the kernel to check if a
thread has permission to know if the object exists, in addi-
tion to any other label checks necessary to access the object.

2.5. Address spaces
Every running thread has an associated address space object
containing a list of VA → 〈S, offset, npages, flags〉 mappings.
VA is a page-aligned virtual address. S = 〈C, O〉 is a container
entry for a segment to be mapped at VA. offset and npages
can specify a subset of S to be mapped, flags specifies read,
write, and execute permission (and some convenience bits
for user-level software).

Each address space A has a label LA, to which the usual label
rules apply. Thread T can modify A only if LT OT LA OT LT,
and can observe or use A only if LA OT LT. When launching
a new thread, one must specify its address space and pro-
gram counter. The system call self_set_as allows threads to
switch address spaces. When thread T takes a page fault, the
kernel looks up the faulting address in T’s address space to
find a segment S = 〈C, O〉 and flags. If flags allows the access
mode, the kernel checks that T can read C and O (LC OT LT
and LO OT LT). If flags includes writing, the kernel addition-
ally checks that T can modify O (LT OT LO). If no mapping is
found or any check fails, the kernel calls up to a user-mode
page-fault handler (which by default kills the process). If the
page-fault handler cannot be invoked, the thread is halted.

2.6. Gates
Gates provide protected control transfer, allowing a thread
to jump to a predefined program counter in another address
space with additional privilege. A gate object G has an own-
ership set Og, a guard set Gg, and thread state, including the
container entry of an address space, an initial program coun-
ter and stack pointer, and some closure arguments for the
initial function. The guard set controls what other threads can
invoke this gate, by requiring the caller to own all categories
in Gg. A thread T can allocate a gate G only if Og ⊆ Ot. A thread

T ′ invoking G must specify a requested ownership set, Or, to
acquire upon invocation; invocation is permitted when OT ⊆ Gg
and Or ⊆ (Ot ∪ Og). Gate objects are largely immutable (and
thus subject to the parent container’s label); the gate label Lg
applies only to the gate object’s (rarely-used) metadata.

Gates are often used like an RPC service. Unlike typical
RPC, where the RPC server provides the resources to han-
dle the request, gates allow the client to donate initial
resources—namely, the thread object which invokes the
gate. Gates can also be used to transfer privilege. The use
of gates is discussed further in Section 3.5.

3. UNIX LIBRARY
Unix provides a general-purpose computing environment
familiar to many people. In designing HiStar’s user-level
infrastructure, our goal was to provide as similar an environ-
ment to Unix as possible except in areas where there were
compelling reasons not to—for instance, user authentica-
tion, which we redesigned for better security. As a result,
porting software to HiStar is relatively straightforward; code
that does not interact with security aspects such as user
management often requires no modification.

HiStar’s Unix environment is implemented in a library that
emulates the Linux system call interface, comprising approxi-
mately 20,000 lines of code and providing abstractions like file
descriptors, processes, fork and exec, file system, and signals.
All of these abstractions are provided at user level, without
any special privilege from the kernel. Thus, all information
flow, such as obtaining the exit status of a child process, is
made explicit in the Unix library. A vulnerability in the Unix
library, such as a bug in the file system, compromises only
threads that trigger the bug—an attacker can exercise only
the privileges of the compromised thread, likely causing far
less damage than a kernel vulnerability. An untrusted appli-
cation, such as a virus scanner, can be isolated together with
its Unix library, allowing for control over Unix vulnerabilities.

Most GNU software runs on HiStar without any source
code modifications, including bash, gcc, gdb, and X; the
main exception is OpenSSH, which requires small changes
for user authentication and login code. The rest of this
section discusses the design and implementation of our
Unix emulation library.

3.1. File system
The HiStar file system uses segments and containers to imple-
ment files and directories, respectively. Each file corresponds
to a segment object; to access the file contents, the segment
is mapped into the thread’s address space, and any reads or
writes are translated into memory operations. The implemen-
tation coordinates with the user-mode page fault handler to
return errors for invalid read or write requests. A file’s length
is defined to be the segment’s length. Additional state, such
as the modification time, is stored in the object’s metadata.

A directory is a container with a special directory segment
mapping file names to object IDs. A mutex in the direc-
tory segment serializes operations; for example, atomic
rename within a directory is implemented by obtaining
the directory’s mutex lock, modifying the directory seg-
ment to reflect the new name, and releasing the lock.

98 communications of the acm | november 2011 | vol. 54 | no. 11

research highlights

Users that cannot write a directory cannot acquire the
mutex, but they can still obtain a consistent view of direc-
tory segment entries by atomically reading a generation
number and busy flag before and after reading each entry.
The generation number is incremented by the library on
each directory update.

Since file system objects correspond to HiStar kernel
objects, permissions are specified in terms of labels, and
are enforced by the kernel, not by the untrusted library
file system code. For example, a file that should be acces-
sible by only one user would be labeled {ur, uw}, where
only that user owns ur and uw. A world-readable file that
can be modified by only that user would be labeled {uw}.
Labels are similarly used for directories; read privilege
on a directory allows listing the files in that directory and
write privilege allows creating new files and renaming or
deleting existing files.

3.2. Processes
A process in HiStar is a user-space convention. Figure 4 illus-
trates the kernel objects that make up a typical process. Each
process P has two categories, pr and pw, that protect its secrecy
and integrity, respectively. Threads in a process typically own
{pr, pw}, granting them full access to the process. The process
consists of two containers: a process container and an inter-
nal container. The process container exposes objects that
define the external interface to the process, such as a gate to
receive signals from other processes (described in detail in
the OSDI paper18) and a segment to store the process’s exit
status. The process container and exit status segment are
labeled {pw}, allowing other processes to read them, but
not modify them (since other processes do not own this pro-
cess’s pw). The internal container, address space, and seg-
ment objects are labeled {pr, pw}, preventing direct access by
other processes.

3.3. File descriptors
All of the state typically associated with a file descriptor,
such as the current seek position and open flags, is stored
in a file descriptor segment in HiStar. Every file descriptor

number corresponds to a specific virtual memory address.
When a file descriptor is open in a process, the correspond-
ing file descriptor segment is memory-mapped at the virtual
address for that file descriptor number.

Typically each file descriptor segment has a label of
{ fdr, fdw}, where categories fdr and fdw grant read and
write access to the file descriptor state. Access to the file
descriptor is granted by granting ownership of { fdr, fdw}.
Multiple processes can share file descriptors by mapping
the same descriptor segment into their respective address
spaces. By convention, every process adds hard links for
all of its file descriptor segments to its own container. As
a result, a shared descriptor segment is deallocated only
when it has been closed and unlinked from the container
of each process.

3.4. Users
A pair of unique categories ur and uw define the read and
write privileges of each Unix user u in HiStar, including
root. Typically, threads running on behalf of user U own
{ur, uw}, and a user’s private files would have a label of
{ur, uw}. One consequence of this design is that a single
process can possess the privilege of multiple users, or per-
haps multiple user roles, something that is hard to imple-
ment in Unix. On the other hand, our prototype does not
support access control lists. (One way to implement access
control lists would be to allocate a pair of categories for
each ACL and to create a gate that would invoke code to
evaluate the ACL rules and selectively grant ownership of
these categories.) The authentication service, which veri-
fies user passwords and grants user privileges, is described
in more detail in Zeldovich et al.18

3.5. Gate calls
Gates provide a mechanism for implementing IPC. As an
example, consider a phonebook service that allows look-
ing up people’s phone numbers by their name. Storing all
names in a file may be undesirable, since users could eas-
ily obtain a list of all names. A HiStar process could provide
this service by creating a service gate whose initial program
counter corresponded to a function that looks up a name in
a database that is accessible only to that process.

Gates in HiStar have no implicit return mechanism;
the caller explicitly creates a return gate before invoking
the service gate, which allows the calling thread to regain
all of the privileges it had prior to calling the service. A
return category rw is allocated to prevent arbitrary threads
from invoking the return gate; the return gate’s guard set
requires ownership of rw to invoke the gate, and the caller
grants ownership of rw when invoking the service gate.
Figure 5 illustrates a gate call from process P to daemon D.

While this design prevents a user from enumerating
the daemon’s private database, it does not ensure privacy
of users’ queries. If users do not trust the daemon to keep
their queries private, they can enforce the privacy of their
queries, as follows. The calling thread allocates a new
secrecy category xr and invokes the service gate in step
2 with a label of {xr} (instead of ∅). This thread can now
read D’s address space and any of D’s segments, by virtue

Figure 4. Structure of a HiStar process. A process container is
represented by a thick border. Not shown are some label components
that, e.g., ensure other users cannot read the exit status of this
process. Bold and dashed lines represent hard and soft links.

Thread
O = {pr, pw}

Exit Status Segment
L = {pw}

Process Container
L = {pw}

Signal Gate
O = {pr, pw}

G = {uw}

Executable File
Segment

Heap Segment

Stack Segment

File Descriptor
Segments ... Address

Space

Internal Container
L = {pr, pw}

november 2011 | vol. 54 | no. 11 | communications of the acm 99

of owning dr, but not modify them, since that would vio-
late information flow constraints in category xr. To con-
tinue executing, the thread makes a writable copy of the
address space and its segments, labeled {dr, dw, xr}. This
effectively forks D to create a tainted clone. The thread
can now read the database and return data to the caller,
but cannot divulge any data to anyone that does not own
xr. Two considerations arise in this case. First, the tainted
copy must be stored in some container. Since the thread
is labeled xr, the kernel does not allow it to store objects
in D’s container (otherwise, the thread could leak infor-
mation about the caller’s private data to D) . Thus, before
invoking the gate, the caller creates a container labeled
xr that can be used after invoking the gate. Second, when
the thread returns to P’s address space through the
return gate, its label still contains xr. To remove xr from
the thread’s label, P must have added xr to the return
gate’s ownership label prior to invoking D.

Forking on tainted gate invocation is not appropriate for
every service. Stateless services, such as a database lookup,
are usually well-suited to forking, whereas services with
mutable shared state may want to avoid forking by refusing
tainted gate calls.

4. HiSTAR WEB SERVER
To illustrate how HiStar’s protection mechanisms can be
used by a real application, this section describes the HiStar

SSL Web server. Figure 6 shows the server’s overall archi-
tecture. The Web server is built from mutually distrustful
components to reduce the effects of a compromise of any
single component.

The TCP/IP stack in HiStar is implemented by a user-
space process called netd, which has access to the kernel
network device.18 netd provides a traditional sockets inter-
face to applications. Incoming TCP connections from Web
browsers are initially accepted by the launcher. For each con-
nection, the launcher spawns SSLd, to handle the SSL con-
nection with the user’s Web browser, and httpd, to process
the user’s plaintext HTTP request. The launcher then relays
data between SSLd and the TCP connection. SSLd, in turn,
uses the RSAd daemon to establish an SSL session key with
the user’s Web browser by generating an RSA signature
using the SSL certificate private key kept by RSAd.

httpd receives the user’s decrypted HTTP request from
SSLd and extracts the user’s password and the requested
URL. It then authenticates the user by sending the user’s
password to that user’s password checking agent from the
HiStar authentication service.18 If the authentication suc-
ceeds, httpd receives ownership of the user’s secrecy and
integrity categories, ur and uw, and executes the application
code with the user’s privileges (e.g., generating a PDF docu-
ment). Application output is sent by httpd to the user’s Web
browser via SSLd for encryption.

4.1. Web server security
The HiStar Web server architecture has no hierarchy of
privileges and no fully trusted components; instead, most
components are mutually distrustful, and the effects of a
compromise are typically limited to one user, usually the
attacker himself. Figure 7 summarizes the security proper-
ties of this Web server, including the complexity of different
components and effects of compromise.

The largest components in the Web server, SSLd and
the application code, are minimally trusted and cannot
disclose one user’s private data to another user, even if

2

1

3

Daemon D
L = {dw}

Service Gate
O = {dr, dw}

G = ∅

Internal Container
O = {dr, dw}

Address
Space

Segments

Process P
L = {pw}

Return Gate
O = {pr, pw}

G = {rw}

Internal Container
L = {pr, pw}

Address
Space

Segments

Thread Tp

L = ∅, O = {pr, pw, rw}

Thread Tp

L = ∅, O = {dr, dw, rw}

Thread Tp

L = ∅, O = {pr, pw, rw}

Figure 5. Objects involved in a gate call operation. Thick borders
represent process containers, bold lines represent hard links, and
dashed lines represent soft links. rw is the return category; dr and dw
are the process read and write categories for daemon D. Three
states of the same thread object Tp are shown: (1) just before calling
the service gate, (2) after calling the service gate, and (3) after
calling the return gate.

Figure 6. Architecture of the HiStar Web server. Rectangles
represent processes. Rounded boxes represent devices and files.

Arrows indicate communication, including gate calls. Not shown are
process read and write categories from Figure 4.

RSA private key file

Network device

netd

launcher

httpd

application
code

SSLd

L = ∅, O = {nr, nw}

L = ∅, O = {sslr}

L = ∅, O = {ur , uw, sslr}
L = ∅, O = {ur , uw}

L = {sslr}, O = ∅

L = {ur, uw}

L = {ur}, O = {uw}

L = {nr, nw}

L = {rsar , rsaw}

L = {sslr}, O = {rsaw}

user files

authentication agent

RSAd

100 communications of the acm | november 2011 | vol. 54 | no. 11

research highlights

they are malicious. The application code is confined by the
user’s secrecy category, ur, and it is httpd’s job to ensure
that the application code is labeled with ur when httpd runs
it. Although the application code owns the user’s integrity
category, uw, this gives it the privilege to write only that
one user’s files, and not to export them. Ownership of uw
is necessary to allow the application code to read data not
labeled with uw. If the application code were to be labeled
with uw, it would be restricted to reading only data labeled
uw, which would exclude executables, shared libraries, and
configuration files.

SSLd is confined by sslr, a fresh secrecy category allocated
by the launcher for each new connection. Both the launcher
and httpd own sslr, allowing them to freely handle encrypted
and decrypted SSl data, respectively. However, SSLd can
communicate only with httpd and, via the launcher, with the
user’s Web browser.

SSLd is not trusted to handle the SSL certificate private
key. Instead, a separate and much smaller daemon, RSAd,
has access to the private key and provides an interface to gen-
erate RSA signatures for SSL session key establishment. Not
shown in Figure 7 is a category owned by SSLd that ensures
no other process can invoke RSAd. Since SSLd is confined by
sslr, the kernel ensures that SSLd cannot indirectly divulge
any data to another process via its calls to RSAd, much as
described in Section 3.5.

The HiStar authentication service used by httpd to
authenticate users is described in detail in Zeldovich
et al.,18 but briefly, no code executes with all users’ privi-
leges, and the supplied password cannot be leaked even if
the password checker is malicious. Our Web server does
not use SSL client certificates for authentication. Doing
so would require either trusting all of SSLd to authenticate
users, or moving the client certificate code into the authen-
tication agent. In comparison, the password checking
agent is 320 lines of code.

One caveat of our prototype is its lack of SSL session
caching. Because a separate instance of SSLd is used for
each client request, clients cannot reuse existing session
keys when connecting multiple times, requiring public key
cryptography to establish a new session key. This limitation
can be addressed by adding an SSL session cache that runs
in a separate persistent process and owns all sslr categories,
at the cost of increasing the amount of trusted code.

5. RELATED WORK
HiStar was directly inspired by Asbestos,4 but differs in

providing systemwide persistence and a lower-level ker-
nel interface that closes known covert storage channels.
While Asbestos is a message-passing system, HiStar relies
heavily on shared memory. The HiStar kernel provides
gates, not IPC, with the important distinction that upon
crossing a gate, a thread’s resources initially come from
its previous domain. By contrast, Asbestos changes a pro-
cess’s label to track information flow when it receives IPCs,
which is detectable by third parties and can leak informa-
tion. Asbestos optimizes comparisons between enormous
labels, which so far we have not done in HiStar.

Flume8 showed how to provide information flow control
on top of the Linux kernel, and introduced a cleaner label
system (which HiStar and this paper have adopted). Flume
also proposed endpoints to help programmers reason about
labels on standard Unix abstractions; adopting endpoints
in HiStar’s Unix library would similarly help HiStar pro-
grammers. DStar19 extended information flow control to
decentralized systems and developed the HiStar Web server.
Loki20 showed how hardware can partially enforce HiStar’s
labels, to reduce the amount of fully trusted kernel code.

HiStar controls information flow with mandatory
access control (MAC), a well-studied technique dating
back decades.1 The ADEPT-50 dynamically adjusted labels
(essentially taint tracking) using the High-Water-Mark
security model back in the late 1960s9; the idea has often
resurfaced, for instance in IX12 and LOMAC.5 HiStar and its
predecessor Asbestos are novel in that they make opera-
tions such as category allocation and untainting available
to application programmers, where previous OSes reserved
this functionality for security administrators. Decentralized
untainting allows novel uses of categories that we believe
promote better application structure and support applica-
tions such as Web services, which were not targeted by pre-
vious MAC systems.

Like HiStar, capability-based KeyKOS3 and EROS17 use
a small number of kernel object types and a single-level
store. HiStar’s containers are reminiscent of hierarchi-
cal space banks in KeyKOS. However, while KeyKOS uses
kernel-level capabilities to enforce labels at user level,
HiStar bases all protection on kernel-level labels. The
difference is significant because labels specify security
properties while imposing less structure on applications;
for example, an untrusted thread can dynamically alter
its label to observe secret data, which has no analogue in
a capability system.

The idea of using gates for protected control transfer

Figure 7. Components of the HiStar Web server, their complexity measured in lines of C code (not including libraries such as libc), their label
and ownership, and the worst-case results of the component being compromised. The netd TCP/IP stack is a modified Linux kernel; HiStar
also supports the lwIP TCP/IP stack, consisting of 35,000 lines of code, which has lower performance.

Component Lines of Code Label Ownership Effects of Compromise
netd 350,000 ∅

∅

∅
∅

Equivalent to an active network attacker; subject to same kernel label checks as any other process
launcher 310 ∅ Obtain plaintext requests, including passwords, and subsequently corrupt user data
SSLd 340,000 Corrupt request or response, or send unencrypted data to same user’s browser
RSAd 4,600 Disclose the server’s SSL certificate private key
httpd 300 Full access to data in attacker’s account, but not to other users’ data
authentication 320 Full access to data of the user whose agent is compromised, but no password disclosure
application 680,000+ Send garbage (only to the same user’s browser), corrupt user data (for write requests)

{sslr}
{rsar}

{sslr}

{sslr}

{ur} {uw}

{nr, nw}

{ur, uw, sslr}
{ur, uw}

november 2011 | vol. 54 | no. 11 | communications of the acm 101

dates back to Multics.16 Unlike Multics rings, HiStar’s pro-
tection domains are not hierarchical. HiStar gates are more
like doors in Spring.6

Decentralized untainting, while new in operating sys-
tems, was previously provided by programming languages,
notably Jif.13 Jif can track information flow at the level of indi-
vidual variables and perform most label checks at compile
time. However, Jif relies on the operating system for storage,
trusted input files, administration, etc., which avoids many
issues HiStar needs to address.

SELinux11 lets Linux support MAC; like most MAC
systems, policy is centrally specified by the administrator. In
contrast, HiStar lets applications craft policies around their
own categories. Retrofitting MAC to a large existing kernel
such as Linux can be error-prone, especially given the some-
times ill-specified semantics of Linux system calls. HiStar’s
disciplined, small kernel can potentially achieve much
higher assurance at the cost of compatibility.

6. DISCUSSION AND LIMITATIONS
The current prototype of HiStar supports x86-64, i386,
SPARC, and ARM computers. The fully trusted kernel,
including device drivers for any given machine, is approxi-
mately 20,000 lines of code. We expect that drivers can even-
tually be moved to untrusted user-space processes with the
help of IOMMU hardware. We have found performance to be
reasonable for Unix applications.18

Users familiar with Unix will find that, though HiStar
resembles Unix, it also lacks several useful features and
changes the semantics of some operations. For example,
HiStar does not keep file access times; although possible
to implement for some cases, tracking time of last access
is in many situations fundamentally at odds with informa-
tion flow control. Another difference is that chmod, chown,
and chgrp revoke all open file descriptors and copy the file
or directory. Because each file has one read and one write
category, group permissions require a file’s owner to be in
the group. There is no file execute permission without read
permission, and no setuid bit (though gates arguably provide
a better alternative to both).

While trusted components can control how secret data
is revealed, it is difficult to reason about what secret data is
revealed. For example, wrap can ensure the scanner’s out-
put is sent only to the user’s terminal, but it would be dif-
ficult to safely reveal even one bit of information from the
scanner’s output to the public (e.g., are any of the user’s files
infected?), since we must conservatively assume that the
scanner’s output may reveal any bit about the user’s data.

7. SUMMARY
HiStar is a new operating system that provides strict infor-
mation flow control without superuser privilege. Narrow
interfaces allow for a small trusted kernel of less than 20,000
lines, on which a Unix-like environment is implemented in
untrusted user-level library code. A new container abstrac-
tion lets administrators manage and revoke resources
for processes they cannot observe. Side-by-side with the
Unix environment, the system supports a number of high-
security, privilege-separated applications previously not

possible in a traditional Unix system. HiStar is available at
http://www.scs.stanford.edu/histar/.

Acknowledgments
We thank Martin Abadi, Michael Reiter, and Michael Walfish
for helping improve this paper, and many others that pro-
vided feedback on earlier papers.18–20 This work was funded
by joint NSF Cybertrust/DARPA grant CNS-0430425, by NSF
Cybertrust award CNS-0716806, by the DARPA Application
Communities (AC) program as part of the VERNIER proj-
ect at Stanford and SRI International, and by a gift from
Lightspeed Venture Partners.�

References
	 1.	B ell, D.E., La Padula, L. Secure

Computer System: Unified Exposition
and Multics Interpretation. Technical
Report MTR-2997, Rev. 1, MITRE
Corporation, Bedford, MA,
March 1976.

	 2.	B iba, K.J. Integrity Considerations
for Secure Computer Systems.
Technical Report MTR-3153, MITRE
Corporation, Bedford, MA,
April 1977.

	 3.	B omberger, A.C., Frantz, A.P., Frantz,
W.S., Hardy, A.C., Hardy, N., Landau,
C.R., Shapiro, J.S. The KeyKOS
nanokernel architecture.
In Proceedings of the USENIX
Workshop on Micro-Kernels and
Other Kernel Architectures, April
1992, 95–112.

	 4.	E fstathopoulos, P., Krohn, M.,
VanDeBogart, S., Frey, C., Ziegler, D.,
Kohler, E., Mazières, D., Kaashoek, F.,
Morris, R. Labels and event processes
in the Asbestos operating system.
In Proceedings of the 20th SOSP
(Brighton, U.K., October 2005),
17–30.

	 5.	 Fraser, T. LOMAC: low water-mark
integrity protection for COTS
environments. In Proceedings of the
IEEE Symposium on Security and
Privacy (Oakland, CA, May 2000),
230–245.

	 6.	H amilton, G., Kougiouris, P. The Spring
nucleus: a microkernel for objects.
In Proceedings of the Summer 1993
USENIX (Cincinnati, OH, April 1993),
147–159.

	 7.	 Krohn, M., Efstathopoulos, P., Frey, C.,
Kaashoek, F., Kohler, E., Mazières, D.,
Morris, R., Osborne, M., VanDeBogart,
S., Ziegler, D. Make least privilege a
right (not a privilege). In Proceedings
of the 10th Workshop on Hot Topics
in Operating Systems (Santa Fe, NM,
June 2005).

	 8.	 Krohn, M., Yip, A., Brodsky, M., Cliffer,
N., Kaashoek, M.F., Kohler, E., Morris, R.
Information flow control for standard
OS abstractions. In Proceedings of the
21st SOSP (Stevenson, WA, October
2007), 321–334.

	 9.	L andwehr, C.E. Formal models for
computer security. Comput. Surv. 13, 3
(September 1981), 247–278.

	10.	L eyden, J. Anti-virus vulnerabilities
strike again. The Register, March
2005. http://www.theregister. co.uk/

2005/03/18/mcafee_vuln/
	11.	L oscocco, P., Smalley, S.

Integrating flexible support
for security policies into the Linux
operating system. In Proceedings
of the 2001 USENIX (Boston,
MA, June 2001), 29–40, FREENIX
track.

	12.	M cIlroy, M.D., Reeds, J.A. Multilevel
security in the UNIX tradition.
Softw. Pract. Exp. 22, 8 (1992),
673–694.

	13.	M yers, A.C., Liskov, B. Protecting
privacy using the decentralized label
model. Trans. Comput. Syst. 9, 4
(October 2000), 410–442.

	14.	N araine, R. Symantec antivirus
worm hole puts millions at
risk. eWeek.com, May 2006.
http://www.eweek. com/
article2/0,1895,1967941,00.asp

	15.	 Peterson, D. Anti-virus rife with
vulnerabilities. digitalbond.com,
January 2008. http://www.digitalbond.
com/index.php/2008/01/07/anti-virus-
rife-with-vulnerabilities/

	16.	S chroeder, M.D., Saltzer, J.H.
A hardware architecture for
implementing protection rings.
In Proceedings of the 3rd SOSP
(New York, March 1972), 42–54.

	17.	S hapiro, J.S., Smith, J.M., Farber, D.J.
EROS: a fast capability system.
In Proceedings of the 17th SOSP
(Island Resort, SC, December 1999),
170–185.

	18.	 Zeldovich, N., Boyd-Wickizer, S., Kohler,
E., Mazières, D. Making information
flow explicit in HiStar. In Proceedings
of the 7th OSDI (Seattle, WA,
November 2006), 263–278.

	19.	 Zeldovich, N., Boyd-Wickizer, S.,
Mazières, D. Securing distributed
systems with information flow
control. In Proceedings of the 5th
NSDI (San Francisco, CA, April 2008),
293–308.

	20.	 Zeldovich, N., Kannan, H., Dalton, M.,
Kozyrakis, C. Hardware enforcement
of application security policies.
In Proceedings of the 8th OSDI
(San Diego, CA, December 2008),
225–240.

	21.	 Zoller, T. Clamav 0.94 and below—
evasion and bypass due to
malformed archive. April 2009.
http://blog.zoller.lu/2009/04/
clamav-094-and-below-evasion-
and-bypass.html

Nickolai Zeldovich, Massachusetts
Institute of Technology, CSAIL,
Cambridge, MA.

Silas Boyd-Wickizer, Massachusetts
Institute of Technology, CSAIL,
Cambridge, MA.

Eddie Kohler, University of California,
Los Angeles, CA.

David Mazières, Stanford University,
Stanford, CA.

© 2011 ACM 0001-0782/11/11 $10.00

