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Abstract
HiStar is a new operating system designed to minimize the 
amount of code that must be trusted. HiStar provides strict 
information flow control, which allows users to specify 
precise data security policies without unduly limiting the 
structure of applications. HiStar’s security features make it 
possible to implement a Unix-like environment with accept-
able performance almost entirely in an untrusted user-level 
library. The system has no notion of superuser and no fully 
trusted code other than the kernel. HiStar’s features permit 
several novel applications, including privacy-preserving, 
untrusted virus scanners and a dynamic Web server with 
only a few thousand lines of trusted code.

1. INTRODUCTION
Many serious security breaches stem from vulnerabili-
ties in application software. Despite an extensive body of 
research in preventing, detecting, and mitigating the effects 
of software bugs, the security of most systems ultimately 
depends on a large fraction of the code behaving correctly. 
Unfortunately, experience has shown that only a handful of 
programmers have the right mind-set to write secure code, 
and few applications have the luxury of being written by 
such programmers. As a result, we see a steady stream of 
high-profile security incidents.

How can we build secure systems when we cannot trust 
programmers to write secure code? One hope is to separate 
the security critical portions of an application from the 
untrusted bulk of its implementation; if security depends 
on only a small amount of code, this code can be verified 
or implemented by trustworthy parties regardless of the 
complexity of the application as a whole. Unfortunately, 
traditional operating systems do not lend themselves to 
such a division: they make it too difficult to predict the full 
implications of every action by untrusted code.7 HiStar is a 
new operating system designed to overcome this limitation.

HiStar enforces security by controlling how information 
flows through the system. Hence, one can reason about 
which components of a system may affect which others 
and how, without having to understand those components 
themselves. Specifying policies in terms of information 
flow is often much easier than reasoning about the security 
implications of individual operations.

As an example, let us consider anti-virus software, which 
often has full access to all files on a user’s computer. There 
have been critical vulnerabilities discovered in virus scan-
ners from Norton,14 McAfee,10 and others15 that allow attack-
ers to take full control of the scanner. Such vulnerabilities 
can easily be exploited to, at the very least, steal private data 

from millions of users. To prevent such a disaster, we might 
switch to the simpler, open-source ClamAV virus scanner. 
However, it has suffered from security vulnerabilities in the 
past,21 and is over 40,000 lines of code—large enough that 
hand-auditing the system to eliminate vulnerabilities would 
be an expensive and lengthy process at best. Yet a virus scan-
ner must periodically be updated on short notice to counter 
new threats, in which case users would face the unfortunate 
choice of running either an outdated virus scanner or an 
unaudited one. A better solution would be for the operat-
ing system to enforce security without trusting ClamAV to 
keep the user’s data private, thereby minimizing potential 
damage from ClamAV’s vulnerabilities.

Figure 1 illustrates ClamAV’s components. How can 
we protect a system should these components be compro-
mised? Among other things, we must ensure a compromised 
ClamAV cannot purloin private data from the files it scans, 
or corrupt those files. In doing so, we must also avoid impos-
ing restrictions that might interfere with ClamAV’s proper 
operation—for example, the scanner needs to spawn a wide 
variety of external helper programs to decode input files. 
Here are just a few ways in which, on Linux, a maliciously 
controlled scanner and update daemon can collude to copy 
private data to an attacker’s machine:

•	 The scanner can send the data directly to the destination 
host over a TCP connection.

•• The scanner can trick another program, such as a mail 
server running on the same machine, into transmitting 
the data.

•• The scanner can take over an existing process using 
debug mechanisms (e.g., ptrace on Unix), and send the 
data via that process.

•• The scanner can write the data to a file in /tmp. The 
update daemon can then read the file and leak the data 
by encoding it in the contents, ordering, or timing of 
subsequent network packets.

•• The scanner can use any number of less efficient and 
subtler techniques to impart the data to the update 
daemon—for example, use file locking to lock differ-
ent ranges of the database, bind particular TCP or 
UDP port numbers, modulate memory or disk usage 
in a detectable way, or change the title of the scanner 
process.

This work was originally presented at the 7th Symposium 
on Operating Systems Design and Implementation and 
the 5th Symposium on Networked Systems Design and 
Implementation.
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is to allow only the system administrator—root—access to 
this mechanism, but doing so both hampers the ability of 
other applications to use this mechanism and increases the 
amount of fully privileged code running as root.

HiStar addresses these challenges with three key ideas. 
First, instead of implementing a traditional Unix interface, the 
kernel provides a lower-level interface, consisting of six types 
of kernel objects and a small number of operations that make 
any information flows between objects explicit. This provides 
a correspondingly small number of places where the kernel 
must perform data flow checks. Second, the only protection 
mechanism provided by the kernel is an information flow con-
trol mechanism, which generalizes the intuition behind taint. 
All other forms of protection, including Unix user IDs, pro-
cess memory protection, and tainting itself, are implemented 
in terms of information flow control. This both reduces the 
amount of trusted kernel code and avoids any ambiguity about 
how the mechanisms will form a coherent policy. Finally, 
HiStar’s information flow control mechanism is egalitarian, 
meaning that it can be used by any process, not just by supe-
ruser, which further reduces the amount of fully trusted code.

Though we used the virus scanner as an example, many 
security problems can be couched in terms of information 
flow. For example, protecting users’ private profiles on a 
Web site often boils down to ensuring one person’s infor-
mation (Social Security number, credit card, etc.) cannot 
be sent to another user’s browser. Protecting against trojan 
horses means ensuring network payloads do not affect the 
contents of system files. Protecting passwords means ensur-
ing that whatever code verifies them can reveal only the sin-
gle bit signifying whether or not authentication succeeded. 
The rest of this paper describes how HiStar provides a new, 
Unix-like environment in which small amounts of code can 
secure much larger, untrusted applications by enforcing 
such policies.

2. DESIGN
The HiStar kernel is organized around six object types, 
shown in Figure 3: a segment (a variable-length byte array 
similar to a file), an address space (a mapping from virtual 
memory addresses to segment object names), a network 

Some of these attacks can be mitigated by running the 
scanner with its own user ID in a chroot jail.7 However, doing 
so requires highly privileged, application-specific code to set 
up the chroot environment, and risks breaking the scanner 
or one of its helper programs due to missing files.7 Other 
attacks, such as those involving sockets or System V IPC, 
can be prevented only by modifying the kernel to restrict 
certain system calls. Unfortunately, devising an appropriate 
policy in terms of system call arguments is an error-prone 
task, which, if incorrectly done, risks leaking private data or 
interfering with operation of a legitimate scanner.

A better way to specify the desired policy is in terms of 
where information should flow—namely, along the arrows in 
the figure. While Linux cannot enforce such a policy, HiStar 
can. Figure 2 shows our port of ClamAV to HiStar. There are 
two differences from Linux. First, we have labeled files with 
private user data as tainted. Tainting a file restricts the flow 
of its contents to any untainted component, including the 
network. The second difference from Linux is that we have 
launched the scanner from a new, 110-line program called 
wrap, which has untainting privileges. wrap untaints the 
virus scanner’s result and reports back to the user. The scan-
ner cannot read tainted user files without first tainting itself. 
Once tainted, it can no longer convey information to the net-
work or update daemon. As long as wrap is correctly imple-
mented, ClamAV cannot leak the contents of the files it scans.

Although HiStar’s tainting mechanism appears simple 
at a high level, making it work in practice requires address-
ing a number of challenges. First, there are myriad ways 
in which data can leak out onto the network, as illustrated 
above with Linux. How would an operating system like 
HiStar know to check the taint of the data being leaked for 
each and every one of them? Second, a typical OS kernel 
already provides a wide range of protection mechanisms, 
including user IDs, process memory protection, chroot jails, 
and so on. How can we avoid further complicating the ker-
nel with yet another mechanism, or at very least, avoid unex-
pected interactions between the many disparate protection 
mechanisms? Finally, managing the tainting of files and 
the untainting privileges requires a separate mechanism, 
which can equally well be the target of attacks. One answer 
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Figure 1. The ClamAV virus scanner. Circles represent processes, 
rectangles represent files and directories, and rounded rectangles 
represent devices. Arrows represent the expected data flow for a 
well-behaved virus scanner.

Figure 2. ClamAV running in HiStar. Lightly shaded components  
are tainted, which prevents them from conveying any information 
to untainted (unshaded) components. The strongly shaded wrap 
has untainting privileges, allowing it to relay the scanner’s output  
to the terminal.
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device (which can send and receive packets), a thread (a set 
of CPU registers, along with the name of an address space 
object), a gate (an IPC mechanism), and a container (a 
directory-like object in which all other objects reside).

Each object has a unique 64-bit object ID and a label that 
is used to control information flow to or from that object. All 
of the state accessible to user processes is stored in kernel 
objects (except for a few global variables, such as the counter 
used to allocate fresh object IDs). Thus, to read or write any 
data, processes must invoke the kernel (e.g., issue a system call 
or trigger a page fault to access a memory-mapped file). Upon 
receiving such a request, the kernel compares the labels of the 
currently executing thread and the objects being accessed to 
decide whether the operation should be permitted. While it is 
not possible to interpose on every read and write to memory-
mapped files, the kernel remembers all active memory map-
pings and invalidates them when it suspects access should no 
longer be allowed (e.g., when a thread's label changes).

2.1. Labels
Before discussing the kernel interface further, we first 
describe HiStar’s labels more precisely. HiStar associates a 
label with every kernel object. The purpose of a label is to 
provide a conservative estimate of what kind of data might 
be present in an object.

Generalizing the virus-scanner example shown in 
Figure 2, there may be multiple kinds of secret data in a sys-
tem, perhaps belonging to different users. HiStar uses the 
notion of secrecy categories to distinguish between different 
kinds of secret data (a category is just an opaque 64-bit iden-
tifier), and a label is simply a set of categories. For example, 
in Figure  2, lightly shaded components have one specific 
secrecy category in their label; processes and files not shown 
in the figure can be labeled with one or more other catego-
ries. Data can flow from object A to object B only if B’s label 
includes all of the secrecy categories in A’s label. This is sim-
ilar to the Bell-LaPadula model,1 and ensures that any data 
marked secret remains in objects marked secret.

Secrecy categories help control where secret data can 
end up, but it is also important to control where data comes 
from. For instance, the virus scanner may want to ensure 

its virus database has not been corrupted by another appli-
cation, and one user may want to prevent other users from 
overwriting his files. To address this problem, HiStar pro-
vides a second type of category—an integrity category. The 
type of a category is stored in the high bit of the category’s 
64-bit identifier, but in the rest of this paper we will use 
the notation cr to indicate a secrecy (read) category and cw 
to indicate an integrity (write) category. Object labels can 
include both secrecy and integrity categories, but the rules 
for integrity categories are the opposite of secrecy: data can 
flow from A to B only if A’s label includes all of the integrity 
categories in B’s label. This is analogous to the Biba integ-
rity model,2 and ensures that high-integrity files can be 
modified only by high-integrity sources.

Given these two types of categories, we can formalize 
when data can flow between two objects. For any two objects 
A and B, with labels LA and LB, data can flow from A to B if 
and only if every secrecy category in LA is present in LB, and 
every integrity category in LB is present in LA. This relation 
is checked frequently by HiStar, and we denote it by LA  LB 
(pronounced LA can flow to LB). Note that the  relation is 
transitive, meaning that one can understand if data can flow 
between two objects without having to consider all possible 
intermediate objects through which the data may flow.

While these rules ensure that secret data can propagate 
only to secret-labeled objects, a practical system requires 
occasionally extracting secret data from the system. For 
example, the wrap program shown in Figure 2 needs to send 
the output of the virus scanner to the user’s terminal. HiStar 
allows this using the notion of category ownership. Each 
thread T, in addition to having a label LT, owns a set of cat-
egories OT, and these categories are ignored when perform-
ing operations on behalf of T. For example, T can read object 
A if LA – OT  LT – OT, which we write as LA OT  LT (pronounced 
LA can flow using privileges OT to LT).

In our virus scanner example, a user’s files could be labeled 
Lf = {ur, uw}, where ur and uw are categories owned by the user 
that protect the secrecy and integrity of that user’s data. The 
virus scanner runs with label Ls = {ur} and empty ownership set 
Os = ∅, which allows it to read the user’s files (Lf Os

 Ls), but not 
to modify them (Ls / Os Lf ) or export them (since the network is 
labeled ∅ and Ls /Os

 ∅). The wrap process has label Lw = ∅ and 
ownership set Ow = {ur}, which allows it to read data from the 
scanner (Ls Ow Lw) and write it to the user’s terminal (Lw Ow

 ∅). 
Typically, a process trusted by the user owns both ur and uw, giv-
ing it the privileges to read, write, and export that user’s data.

A key property of HiStar’s labels is that ownership of 
one category confers no privileges with respect to other cat-
egories. This means that, for any secrecy category cr, data 
labeled with cr will flow only to objects labeled with cr, unless 
a thread that owns cr intervenes, and vice versa for integrity. 
This makes it possible to provide end-to-end guarantees 
on how different components can affect each other, by just 
inspecting components that own the relevant categories. For 
example, in Figure 2, it suffices to examine wrap to under-
stand how shaded components can affect unshaded ones.

2.2. Labeling kernel state
HiStar’s kernel enforces information flow control by 
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Figure 3. Kernel object types in HiStar. Soft links name objects by 
a particular 〈container ID, object ID〉 container entry. Threads and 
gates are represented by rounded rectangles to indicate they are 
the only objects that have ownership privileges.
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associating a label with every piece of user-visible state in 
the system—such as the registers of a thread, the length of 
a segment, and even the label of an object itself—and using 
the  relation to decide if a given thread should be allowed 
to observe or modify that state. As long as every piece of ker-
nel state that can, directly or indirectly, influence execution 
of user code has a consistent label, then ’s transitivity guar-
antees security: if data from thread A can affect some piece of 
kernel state X, and data from X can flow to some other thread 
B, then we must have checked that LA  LX and LX  LB, which 
implies LA  LB, so it was safe for data to flow from A to B. The 
key to ensuring transitivity lies in associating a consistent 
label with each piece of kernel state regardless of how the user 
code tries to, directly or indirectly, learn its value or modify it.

The bulk of HiStar’s kernel state resides in kernel objects. 
For example, the simplest type of object is a segment, which 
contains a variable-length byte array. When thread T attempts 
to read segment S, either by issuing a system call or by trig-
gering a page fault, the kernel checks that LS OT LT. Likewise, 
when thread T attempts to write S, the kernel checks that 
LT OT  LS OT   LT . (The kernel ensures that data is allowed to 
flow from T to S and vice versa; our experience suggests it is 
difficult to write to an object without receiving some informa-
tion as to whether the write succeeded.) As another example, a 
network device object’s payload is (logically) all of the packets 
on the Ethernet network. To send or receive a packet, a thread 
must be able to write or read the network device, respectively, 
with rules identical to those for a segment.

Each object also contains the object’s ID, the label, and 
a 64-byte mutable, user-defined metadata buffer (used by 
user-level code to, for instance, track modification times). 
The metadata buffer can logically be thought of as part of 
the mutable object contents, and is subject to the same read 
and write rules as the object contents. On the other hand, 
the label of an object O, LO, presents a challenge: how should 
we label LO’s bytes? Suppose that we used LO as the label of 
the entire object O, including LO itself. If a thread tries to 
read O and is denied access, it learns something about the 
contents of LO, even though this flow was prohibited.

To solve this chicken-and-egg problem, HiStar logically 
associates O’s parent container’s label with the bytes com-
prising LO (as a special case, the root container is its own 
parent). Furthermore, because O might reside in multiple 
parent containers, HiStar requires that object labels be spec-
ified at creation and then immutable (except for threads, 
as we discuss later).

To deal with on-disk state, HiStar provides a single-level 
store: on bootup, the entire system (including threads) 
is restored from the most recent on-disk snapshot. This 
eliminates the need for trusted boot scripts to reinitialize 
processes that would not survive a reboot on traditional 
operating systems. It also achieves economy of mechanism 
by allowing the file system to be implemented with the same 
kernel abstractions as virtual memory, without any addi-
tional mechanisms for labeling on-disk state.

Finally, the kernel maintains a small amount of state out-
side of kernel objects, namely, the counter used to generate 
new object and category IDs. Newly allocated IDs must have 
two properties: first, they must be unique, and second, they 

must disclose almost no information about the state of the 
system, such as the number of previously allocated objects 
(almost because by definition, a new ID reveals the fact that this 
exact ID value was never allocated before). HiStar generates 
IDs by encrypting a counter with a block cipher. Since the block 
cipher is a pseudo-random one-way function, an attacker can-
not learn any information from the value of the ID itself, and 
since the block cipher is a permutation, the IDs are unique.

2.3. Threads
Each thread T has a label LT and an ownership set OT, which 
can be changed through two mechanisms. First, a thread 
can allocate a fresh category by invoking the system call

•	 cat_t create_category (cat_type t),

which chooses a previously unused category, c, and adds c to OT. 
The type of the category (secrecy or integrity) is specified by t. At 
this point, T is the only thread that owns c, and since c was never 
used before, granting T ownership of c confers no other privi-
leges. In this sense, labels are egalitarian: no thread has any 
inherent privileges with respect to categories created by other 
threads. T can also drop categories from its ownership set.

T may change its own label through the system call

•	 int self_set_label (label_t L),

which sets LT ← L, as long as LT OT  L. This can, for example, 
let T read a tainted object, or to untaint its label in categories 
it owns. HiStar also includes a clearance mechanism,18 which 
prevents a thread from arbitrarily raising its label to read all 
possible data, but its discussion is omitted here for clarity.

A thread T can allocate new objects with label L as long as 
LT OT  L. Threads and gates (which will be discussed shortly)
can be created with an ownership set O as long as O ⊆ OT.

2.4. Containers
Because HiStar has no notion of superuser yet allows any 
software to create protection domains, nothing prevents a 
buggy thread from allocating resources in some new, unob-
servable, unmodifiable protection domain. To ensure that 
such resources can nonetheless be reclaimed, HiStar pro-
vides hierarchical control over object allocation and deallo-
cation through containers. Like Unix directories, containers 
hold hard links to objects. There is a specially designated root 
container, which can never be deallocated. Any other object is 
deallocated once there is no path to it from the root container. 
Figure 3 shows the possible links between containers and 
other types of objects.

When allocating an object, a thread must specify the con-
tainer into which to place the object. For example, to create 
a container, thread T makes the system call

•	 id_t container_create (id_t C, label_t L).

Here C is the object ID of an existing container, into which the 
newly created container will be placed. L is the desired label 
for the new container. The system call succeeds only if T can 
write to C (i.e., LT OT LC OT LT) and allocate an object of label L 
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(i.e., LT OT  L). Objects can be likewise unreferenced from con-
tainer C by any thread that can write to C. When an object has 
no more references, the kernel deallocates it. Unreferencing 
a container causes the kernel to recursively unreference the 
entire subtree of objects rooted at that container.

Containers also help HiStar address a possible covert 
channel through object reference counting. Any thread T can 
create a hard link to segment S in container C if it can write C 
(i.e., LT OT  LC OT LT). T can thus prolong S’s life even without 
permission to modify S; in our virus-scanner example from 
Figure 2, this might be the malicious scanner process sig-
naling secret information by prolonging or not prolonging 
the life of the database file. Another thread T′, such as the 
update process, could then remove any known links to S and 
observe whether it can still access S by its object ID, even if T 
was not allowed to communicate to T′.

To avoid this problem, most system calls name objects by 
〈container ID, object ID〉 pairs, called container entries. For 
T′ to use container entry 〈C, S〉, C must contain a link to S 
and T′ must be able to read C (i.e., LC OT′ LT′). In the virus-
scanner example, the untainted update process would not 
be able to use any container entry created by the tainted 
scanner. Container entries allow the kernel to check if a 
thread has permission to know if the object exists, in addi-
tion to any other label checks necessary to access the object.

2.5. Address spaces
Every running thread has an associated address space object 
containing a list of VA → 〈S, offset, npages, flags〉 mappings. 
VA is a page-aligned virtual address. S = 〈C, O〉 is a container 
entry for a segment to be mapped at VA. offset and npages 
can specify a subset of S to be mapped, flags specifies read, 
write, and execute permission (and some convenience bits 
for user-level software).

Each address space A has a label LA, to which the usual label 
rules apply. Thread T can modify A only if LT OT  LA OT LT, 
and can observe or use A only if LA OT LT. When launching 
a new thread, one must specify its address space and pro-
gram counter. The system call self_set_as allows threads to 
switch address spaces. When thread T takes a page fault, the 
kernel looks up the faulting address in T’s address space to 
find a segment S = 〈C, O〉 and flags. If flags allows the access 
mode, the kernel checks that T can read C and O (LC OT LT 
and LO OT LT). If flags includes writing, the kernel addition-
ally checks that T can modify O (LT OT LO). If no mapping is 
found or any check fails, the kernel calls up to a user-mode 
page-fault handler (which by default kills the process). If the 
page-fault handler cannot be invoked, the thread is halted.

2.6. Gates
Gates provide protected control transfer, allowing a thread 
to jump to a predefined program counter in another address 
space with additional privilege. A gate object G has an own-
ership set Og, a guard set Gg, and thread state, including the 
container entry of an address space, an initial program coun-
ter and stack pointer, and some closure arguments for the 
initial function. The guard set controls what other threads can 
invoke this gate, by requiring the caller to own all categories 
in Gg. A thread T can allocate a gate G only if Og ⊆ Ot. A thread 

T ′ invoking G must specify a requested ownership set, Or, to 
acquire upon invocation; invocation is permitted when OT ⊆ Gg 
and Or ⊆  (Ot ∪  Og). Gate objects are largely immutable (and 
thus subject to the parent container’s label); the gate label Lg 
applies only to the gate object’s (rarely-used) metadata.

Gates are often used like an RPC service. Unlike typical 
RPC, where the RPC server provides the resources to han-
dle the request, gates allow the client to donate initial 
resources—namely, the thread object which invokes the 
gate. Gates can also be used to transfer privilege. The use 
of gates is discussed further in Section 3.5.

3. UNIX LIBRARY
Unix provides a general-purpose computing environment 
familiar to many people. In designing HiStar’s user-level 
infrastructure, our goal was to provide as similar an environ-
ment to Unix as possible except in areas where there were 
compelling reasons not to—for instance, user authentica-
tion, which we redesigned for better security. As a result, 
porting software to HiStar is relatively straightforward; code 
that does not interact with security aspects such as user 
management often requires no modification.

HiStar’s Unix environment is implemented in a library that 
emulates the Linux system call interface, comprising approxi-
mately 20,000 lines of code and providing abstractions like file 
descriptors, processes, fork and exec, file system, and signals. 
All of these abstractions are provided at user level, without 
any special privilege from the kernel. Thus, all information 
flow, such as obtaining the exit status of a child process, is 
made explicit in the Unix library. A vulnerability in the Unix 
library, such as a bug in the file system, compromises only 
threads that trigger the bug—an attacker can exercise only 
the privileges of the compromised thread, likely causing far 
less damage than a kernel vulnerability. An untrusted appli-
cation, such as a virus scanner, can be isolated together with 
its Unix library, allowing for control over Unix vulnerabilities.

Most GNU software runs on HiStar without any source 
code modifications, including bash, gcc, gdb, and X; the 
main exception is OpenSSH, which requires small changes 
for user authentication and login code. The rest of this 
section discusses the design and implementation of our 
Unix emulation library.

3.1. File system
The HiStar file system uses segments and containers to imple-
ment files and directories, respectively. Each file corresponds 
to a segment object; to access the file contents, the segment 
is mapped into the thread’s address space, and any reads or 
writes are translated into memory operations. The implemen-
tation coordinates with the user-mode page fault handler to 
return errors for invalid read or write requests. A file’s length 
is defined to be the segment’s length. Additional state, such 
as the modification time, is stored in the object’s metadata.

A directory is a container with a special directory segment 
mapping file names to object IDs. A mutex in the direc-
tory segment serializes operations; for example, atomic 
rename within a directory is implemented by obtaining 
the directory’s mutex lock, modifying the directory seg-
ment to reflect the new name, and releasing the lock. 
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Users that cannot write a directory cannot acquire the 
mutex, but they can still obtain a consistent view of direc-
tory segment entries by atomically reading a generation 
number and busy flag before and after reading each entry. 
The generation number is incremented by the library on 
each directory update.

Since file system objects correspond to HiStar kernel 
objects, permissions are specified in terms of labels, and 
are enforced by the kernel, not by the untrusted library 
file system code. For example, a file that should be acces-
sible by only one user would be labeled {ur, uw}, where 
only that user owns ur and uw. A world-readable file that 
can be modified by only that user would be labeled {uw}. 
Labels are similarly used for directories; read privilege 
on a directory allows listing the files in that directory and 
write privilege allows creating new files and renaming or 
deleting existing files.

3.2. Processes
A process in HiStar is a user-space convention. Figure 4 illus-
trates the kernel objects that make up a typical process. Each 
process P has two categories, pr and pw, that protect its secrecy 
and integrity, respectively. Threads in a process typically own 
{pr, pw}, granting them full access to the process. The process 
consists of two containers: a process container and an inter-
nal container. The process container exposes objects that 
define the external interface to the process, such as a gate to 
receive signals from other processes (described in detail in 
the OSDI paper18) and a segment to store the process’s exit 
status. The process container and exit status segment are 
labeled {pw}, allowing other processes to read them, but 
not modify them (since other processes do not own this pro-
cess’s pw). The internal container, address space, and seg-
ment objects are labeled {pr, pw}, preventing direct access by 
other processes.

3.3. File descriptors
All of the state typically associated with a file descriptor, 
such as the current seek position and open flags, is stored 
in a file descriptor segment in HiStar. Every file descriptor 

number corresponds to a specific virtual memory address. 
When a file descriptor is open in a process, the correspond-
ing file descriptor segment is memory-mapped at the virtual 
address for that file descriptor number.

Typically each file descriptor segment has a label of 
{ fdr, fdw}, where categories fdr and fdw grant read and 
write access to the file descriptor state. Access to the file 
descriptor is granted by granting ownership of { fdr, fdw}. 
Multiple processes can share file descriptors by mapping 
the same descriptor segment into their respective address 
spaces. By convention, every process adds hard links for 
all of its file descriptor segments to its own container. As 
a result, a shared descriptor segment is deallocated only 
when it has been closed and unlinked from the container 
of each process.

3.4. Users
A pair of unique categories ur and uw define the read and 
write privileges of each Unix user u in HiStar, including 
root. Typically, threads running on behalf of user U own 
{ur,  uw}, and a user’s private files would have a label of 
{ur,  uw}. One consequence of this design is that a single 
process can possess the privilege of multiple users, or per-
haps multiple user roles, something that is hard to imple-
ment in Unix. On the other hand, our prototype does not 
support access control lists. (One way to implement access 
control lists would be to allocate a pair of categories for 
each ACL and to create a gate that would invoke code to 
evaluate the ACL rules and selectively grant ownership of 
these categories.) The authentication service, which veri-
fies user passwords and grants user privileges, is described 
in more detail in Zeldovich et al.18

3.5. Gate calls
Gates provide a mechanism for implementing IPC. As an 
example, consider a phonebook service that allows look-
ing up people’s phone numbers by their name. Storing all 
names in a file may be undesirable, since users could eas-
ily obtain a list of all names. A HiStar process could provide 
this service by creating a service gate whose initial program 
counter corresponded to a function that looks up a name in 
a database that is accessible only to that process.

Gates in HiStar have no implicit return mechanism; 
the caller explicitly creates a return gate before invoking 
the service gate, which allows the calling thread to regain 
all of the privileges it had prior to calling the service. A 
return category rw is allocated to prevent arbitrary threads 
from invoking the return gate; the return gate’s guard set 
requires ownership of rw to invoke the gate, and the caller 
grants ownership of rw when invoking the service gate. 
Figure 5 illustrates a gate call from process P to daemon D.

While this design prevents a user from enumerating 
the daemon’s private database, it does not ensure privacy 
of users’ queries. If users do not trust the daemon to keep 
their queries private, they can enforce the privacy of their 
queries, as follows. The calling thread allocates a new 
secrecy category xr and invokes the service gate in step 
2 with a label of {xr} (instead of ∅). This thread can now 
read D’s address space and any of D’s segments, by virtue 

Figure 4. Structure of a HiStar process. A process container is 
represented by a thick border. Not shown are some label components 
that, e.g., ensure other users cannot read the exit status of this 
process. Bold and dashed lines represent hard and soft links.
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of owning dr, but not modify them, since that would vio-
late information flow constraints in category xr. To con-
tinue executing, the thread makes a writable copy of the 
address space and its segments, labeled {dr, dw, xr}. This 
effectively forks D to create a tainted clone. The thread 
can now read the database and return data to the caller, 
but cannot divulge any data to anyone that does not own 
xr. Two considerations arise in this case. First, the tainted 
copy must be stored in some container. Since the thread 
is labeled xr, the kernel does not allow it to store objects 
in D’s container (otherwise, the thread could leak infor-
mation about the caller’s private data to D) . Thus, before 
invoking the gate, the caller creates a container labeled 
xr that can be used after invoking the gate. Second, when 
the thread returns to P’s address space through the 
return gate, its label still contains xr. To remove xr from 
the thread’s label, P must have added xr to the return 
gate’s ownership label prior to invoking D.

Forking on tainted gate invocation is not appropriate for 
every service. Stateless services, such as a database lookup, 
are usually well-suited to forking, whereas services with 
mutable shared state may want to avoid forking by refusing 
tainted gate calls.

4. HiSTAR WEB SERVER
To illustrate how HiStar’s protection mechanisms can be 
used by a real application, this section describes the HiStar 

SSL Web server. Figure 6 shows the server’s overall archi-
tecture. The Web server is built from mutually distrustful 
components to reduce the effects of a compromise of any 
single component. 

The TCP/IP stack in HiStar is implemented by a user-
space process called netd, which has access to the kernel 
network device.18 netd provides a traditional sockets inter-
face to applications. Incoming TCP connections from Web 
browsers are initially accepted by the launcher. For each con-
nection, the launcher spawns SSLd, to handle the SSL con-
nection with the user’s Web browser, and httpd, to process 
the user’s plaintext HTTP request. The launcher then relays 
data between SSLd and the TCP connection. SSLd, in turn, 
uses the RSAd daemon to establish an SSL session key with 
the user’s Web browser by generating an RSA signature 
using the SSL certificate private key kept by RSAd.

httpd receives the user’s decrypted HTTP request from 
SSLd and extracts the user’s password and the requested 
URL. It then authenticates the user by sending the user’s 
password to that user’s password checking agent from the 
HiStar authentication service.18 If the authentication suc-
ceeds, httpd receives ownership of the user’s secrecy and 
integrity categories, ur and uw, and executes the application 
code with the user’s privileges (e.g., generating a PDF docu-
ment). Application output is sent by httpd to the user’s Web 
browser via SSLd for encryption.

4.1. Web server security
The HiStar Web server architecture has no hierarchy of 
privileges and no fully trusted components; instead, most 
components are mutually distrustful, and the effects of a 
compromise are typically limited to one user, usually the 
attacker himself. Figure 7 summarizes the security proper-
ties of this Web server, including the complexity of different 
components and effects of compromise.

The largest components in the Web server, SSLd and 
the application code, are minimally trusted and cannot 
disclose one user’s private data to another user, even if 
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Figure 6. Architecture of the HiStar Web server. Rectangles 
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they are malicious. The application code is confined by the 
user’s secrecy category, ur, and it is httpd’s job to ensure 
that the application code is labeled with ur when httpd runs 
it. Although the application code owns the user’s integrity 
category, uw, this gives it the privilege to write only that 
one user’s files, and not to export them. Ownership of uw 
is necessary to allow the application code to read data not 
labeled with uw. If the application code were to be labeled 
with uw, it would be restricted to reading only data labeled 
uw, which would exclude executables, shared libraries, and 
configuration files.

SSLd is confined by sslr, a fresh secrecy category allocated 
by the launcher for each new connection. Both the launcher 
and httpd own sslr, allowing them to freely handle encrypted 
and decrypted SSl data, respectively. However, SSLd can 
communicate only with httpd and, via the launcher, with the 
user’s Web browser.

SSLd is not trusted to handle the SSL certificate private 
key. Instead, a separate and much smaller daemon, RSAd, 
has access to the private key and provides an interface to gen-
erate RSA signatures for SSL session key establishment. Not 
shown in Figure 7 is a category owned by SSLd that ensures 
no other process can invoke RSAd. Since SSLd is confined by 
sslr, the kernel ensures that SSLd cannot indirectly divulge 
any data to another process via its calls to RSAd, much as 
described in Section 3.5.

The HiStar authentication service used by httpd to 
authenticate users is described in detail in Zeldovich 
et  al.,18 but briefly, no code executes with all users’ privi-
leges, and the supplied password cannot be leaked even if 
the password checker is malicious. Our Web server does 
not use SSL client certificates for authentication. Doing 
so would require either trusting all of SSLd to authenticate 
users, or moving the client certificate code into the authen-
tication agent. In comparison, the password checking 
agent is 320 lines of code.

One caveat of our prototype is its lack of SSL session 
caching. Because a separate instance of SSLd is used for 
each client request, clients cannot reuse existing session 
keys when connecting multiple times, requiring public key 
cryptography to establish a new session key. This limitation 
can be addressed by adding an SSL session cache that runs 
in a separate persistent process and owns all sslr categories, 
at the cost of increasing the amount of trusted code.

5. RELATED WORK
HiStar was directly inspired by Asbestos,4 but differs in 

providing systemwide persistence and a lower-level ker-
nel interface that closes known covert storage channels. 
While Asbestos is a message-passing system, HiStar relies 
heavily on shared memory. The HiStar kernel provides 
gates, not IPC, with the important distinction that upon 
crossing a gate, a thread’s resources initially come from 
its previous domain. By contrast, Asbestos changes a pro-
cess’s label to track information flow when it receives IPCs, 
which is detectable by third parties and can leak informa-
tion. Asbestos optimizes comparisons between enormous 
labels, which so far we have not done in HiStar.

Flume8 showed how to provide information flow control 
on top of the Linux kernel, and introduced a cleaner label 
system (which HiStar and this paper have adopted). Flume 
also proposed endpoints to help programmers reason about 
labels on standard Unix abstractions; adopting endpoints 
in HiStar’s Unix library would similarly help HiStar pro-
grammers. DStar19 extended information flow control to 
decentralized systems and developed the HiStar Web server. 
Loki20 showed how hardware can partially enforce HiStar’s 
labels, to reduce the amount of fully trusted kernel code.

HiStar controls information flow with mandatory 
access control (MAC), a well-studied technique dating 
back decades.1 The ADEPT-50 dynamically adjusted labels 
(essentially taint tracking) using the High-Water-Mark 
security model back in the late 1960s9; the idea has often 
resurfaced, for instance in IX12 and LOMAC.5 HiStar and its 
predecessor Asbestos are novel in that they make opera-
tions such as category allocation and untainting available 
to application programmers, where previous OSes reserved 
this functionality for security administrators. Decentralized 
untainting allows novel uses of categories that we believe 
promote better application structure and support applica-
tions such as Web services, which were not targeted by pre-
vious MAC systems.

Like HiStar, capability-based KeyKOS3 and EROS17 use 
a small number of kernel object types and a single-level 
store. HiStar’s containers are reminiscent of hierarchi-
cal space banks in KeyKOS. However, while KeyKOS uses 
kernel-level capabilities to enforce labels at user level, 
HiStar bases all protection on kernel-level labels. The 
difference is significant because labels specify security 
properties while imposing less structure on applications; 
for example, an untrusted thread can dynamically alter 
its label to observe secret data, which has no analogue in 
a capability system.

The idea of using gates for protected control transfer 

Figure 7. Components of the HiStar Web server, their complexity measured in lines of C code (not including libraries such as libc), their label 
and ownership, and the worst-case results of the component being compromised. The netd TCP/IP stack is a modified Linux kernel; HiStar 
also supports the lwIP TCP/IP stack, consisting of 35,000 lines of code, which has lower performance.
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SSLd 340,000 Corrupt request or response, or send unencrypted data to same user’s browser
RSAd 4,600 Disclose the server’s SSL certificate private key
httpd 300 Full access to data in attacker’s account, but not to other users’ data
authentication 320 Full access to data of the user whose agent is compromised, but no password disclosure
application 680,000+ Send garbage (only to the same user’s browser), corrupt user data (for write requests)
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dates back to Multics.16 Unlike Multics rings, HiStar’s pro-
tection domains are not hierarchical. HiStar gates are more 
like doors in Spring.6

Decentralized untainting, while new in operating sys-
tems, was previously provided by programming languages, 
notably Jif.13 Jif can track information flow at the level of indi-
vidual variables and perform most label checks at compile 
time. However, Jif relies on the operating system for storage, 
trusted input files, administration, etc., which avoids many 
issues HiStar needs to address.

SELinux11 lets Linux support MAC; like most MAC 
systems, policy is centrally specified by the administrator. In 
contrast, HiStar lets applications craft policies around their 
own categories. Retrofitting MAC to a large existing kernel 
such as Linux can be error-prone, especially given the some-
times ill-specified semantics of Linux system calls. HiStar’s 
disciplined, small kernel can potentially achieve much 
higher assurance at the cost of compatibility.

6. DISCUSSION AND LIMITATIONS
The current prototype of HiStar supports x86-64, i386, 
SPARC, and ARM computers. The fully trusted kernel, 
including device drivers for any given machine, is approxi-
mately 20,000 lines of code. We expect that drivers can even-
tually be moved to untrusted user-space processes with the 
help of IOMMU hardware. We have found performance to be 
reasonable for Unix applications.18

Users familiar with Unix will find that, though HiStar 
resembles Unix, it also lacks several useful features and 
changes the semantics of some operations. For example, 
HiStar does not keep file access times; although possible 
to implement for some cases, tracking time of last access 
is in many situations fundamentally at odds with informa-
tion flow control. Another difference is that chmod, chown, 
and chgrp revoke all open file descriptors and copy the file 
or directory. Because each file has one read and one write 
category, group permissions require a file’s owner to be in 
the group. There is no file execute permission without read 
permission, and no setuid bit (though gates arguably provide 
a better alternative to both).

While trusted components can control how secret data 
is revealed, it is difficult to reason about what secret data is 
revealed. For example, wrap can ensure the scanner’s out-
put is sent only to the user’s terminal, but it would be dif-
ficult to safely reveal even one bit of information from the 
scanner’s output to the public (e.g., are any of the user’s files 
infected?), since we must conservatively assume that the 
scanner’s output may reveal any bit about the user’s data.

7. SUMMARY
HiStar is a new operating system that provides strict infor-
mation flow control without superuser privilege. Narrow 
interfaces allow for a small trusted kernel of less than 20,000 
lines, on which a Unix-like environment is implemented in 
untrusted user-level library code. A new container abstrac-
tion lets administrators manage and revoke resources 
for processes they cannot observe. Side-by-side with the 
Unix environment, the system supports a number of high-
security, privilege-separated applications previously not 

possible in a traditional Unix system. HiStar is available at 
http://www.scs.stanford.edu/histar/.
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