
1

EECS 373
Design of Microprocessor-Based Systems

Branden Ghena
University of Michigan

Lecture 5: Memory and Peripheral Buses

January 22, 2015

2

Announcements

• I’m not Prabal

– You probably noticed

– He’s in Washington DC doing this and this

– He regrets that he cannot be here today and will not have OH

• We’re working on additional GSI/IA office hours (OH)

– Pat Pannuto 10-11am MW in EECS Learning Center

• (Glass rooms between BBB and Dow)

http://www.cra.org/ccc/visioning/visioning-activities/extensible-distributed-systems
http://www.cra.org/ccc/visioning/computing-visions-2025/2025-roundtable

3

Outline

• Announcements

• Accessing memory from Assembly/C

• Busses: The glue that connects the pieces

• ARM Advanced Peripheral Bus (APB)

• ARM Advanced High-performance Bus Light (AHB-Lite)

4

#define SYSREG_SOFT_RST_CR 0xE0042030

uint32_t *reg = (uint32_t *)(SYSREG_SOFT_RST_CR);

main () {
*reg |= 0x00004000; // Reset GPIO hardware
*reg &= ~(0x00004000);

}

Accessing memory locations from C

• Memory has an address and value

• Can equate a pointer to desired address

• Can set/get de-referenced value to change memory

5

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
uint32_t *reg = (uint32_t *)(REG_FOO);
*reg += 3;

printf(“0x%x\n”, *reg); // Prints out new value
}

What happens when this “instruction” executes?

6

“*reg += 3” is turned into a ld, add, str sequence

• Load instruction

– A bus read operation commences

– The CPU drives the address “reg” onto the address bus

– The CPU indicated a read operation is in process (e.g. R/W#)

– Some “handshaking” occurs

– The target drives the contents of “reg” onto the data lines

– The contents of “reg” is loaded into a CPU register (e.g. r0)

• Add instruction

– An immediate add (e.g. add r0, #3) adds three to this value

• Store instruction

– A bus write operation commences

– The CPU drives the address “reg” onto the address bus

– The CPU indicated a write operation is in process (e.g. R/W#)

– Some “handshaking” occurs

– The CPU drives the contents of “r0” onto the data lines

– The target stores the data value into address “reg”

7

Some useful C keywords

• const

– Makes variable value or pointer parameter unmodifiable

– const foo = 32;

• register

– Tells compiler to locate variables in a CPU register if possible

– register int x;

• static

– Preserve variable value after its scope ends

– Does not go on the stack

– static int x;

• volatile

– Opposite of const

– Can be changed in the background

– volatile int I;

8

Outline

• Announcements

• Accessing memory from Assembly/C

• Busses: The glue that connects the pieces

• ARM Advanced Peripheral Bus (APB)

• ARM Advanced High-performance Bus Light (AHB-Lite)

Busses: the glue that connects the pieces

9

Timers

Central

Processing

Unit

Software

Hardware

Internal

External

System Buses
AHB/APB

ldr (read)

str (write)

ISA

EECS 370

USART DAC/ADC

Internal &

External

Memory

GPIO/INT

C

Assembly

Machine Code

Interrupts

bl (int)

10

Actel SmartFusion system/bus architecture

11

Why have so many busses?

• Many designs considerations

– Master vs Slave

– Internal vs External

– Bridged vs Flat

– Memory vs Peripheral

– Synchronous vs Asynchronous

– High-speed vs low-speed

– Serial vs Parallel

– Single master vs multi master

– Single layer vs multi layer

– Multiplexed A/D vs demultiplexed A/D

• Discussion: what are some of the tradeoffs?

Advanced Microcontroller Bus Architecture (AMBA)

- Advanced High-performance Bus (AHB)

- Advanced Peripheral Bus (APB)

AHB

• High performance

• Pipelined operation

• Burst transfers

• Multiple bus masters

• Split transactions

APB

• Low power

• Latched address/control

• Simple interface

• Suitable of many

peripherals

12

13

Outline

• Announcements

• Accessing memory from Assembly/C

• Busses: The glue that connects the pieces

• ARM Advanced Peripheral Bus (APB)

• ARM Advanced High-performance Bus Light (AHB-Lite)

14

APB: a simple bus that is easy to work with

• Low-cost

• Low-power

• Low-complexity

• Low-bandwidth

• Non-pipelined

• Ideal for peripherals

Notation

15

16

APB bus state machine

• IDLE

– Default APB state

• SETUP

– When transfer required

– PSELx is asserted

– Only one cycle

• ACCESS

– PENABLE is asserted

– Addr, write, select, and

write data remain stable

– Stay if PREADY = L

– Goto IDLE if PREADY = H

and no more data

– Goto SETUP is PREADY = H

and more data pending

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

17

APB signal definitions

• PCLK: the bus clock source (rising-edge triggered)

• PRESETn: the bus (and typically system) reset signal (active low)

• PADDR: the APB address bus (can be up to 32-bits wide)

• PSELx: the select line for each slave device

• PENABLE: indicates the 2nd and subsequent cycles of an APB xfer

• PWRITE: indicates transfer direction (Write=H, Read=L)

• PWDATA: the write data bus (can be up to 32-bits wide)

• PREADY: used to extend a transfer

• PRDATA: the read data bus (can be up to 32-bits wide)

• PSLVERR: indicates a transfer error (OKAY=L, ERROR=H)

APB bus signals in action

• PCLK
– Clock

• PADDR
– Address on bus

• PWRITE
– 1=Write, 0=Read

• PWDATA
– Data written to the

I/O device.
Supplied by the
bus
master/processor.

18

APB bus signals

• PSEL
– Asserted if the current

bus transaction is
targeted to this device

• PENABLE
– High during entire

transaction other than
the first cycle.

• PREADY
– Driven by target.

Similar to our #ACK.
Indicates if the target
is ready to do
transaction.
Each target has it’s
own PREADY

19

20

A write transfer with no wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

21

A write transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

22

A read transfer with no wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

23

A read transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

Example setup

• We will assume we have one bus master

“CPU” and two slave devices (D1 and D2)

– D1 is mapped to 0x00001000-0x0000100F

– D2 is mapped to 0x00001010-0x0000101F

CPU stores to location 0x00001004 with no stalls

25

D1

D2

Writes

Let’s do some hardware examples!

26

Design a device which writes to a register whenever

any address in its range is written

27

32-bit Reg

D[31:0]
Q[31:0]

EN

C

We are assuming APB only gets lowest 8 bits of address here…

What if we want to have the LSB of this register

control an LED?

PREADYPWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

LED

Reg A should be written at address 0x00001000

Reg B should be written at address 0x00001004

28

32-bit Reg A

D[31:0]
Q[31:0]

EN

C

We are assuming APB only gets lowest 8 bits of address here…

32-bit Reg B

D[31:0]
Q[31:0]

EN

C

PREADYPWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

Reads…

29

The key thing here is that each slave device has its own read data (PRDATA) bus!

Recall that “R” is from the initiator’s viewpoint—the device drives data when read.

Let’s say we want a device that provides data from

a switch on a read to any address it is assigned.

(so returns a 0 or 1)

30

Mr.

Switch

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

PRDATA[32:0]

Device provides data from switch A if address

0x00001000 is read from. B if address 0x00001004

is read from

31

Mr.

Switch

Mrs.

Switch

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

PRDATA[31:0]

All reads read from register, all writes write…

32

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg

D[31:0]
Q[31:0]

EN

C

We are assuming APB only gets lowest 8 bits of address here…

PREADY

PRDATA[31:0]

Things left out…

• There is another signal, PSLVERR (APB Slave

Error) which we can drive high if things go bad.

– We’ll just tie that to 0.

• PRESETn

– Active low system reset signal

– (needed for stateful peripherals)

• Note that we are assuming that our device need

not stall.

– We could stall if needed.

• I can’t find a limit on how long, but I suspect at

some point the processor would generate an error.

33

Verilog!

34

/*** APB3 BUS INTERFACE ***/
input PCLK, // clock
input PRESERN, // system reset
input PSEL, // peripheral select
input PENABLE, // distinguishes access phase
output wire PREADY, // peripheral ready signal
output wire PSLVERR, // error signal
input PWRITE, // distinguishes read and write cycles
input [31:0] PADDR, // I/O address
input wire [31:0] PWDATA, // data from processor to I/O device (32 bits)
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits)

/*** I/O PORTS DECLARATION ***/
output reg LEDOUT, // port to LED
input SW // port to switch
);

assign PSLVERR = 0;
assign PREADY = 1;

35

Outline

• Announcements

• Accessing memory from Assembly/C

• Busses: The glue that connects the pieces

• ARM Advanced Peripheral Bus (APB)

• ARM Advanced High-performance Bus Light (AHB-Lite)

36

AHB-Lite supports single bus master

and provides high-bandwidth operation

• Burst transfers

• Single clock-edge

operation

• Non-tri-state

implementation

• Configurable bus width

37

AHB-Lite bus master/slave interface

• Global signals

– HCLK

– HRESETn

• Master out/slave in

– HADDR (address)

– HWDATA (write data)

– Control

• HWRITE

• HSIZE

• HBURST

• HPROT

• HTRANS

• HMASTLOCK

• Slave out/master in

– HRDATA (read data)

– HREADY

– HRESP

38

AHB-Lite signal definitions

• Global signals

– HCLK: the bus clock source (rising-edge triggered)

– HRESETn: the bus (and system) reset signal (active low)

• Master out/slave in

– HADDR[31:0]: the 32-bit system address bus

– HWDATA[31:0]: the system write data bus

– Control

• HWRITE: indicates transfer direction (Write=1, Read=0)

• HSIZE[2:0]: indicates size of transfer (byte, halfword, or word)

• HBURST[2:0]: indicates single or burst transfer (1, 4, 8, 16 beats)

• HPROT[3:0]: provides protection information (e.g. I or D; user or handler)

• HTRANS: indicates current transfer type (e.g. idle, busy, nonseq, seq)

• HMASTLOCK: indicates a locked (atomic) transfer sequence

• Slave out/master in

– HRDATA[31:0]: the slave read data bus

– HREADY: indicates previous transfer is complete

– HRESP: the transfer response (OKAY=0, ERROR=1)

39

Key to timing diagram conventions

• Timing diagrams

– Clock

– Stable values

– Transitions

– High-impedance

• Signal conventions

– Lower case ‘n’ denote

active low (e.g. RESETn)

– Prefix ‘H’ denotes AHB

– Prefix ‘P’ denotes APB

40

Basic read and write transfers with no wait states

Pipelined

Address

& Data

Transfer

41

Read transfer with two wait states

Two wait states

added by slave

by asserting

HREADY low

Valid data

produced

42

Write transfer with one wait state

One wait state

added by slave

by asserting

HREADY low

Valid data

held stable

43

Wait states extend the address phase of next transfer

One wait state

added by slave

by asserting

HREADY low

Address stage of

the next transfer

is also extended

44

Transfers can be of four types (HTRANS[1:0])

• IDLE (b00)
– No data transfer is required

– Slave must OKAY w/o waiting

– Slave must ignore IDLE

• BUSY (b01)
– Insert idle cycles in a burst

– Burst will continue afterward

– Address/control reflects next transfer in

burst

– Slave must OKAY w/o waiting

– Slave must ignore BUSY

• NONSEQ (b10)
– Indicates single transfer or first transfer of

a burst

– Address/control unrelated to prior

transfers

• SEQ (b11)
– Remaining transfers in a burst

– Addr = prior addr + transfer size

45

A four beat burst with master busy and slave wait

One wait state

added by slave

by asserting

HREADY low

Master busy

indicated by

HTRANS[1:0]

46

Controlling the size (width) of a transfer

• HSIZE[2:0] encodes the size

• The cannot exceed the data bus

width (e.g. 32-bits)

• HSIZE + HBURST is determines

wrapping boundary for wrapping

bursts

• HSIZE must remain constant

throughout a burst transfer

47

Controlling the burst beats (length) of a transfer

• Burst of 1, 4, 8, 16, and undef

• HBURST[2:0] encodes the type

• Incremental burst

• Wrapping bursts

– 4 beats x 4-byte words wrapping

– Wraps at 16 byte boundary

– E.g. 0x34, 0x38, 0x3c, 0x30,…

• Bursts must not cross 1KB

address boundaries

48

A four beat wrapping burst (WRAP4)

49

A four beat incrementing burst (INCR4)

50

An eight beat wrapping burst (WRAP8)

51

An eight beat incrementing burst

(INCR8) using half-word transfers

52

An undefined length incrementing burst (INCR)

53

Multi-master AHB-Lite

requires a multi-layer interconnect

• AHB-Lite is single-master

• Multi-master operation

– Must isolate masters

– Each master assigned to layer

– Interconnect arbitrates slave

accesses

• Full crossbar switch often

unneeded

– Slaves 1, 2, 3 are shared

– Slaves 4, 5 are local to Master 1

54

Questions?

Comments?

Discussion?

