EECS 373

An Introduction to Real Time Oses

Slides originally created by Mark Brehob

| micHiGaN |
Vil

Y

Things

* Should be working on your project at this point

— Your group should have something to work on as of
today.

— Your group should target having all components be
“mostly working” by the second week of April
* We're ending the “regular” lectures & labs

— Focus on special topics
* Shared slides, spreadsheets

— More time for project work

What’s left

***Winter Break - No Class - Week of Mar 2-6, 2015 * * *

5 [Mar 10][PCB Design (ref: PDF, MESH slides) |[DeBruin][Lab #7 : ADC/DAC Data Converters
[Special Topics Group Meetings (in class) Dutia__||HW # 4 : Special Topics Groups

!
10 Mar 17 |[Embedded Operating Systems _ _ Dutta projects
Mar 19][NO LECTURE: Work on Presentations/Projects [Students
" Mar 24 Epecfal Top!cs: Senslng. |[Students brojects
[Mar 26][Special Topics: C and Storage |[Students
12 Mar 31 Epecral Top!cs: Radio Communications [Students][i
[Apr 2 |[Special Topics: Power |[Students
13 [Apr 7 Epecial Topics: Software & Misc. Topics |[Students][i
[Apr9 |[Special Topics: Reserved [Students
[Apr 14
14 P INO LECTURE: Work on Projects Projects
|Apr 16
Demo & Poster Session
15 ||Apr 21 |[Time: 1:30-3:30 PM Students |[Projects / Teardown / Parts Return
[Room: TBD
Final Exam
16 ||Apr 28 |[Time: 4:00-6:00 PM Students
[Room: TBD

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)

— What’s missing?

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)

— What’s missing?

RTS overview

Y

What is a Real-Time System?

* Real-time systems have been defined as:
"those systems in which the correctness of
the system depends not only on the logical
result of the computation, but also on the
time at which the results are produced";

— J. Stankovic, "Misconceptions About Real-Time

Computing," IEEE Computer, 21(10), October
1988.

RTS overview

Real-Time Characteristics

* Pretty much your typical embedded system
— Sensors & actuators all controlled by a processor.
— The big difference is timing constraints (deadlines).

* Those tasks can be broken into two categories’
— Periodic Tasks: Time-driven and recurring at regular
intervals.
« A car checking for a wall every 0.1 seconds;
* An air monitoring system grabbing an air sample every 10 seconds.
— Aperiodic: event-driven
* That car having to react to a wall it found
* The loss of network connectivity.

Sporadic tasks are sometimes also discussed as a third category. They are tz milar to aperiodic tasks but activated with some

known bounded rate. The bounded rate is characterized by a minimum interval of time between two successive activatior

RTS overview

Some Definitions

* Timing constraint: constraint imposed on timing
behavior of a job: hard, firm, or soft.

* Release Time: Instant of time job becomes
available for execution.

* Deadline: Instant of time a job's execution is
required to be completed. If deadline is infinity,
then job has no deadline.

* Response time: Length of time from release time
to instant job completes.

RTS overview

Soft, Firm and Hard deadlines

* The instant at which a result is needed is called a
deadline.

— If the result has utility even after the deadline has
passed, the deadline is classified as soft, otherwise it
is firm.

— If a catastrophe could result if a firm deadline is
missed, the deadline is hard.

* Examples?

Definitions taken from a paper by Kanaka Juvva, not sure who originated them.

RTS overview: Scheduling algorithms

Scheduling algorithms

* A scheduling algorithm is a scheme that
selects what job to run next.
— Can be preemptive or non-preemptive.
— Dynamic or static priorities
— Etc.

In general, a RTS will use some scheduling algorithm to meet
its deadlines.

RTS overview: Scheduling algorithms

Two common scheduling schemes

* Rate monotonic ¢ Earliest deadline first
(RM) (EDF)

— Static priority scheme — Dynamic priority scheme

— Preemption required — Preemption required

— Simple to implement — Harder to implement

— Nice properties — Very nice properties

We aren’t going to worry about the details of either. The point
is that we sometimes want static priorities (each task has a fixed
priority) and sometimes we want dynamic priorities (priorities
change for a task over time).

RTS overview: Scheduling algorithms

But tasks don’t operate in a vacuum

* |tis generally the case that different tasks might
need shared resources
— For example, multiple tasks might wish to use a UART
to print messages
* You’ve seen this in the lab.
* How can we share resources?
— Could have task using resource disable interrupts
while using resource.

* But that would mess with interrupts that don’t (or won't)
use the resource.

— Could disable those that could use the resource
* But would mess with interrupts that won’t use it this time.

RTS overview: Scheduling algorithms

Sharing resources

* Need some kind of a lock on a resource.

— If a high priority task finds a resource is locked, it
goes to sleep until the resource is available.

— Task is woken up when resource is freed by lower
priority task.

— Sounds reasonable, but leads to problems.

* More formally stated on next slide.

RTS overview: Scheduling algorithms

Priority Inversion

* In a preemptive priority based real-time system, sometimes
tasks may need to access resources that cannot be shared.

— The method of ensuring exclusive access is to guard the critical
sections with binary semaphores.

— When a task seeks to enter a critical section, it checks if the
corresponding semaphore is locked.

— Ifitis not, the task locks the semaphore and enters the critical section.
— When a task exits the critical section, it unlocks the corresponding
semaphore.
¢ This could cause a high priority task to be waiting on a lower
priority one.
— Even worse, a medium priority task might be running and cause the
high priority task to not meet its deadline!

Mohammadi, Arezou, and Selim G. Akl. "Scheduling Algorithms for Real-Time Systen

RTS overview: Scheduling algorithms

Example: Priority inversion

* Low priority task “C” locks resource “Z”.

* High priority task “A” preempts “C” then
requests resource “Z”

— Deadlock, but solvable by having “A” sleep until
resource is unlocked.

* But if medium priority “B” were to run, it
would preempt C, thus effectively making C
and A run with a lower priority than B.

— Thus priority inversion.

RTS overview: Scheduling algorithms

Solving Priority inversion

* Priority Inheritance
— When a high priority task sleeps because it is
waiting on a lower priority task, have it boost the
priority of the blocking task to its own priority.

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)

— What’s missing?

RTOS overview

Goals of an RTOS?

* Well, to manage to meet RT deadlines (duh).

— While that’s all we need we’d like a lot more.
* After all, we can meet RT deadlines fairly well on the bare
metal (no OS)
— But doing this is time consuming and difficult to get right as the
system gets large.

* We'd like something that supports us
— Deadlines met
— Interrupts just work
— Tasks stay out of each others way
— Device drivers already written (and tested!) for us
— Portable—runs on a huge variety of systems
— Oh, and nearly no overhead so we can use a small device!

» That is a small memory and CPU footprint.

RTOS overview

| wichican |
AL]

Detailed features we’d like

Deadlines met
* Ability to specify scheduling
algorithm
— We'd like priority inversion
dealt with
* Interrupts are fast

— So tasks with tight deadlines
get service as fast as possible
* Basically—rarely disable
interrupts and when doing
so only for a short time.

Interrupts just work
* Don’t need to worry about
saving/restoring registers
— Which C just generally does
for us anyways.
* Interrupt prioritization easy
to set.

RTOS overview

Detailed features we’d like:

| wicnican |
AL]

Tasks stay out of each others way

* This is actually remarkably
hard

— Clearly we need to worry about
CPU utilization issues

* Thatis what our scheduling
algorithm discussion was to
address

— But we also need to worry
about memory problems.

* One task running awry shouldn’t
take the rest of the system
down.

— So we want to prevent tasks
from harming each other

« This can be key. If we want
mission critical systems sharing
the CPU with less important
things we have to do this.

« Alternative it to have separate
processors.

— $55%

Further reading on page protection (short) uiowa.edu/~jon

The standard way to do this is
with page protection.

— If a process tries to access
memory that isn’t its own, it
fails.

* Probably a fault.
* This also makes debugging a LOT
easier.
This generally requires a lot of
overhead.

— Need some sense of process
number/switching

— Need some kind of MMU in
hardware

* Most microcontrollers lack this...

* So we hit some kind of minimum
size.

html

.B,g. RTOS overview .B,g.
(AL AL
Aside: What is an MMU? Device drivers written (and tested!) for us
* Memory Management N * |deally the RTOS has drivers for all the on-
Unit SN s board peripherals.
o UEE SRR i — It’s a lot easier to call a “configure_I2C()” function
memory a process can e 71 . - e
—— than to read the details of the device specification
+ Actually a bit more me: eanmiacion toox-astae puter i and do the memory-mapped work yourself
complex as it manages
this by mapping virtual
addresses to physical
ones.
* Keeps processes out of
each other’s memory.
Figure from Wikipedia
RTOS overview .B,g. FreeRTOS .B,g.
AL AL

Portable

* RTOS runs on many platforms.
— This is potentially incomputable with the previous

slide.

— It’s actually darn hard to do even without

peripherals

* For example | spent 10 hours debugging a RTOS that
had a pointer problem that only comes up if the
pointer type is larger than the int type (20 bit pointers,

16 bit ints, yea!)

* Things like timers change and we certainly need timers.

Outline

* Quick review of real-time systems

* Overview of RTOSes
— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)
— What’s missing?

FreeRTOS

Learning by example: FreeRTOS

* Introduction taken from Amr Ali Abdel-Naby
— Nice blog:
* http://www.embedded-tips.blogspot.com

FreeRTOS

q. | FreeRTOS Features
"

* Source code

* Portable

» Scalable

* Preemptive and co-operative scheduling
* Multitasking

» Services

* Interrupt management

» Advanced features

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS
q.|§ource Code
o |
o High quality i e e o i o i
* Neat

« Consistent
* Organized

« Commented ve(ssereen));

gned portBASE_TYPE) pdFALSE)

cListIten));
)i

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS
q. IPortable
mE =
» Highly portable C ®op
* 24 architectures supported > = freescaleV

ssemiconductor

* Assembly is kept minimum. E RM.
* Ports are freely available in
source code.

» Other contributions do exist. ‘ImEl ﬁﬁweﬁuslmag;.,..
L JJ

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5 28

FreeRTOS

q.|§calable

mE -
» Only use the services you only need.
o FreeRTOSConfig.h

* Minimum footprint = 4 KB

» Version in lab is 24 KB including the
application (which is fairly large) and
data for the OS and application.

Pretty darn small for what you get.
~6000 lines of code (including a lot of
comments, maybe half that without?)

Amr Ali Abdel-Naby@2010 29

FreeRTOS

Preemptive and Cooperative
|§chedu|ing
mE -

* Preemptive scheduling:
o Fully preemptive
o Always runs the highest priority task that is ready
to run
o Comparable with other preemptive kernels
o Used in conjunction with tasks

» Cooperative scheduling:
o Context switch occurs if:
= Atask/co-routine blocks
= Or a task/co-routine yields the CPU
o Used in conjunction with tasks/co-routines

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5 30

FreeRTOS

q | Multitasking

|
* No software restriction on:
o # of tasks that can be created
o # of priorities that can be used

o Priority assignment

= More than one task can be assigned the same priority.

= RR with time slice = 1 RTOS tick

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

q IServices

|
* Queues

» Semaphores
o Binary and counting

* Mutexes
o With priority inheritance
o Support recursion

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

q lInterrupts
|

* An interrupt can suspend a task execution.

* Interrupt mechanism is port dependent.

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

q | Advanced Features
|

» Execution tracing
* Run time statistics collection
* Memory management

* Memory protection support

Stack overflow protection

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

q IDevice support in related products

|
» Connect Suite from High Integrity
Systems

o TCP/IP stack

o USB stack
= Host and device

o File systems
= DOS compatible FAT

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

q I|icensing
|

» Modified GPL
o Only FreeRTOS is GPL.
o Independent modules that communicate with
FreeRTOS through APIs can be anything else.
o FreeRTOS can’t be used in any comparisons
without the authors’ permission.

Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

FreeRTOS

A bit more

* System runs on “ticks”
— Every tick the kernel runs and figures out what to
do next.
* Interrupts have a different mechanism
— Basically hardware timer is set to generate regular
interrupts and calls the scheduler.

* This means the OS eats one of the timers—you can’t
easily share.

OK, onto tasks! -

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks
Interrupts
Internals (briefly)
— What’s missing?

FreeRTOS: Tasks

Tasks

* Each task is a function that must not return
— Soit’s in an infinite loop (just like you’d expect in an
embedded system really, think Arduino).
* You inform the scheduler of
— The task’s resource needs (stack space, priority)
— Any arguments the tasks needs
* All tasks here must be of void return type and
take a single void* as an argument.

— You cast the pointer as needed to get the argument.

* I'd have preferred var_args, but this makes the common
case (one argument) easier (and faster which probably
doesn’t matter).

Code examples mostly from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

FreeRTOS: Tasks

Example trivial task with busy wait
(bad)

void vTaskl(void *pvParameters)

{

const char *pcTaskName = "Task 1 is running\r\n";
volatile unsigned long ul;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString(pcTaskName) ;

/* Delay for a period. */

for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

{
/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude
loop with a proper delay/sleep function. */

FreeRTOS: Tasks

Task creation

PortBASE_TYPE xTaskCreate (
pdTASK_CODE pvTaskCode,
const char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
unsigned portBASE_TYPE uxPriority,
xTaskHandle *pvCreatedTask
)i
Create a new task and add it to the list of tasks that
are ready to run. xTaskCreate() can only be used to
create a task that has unrestricted access to the
entire microcontroller memory map. Systems that
include MPU support can alternatively create an
MPU constrained task using xTaskCreateRestricted().

* pvTaskCode: Pointer to the task entry function.
Tasks must be implemented to never return (i.e.
continuous loop).

* pcName: A descriptive name for the task. This is
mainly used to facilitate debugging. Max length
defined by tskMAX_TASK_NAME_LEN — default
is 16.

From the task.h file in FreeRTOS

usStackDepth: The size of the task stack
specified as the number of variables the stack
can hold - not the number of bytes. For
example, if the stack is 16 bits wide and
usStackDepth is defined as 100, 200 bytes will
be allocated for stack storage.

pvParameters: Pointer that will be used as the
parameter for the task being created.
uxPriority: The priority at which the task should
run. Systems that include MPU support can
optionally create tasks in a privileged (system)
mode by setting bit portPRIVILEGE_BIT of the
priority parameter. For example, to create a
privileged task at priority 2 the uxPriority
parameter should be setto (2 |
portPRIVILEGE_BIT).

pvCreatedTask: Used to pass back a handle by
which the created task can be referenced.
pdPASS: If the task was successfully created and
added to a ready list, otherwise an error code
defined in the file errors.h

FreeRTOS: Tasks

Creating a task: example

int main(void)

{

/* Create one of the two tasks. Note that a real application should check
the return value of the xTaskCreate() call to ensure the task was created
successfully. */
xTaskCreate (vTaskl, /* Pointer to the function that implements the task. */
"Task 1",/* Text name for the task. This is to facilitate
debugging only. */

1000, /* Stack depth - most small microcontrollers will use
much less stack than this. */

NULL, /* We are not using the task parameter. */

1, /* This task will run at priority 1. */

NULL); /* We are not going to use the task handle. */

/* Create the other task in exactly the same way and at the same priority. */
xTaskCreate (vTask2, "Task 2", 1000, NULL, 1, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler() ;

FreeRTOS: Tasks
[AL

OK, I've created a task, now what?

* Task will run if there are no other tasks of
higher priority
— And if others the same priority will RR.

* But that begs the question: “How do we know
if a task wants to do something or not?”
— The previous example gave always wanted to run.

* Just looping for delay (which we said was bad)

* Instead should call vTaskDelay (x)
— Delays current task for X “ticks” (remember those?)

* There are a few other APIs for delaying...

Now we need an “under the hood” understanding

FreeRTOS: Tasks

Task status in FreeRTOS

* Running

— Taskis actually executing
* Ready

— Task is ready to execute but a task of

equal or higher priority is Running.

* Blocked

— Task is waiting for some event.

« Time: if a task calls vTaskDelay() it will
block until the delay period has expired.

+ Resource: Tasks can also block waiting
for queue and semaphore events.

Suspended

VTaskSuspend()

VTaskSuspend()
called

VTaskResume()
called

¢ Suspended
— Much like blocked, but not waiting for
"’"V‘h'”S-) VTaskSuspend()
— Tasks will only enter or exit the called Event
suspended state when explicitly
commanded to do so through the

vTaskSuspend() and xTaskResume() API
calls respectively. Blocked

Mostly from http://www.freertos.org/RTOS-task-states.html|

Blocking APl
function called

FreeRTOS: Tasks

Tasks: there’s a lot more

void

* Can do all sorts of vTaskPrioritySet (xTask

things Handle pxTask,
. unsigned
- Change priority of a uxNewPriority);
task

Set the priority of any task.
— Delete a task priority v

— Suspend a task * pxTask: Handle to the task for
. which the priority is being set.
(mentioned above) Passing a NULL handle results
in the priority of the calling
task being set.
* uxNewPriority: The priority to
which the task will be set.

— Get priority of a task.

* Example on the right
— But we’ll stop here...

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)

— What’s missing?

FreeRTOS: Interrupts

Interrupts in FreeRTOS

* There is both a lot and a little going on here.

— The interface mainly uses whatever the native
environment uses to handle interrupts
* This can be very port dependent. In Code Composer
Studio (TI) you’d set it up as follows:
#pragma vector=PORT2_VECTOR
interrupt void prvSelectButtonInterrupt(void)
— That would cause the code to run on the PORT2
interrupt.
* Need to set that up etc. Very device specific (of
course).

FreeRTOS: Interrupts

More: Deferred Interrupt Processing

* The best way to handle complex events triggered
by interrupts is to not do the code in the ISR.

— Rather create a task that is blocking on a semaphore.
* When the interrupt happens, the ISR just sets the
semaphore and exits.

— Task can now be scheduled like any other. No need to worry
about nesting interrupts (and thus interrupt priority).

— FreeRTOS does support nested interrupts on some platforms
though.

— Semaphores implemented as one/zero-entry queue.

FreeRTOS: Interrupts

Semaphore example in FreeRTOS

The semaphore s not
available.
50 the task is blocked [ask
waiting for the semaphore
xSemaphoreTake()
friempt _ that now successfully
XSemaphoreGiveFromiSR(@] ‘takes’ the semaphore, so it

is unavalable once more.

Anintermupt occurs..that
- -

The task can now perform s action, when complete.
itwill once again attempt to ‘take’the semaphore
which il cause t o re-enter the Blocked state.

e (I 0

‘which unblocks the task
(the semaphore is now
available).

Figure 26. Using a binary semaphore to synchronize a task with an interrupt

Figure from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

FreeRTOS: Interrupts

Semaphore take

xSemaphoreTake (
xSemaphoreHandle xSemaphore,
portTickType xBlockTime
)
¢ Macro to obtain a semaphore. The semaphore must have previously been
created.

* xSemaphore A handle to the semaphore being taken - obtained when the
semaphore was created.

* xBlockTime The time in ticks to wait for the semaphore to become
available. The macro portTICK_RATE_MS can be used to convert this to a
real time. A block time of zero can be used to poll the semaphore. |

* TRUE if the semaphore was obtained.

e There are a handful of variations.
— Faster but more locking version, non-binary version, etc. ©

Outline

* Quick review of real-time systems
* Overview of RTOSes

— Goals of an RTOS

— Features you might want in an RTOS
* Learning by example: FreeRTOS

— Introduction

— Tasks

— Interrupts

— Internals (briefly)

— What’s missing?

FreeRTOS: Internals

Common data structures

pxReadyTaskLists[8] ———p»|
next ptr == NULL

pxReadyTaskLists[1] pointer to task task A
pxReadyTaskLists[2]
(empty list)
Y
next ptr > next ptr # next ptr == NULL
pointer to task pointer to task pointer to task
Y A,
task B task C task D

This figure and the next are from http://www.aosabook.org/en/freertos.html

FreeRTOS: Internals

uxNumberOfItems = 3 [«t—

pxIndex

xListEnd
xItenValue =
OXFFFFFFF

— pxhext

pxPrevious

struct xListItem struct xListItem struct xListItem

xItemValue = @ xItemValue = @ xItemValue = @

pxiNext pxNext pxNext

pxrevious |[@—4—— p P

pvOwner pvOwner pvowner

pvContainer 77& pvContainer pvContainer

TCB: Task B TCB: Task C

&
53

TCB: Task A

pxReadyTaskLists[0] AL

