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What is an embedded system?
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Embedded, Everywhere - WattVision on Kickstarter
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What is driving the
embedded everywhere explosion?
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Moore’ s Law (a statement about economics):

IC transistor count doubles every 18-24 mo
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Flash memory scaling:
Rise of density & volumes; Fall (and rise) of prices
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Hendy’s “Law”:
Pixels per dollar doubles annually

The Pixels per Dollar Projection
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Dennard Scaling made transistors fast and low-power:
So everything got better!

Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions

ROBERT H. DENNARD, MEMBER, IEEE, FRITZ H. GAENSSLEN, HWA-NIEN YU, MEMBER, IEEE,

V. LEO RIDEOUT, MEMBER, IEEE, ERNEST BASSOUS, AND ANDRE R. LEBLANC, MEMBER, IEEE

Classic Paper

This paper i
tion of very small MOST-'}.T fwnchmg devices m'ablt for digital
circuits using ions of the order of 1 ;. Scaling
ulanomhqps are presented which show how a conventional MOS-
FET can be reduced in n‘e An improved small device structure
is p that uses ion imp ion to provide shallow source
and drain regions and a nonwniform substrate doping profile. One-
dimensional models are used to predict the substrate doping profile
and the corresponding threshold voltage versus sowrce voltage
characteristic. A two-dimensional cwrrent transport model is used
to predict the relative degree of short-channel effects for different
device parameter combinations. Polysilicon-gate MOSFET 's with
channel lengths as short as 05 ;1 were fabricated, and the device
characteristics measwred and compared with predicted values. The
ce improvement expected from using these very small
devices in highly muniaturized integrated circuits is projected.

I. LisT oF SyMBOLS

w Inverse semilogarithmic slope of sub-
threshold characteristic.

D ‘Width of idealized step function pro-
file for channel implant.

AWy Work function difference between
gate and substrate.

50 Cox Dielectric constants for silicon and
silicon dioxide.

Ia Drain current.

k Boltzmann's constant.

' Unitless scaling constant.

L MOSFET channel length.

Pt Effective surface mobility.

i Intrinsic camier concentration.

N, Substrate acceptor concentration.

W, Band bending in silicon at the onset
of strong inversion for zero substrate
voltage.

W, Built-in junction potential.

This paper is from IEEE JOURNAL OF SOUD-STATE CIRCUITS,
wol. SC-9, no. 5, pp. 256-268, October 1974.
Publisher Item IdentiSier S 0018-521%(99)02196-5.

q Charge on the electron.

(et Effective oxide charge.

fox Gate oxide thickness.

r Absolute temperature.

Vs Vies Vo Vaw,  Drain, source, gate and substrate volt-
ages.

Vis Drain voltage relative to source.

| J— Source voltage relative to sustrate.

Vi Gate threshold voltage.

Wy Wy Source and drain depletion layer
widths.

w MOSFET channel width.
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Dennard Scaling...is Dead

Industrv’s ride is over Source: Joe Cross, DARPA MTO
DARPA Y

The past: Dennard’s Scaling Today: Dennard’s Scaling is dead
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clock speed 40% per generation with the same power processing applications
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And the Party’s Over...

Decades of exponential performance growth stalled in 2004
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Not so fast! Bell’s Law of Computer Classes:
A new computing class roughly every decade

TR

Mainframe —
e
\
Minicomputer E
? © >'
\O » streaming
Laptop

information

log (people per computer)

CPSD

year

“Roughly every decade a new, lower priced computer
class forms based on a new programming platform,
network, and interface resulting in new usage and

»” Adapted from
the establishment of a new industry. b

D. Culler



MEMS Accelerometers:
Rapidly falling
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MEMS Accelerometer in 2012

Industry's Lowest Power
MEMS Accelerometer
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MEMS Gyroscope Chip




Energy harvesting and storage:
Small doesn’ t mean powerless...

1st Annual Workshop on - - October 22,2009

MICRO POWER TECHNOEOGIES

Clare Solar Cell

Radisson Hotel, San Jose, CA

dv31sa08

Shock Energy Harvesting
CEDRAT Technologies

Electrostatic Energy

Piezoelectric Harvester [ICL]

[Holst/IMEC]

Oscillating
weight

Oscillating
weight gear

Transmission gr'

Thermoelectric Ambient
Energy Harvester [PNNL]



Bell’ s Law, Take 2:
Corollary to the Laws of Scale

Intel® 4004 processor
Introduced 1971
Initial clock speed

108 KHz

Number of transistors

2,300

Manufacturing technology

10

Photo credits: Intel, U. Michigan

Quad-Core Intel® Xeon® processor
Quad-Core Intel® Core™2 Extreme processor
Introduced 2006

Intel® Core™2 Quad processors

Introduced 2007

Initial clock speed

2.66 GHz

Number of transistors

582,000,000

Manufacturing technology

65nm

D Partially gated D Not gated

UMich Phoenix Processor
Introduced 2008

Initial clock speed

106 kHz @ 0.5V Vdd

Number of transistors

92,499

Manufacturing technology

0.18
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Why study 32-bit MCUs and FPGASs?



MCU-32 and PLDs are tied in embedded market share
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What distinguishes
a Microprocessor from an FPGA?



MPU

Instruction address

Interrupt address

Address register

32-hit
re?ister bank
(17 registers)

Instruction data

Read register

Write register

Data bus

Data address

Instruction
pipeline

1 | [

Instruction
decode

Read register
Data bus

The Cortex M3's Thumbnail architecture looks like a conventional Arm processor.The differences are found
in the Harvard architecture and the instruction decode that handles only Thumb and Thumb 2 instructions.

D Logic block

1/0 block

G
O

FPGA . oo o
ﬁ} 50 50
| R [, &7
Interconnection switches
/O block Dexck — e
| |, e
O N ‘ . [

[RE] cee
o

I/0 block

General structure of an FPGA

A section of @

32019 O/1

programmed FPGA
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Modern FPGAs: best of both worlds!

Traditional Methods No Longer Scale ©
FPGA Growing Complexity

Today’'s FPGA are SoCs!!!!

Moore's Law

26



Is the party really over?

DARPA Technology landscape: move past power limitations,

effectively utilize concurrency
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Why study the ARM architecture
(and the Cortex-M3 in particular)?



Lots of manufacturers ship ARM products

« "Actel

POWER MATTERS
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ARM is the big player

 ARM has a huge market share

As of 2011 ARM has chips in about 90% of the world’ s
mobile handsets

As of 2010 ARM has chips in 95% of the smartphone
market, 10% of the notebook market

e Expected to hit 40% of the notebook
market in 2015.

Heavy use in general embedded systems.
e Cheap to use

- ARM appears to get an average of 8¢ per device
(averaged over cheap and expensive chips).

 Flexible
- Spin your own designs.



What differentiates these
products from one another?



The difference is...
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W’ 15 Instructional Staff
(see homepage for contact info, office hours)
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Course goals

e Learn to implement embedded systems including
hardware/software interfacing.

e Learn to design embedded systems and how to
think about embedded software and hardware.

e Design and build non-trivial projects involving
both hardware and software.



Prerequisites

e EECS 270: Introduction to Logic Design

- Combinational and sequential logic design
- Logic minimization, propagation delays, timing

e EECS 280: Programming and Intro Data Structures
- C programming
- Algorithms (e.g. sort) and data structures (e.g. lists)

e EECS 370: Introduction to Computer Organization
- Basic computer architecture
- CPU control/datapath, memory, 1/0
- Compiler, assembler



Topics

Memory-mapped 1/0

- The idea of using memory addressed to talk to input
and output devices.

« Switches, LEDs, hard drives, keyboards, motors

Interrupts

- How to get the processor to become “event driven”
and react to things as they happen.

Working with analog signals
- The real world isn’ t digital!

Common peripheral devices and interfaces
- Serial buses, timers, etc.



Example: Memory-mapped I/0

OxFFFFFFEF

System

DxEO0100000

Private peripheral bus - Exdernal

Dx EQ040000
Private peripheral bus - Intemal

Ox E0000000

Peripherals (B8 view Pariphoral
Extemal device 1.0GB | PSEL[D]
FPGA Fabric FPGA Fabri | ESElP
FPGA Fabric eSRAM Backdoor | FPGA Fabric eSRAM Backdoor |( x4 | Pg[t:té]
0x40030004 - x40
Analog Compute Engine Analog Compute Engine 0x40020000 ~ Ox4002FFFF =
Pro FPGA Fabric Memory Map
External RAM  1.0GB - Used by the APB3 Bus interface
IAP Controller AP Controlier
eFROM eFROM
RTC RIC 0x40014000 - Ox400147FF
MSS GPIO MSS GPIO 0x4001 { DO 3FFF
12C 1 12C 1 0x4001
Peripheral 0.568 SPI 1 SPI 1 0x4001 D01
UART 1 UART 1 0x40010000 - 0x400107FF
Fabo Intertace Interrupt Controlier Fabric Imartace Intermupt Controiler | (
SRAM Watchdog Watchdog 0 - Dx400D06FFF
Timer Timear DXA0D05FFF
Peripheral DMA Peripheral DMA 040004000 - 0xADD0AFFF
Ethornet MAC Ethernet MAC 0x4000 3001 IXA00037FF
Code 12C 0 12C 0 DxA4000200( DxA0002 FFF
SPI_O sP1 0 Dx4000 1000 — 0x40001FFF
~ 0x 00000000 UART 0O JART O 0x40000000 — 0x40000FFF
Cortex-M3 Memory Map SmartFusion Peripheral Mofaory Map

e This is important.
- It means our software can tell the hardware what to do.
 In lab 3 you’ ll design hardware on an FPGA which will control a motor.

- But more importantly, that hardware will be designed so the software
can tell the hardware exactly what to do with the motor. All by simply
writing to certain memory locations!

- In the same way, the software can read memory locations to access data from
sensors etc...



Example: Anatomy of a timer system

timer_t timerX;
initTimer();

Appllcatlon SOftware ;;;rtTimerOneShot(timerX, 1024);
Applications StopTimer(timerx) H
Operating System typedef struct timer {

timer handler_t handler;
uint32_t time;
uint8_t mode;
timer_ t* next_timer;
} timer_t;

timer_tick:

Low-Level Timer Subsystem Device Drivers s Tor countt

Software
R/W R/W R7/W
Hardware
o Compare E 7 Counter ’ a Capture 6 module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;
Prescaler always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
Clock Driver endmedule

Intemal by A M M
External %l I:|:| ' ¥
Xtal/Osc ~ ‘



Grades

Item Weight

Labs (7) 25%

Project 25%

Exams 35% (15% midterm; 20% final)

HW /Guest talks 10%
Oral presentation 4%
Course Evaluation 1%

e Project & Exams tend to be the differentiators
e Class median is generally a B+



Time

e Assume you are going to spend a lot of time in
this class.

- 2-3 hours/week in lecture (we cancel a few classes
during project time)

- 8-12 hours/week working in lab

e Expect more during project time; some labs are a bit
shorter.

- ~20 hours (total) working on homework
- ~20 hours (total) studying for exams.
- ~8 hour (total) on your oral presentation

e Averages out to about 15-20 hours/week pre-
project and about 20 during the project...

- This is more than we’ d like, but we’ ve chosen to go
with state-of-the-art tools, and those generally have a
steep learning curve.



Labs

o Start next week.
o 7 labs, 8 weeks, groups of 2
1. FPGA + Hardware Tools
. MCU + Software Tools
. Memory + Memory-Mapped 1/0
Interrupts
Timers and Counters
Serial Bus Interfacing
Data Converters (e.g. ADCs/DACs)

NGO UA W

e Labs are very time consuming.

As noted, students estimated 8-12 hours per lab with one lab
(which varied by group) taking longer.



Open-Ended Project

Goal: learn how to build embedded systems
- By building an embedded system
- Work in teams of 2 to 4
- You design your own project

The major focus of the last third of the class.

- Labs will be done and we will cancel some lectures and
generally try to keep you focused

Important to start early.

- After all the effort in the labs, it’ s tempting to slack
for a bit. The best projects are those that get going
right away (or even earlier)

Some project lead to undergraduate research



Sample projects from F’ 10 and their results

e Energy-harvesting sensors -




Letters of recommendation for graduate school

Grad school apps will require supporting letters
Faculty write letters and read “coded” letters

Strong letters give evidence of research ability
Strong letters can really help your case

Weak letters are vague and give class standing
Weak letters are useless (or even worse)

Want a strong letter?
- Do well in this class
- Pull off an impressive project
- Continue class project as independent research in W’ 15



Homework

e Start TODAY!

e 4-5 assignments
- A few “mini” assignments

e Mainly to get you up to speed on lab topics
- A few “standard” assignments
« Hit material we can’t do in lab.

e Also a small part is for showing up to guest lectures



Midterm and Final Exams

e Midterm (Tue, Feb 25, 2015 from 1:30pm-3:00pm)

- Emphasize problem solving fundamentals

e Final (Tue, Apr 28, 2015 from 4:00-6:00pm)
- Cumulative topics w/ experience of projects
- Some small amount of material from presentations



Looking for me?

« Nominal Office Hours
- Time TBD in 4773 BBB

- Sometimes in lab sections



Outline

Technology Trends

Design Questions

Course Overview

Tools Overview/ISA Start



We are using Actel’ s SmartFusion Evaluation
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A2F200M3F-FGG484ES

- 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and

additional distributed SRAM in the FPGA fabric and external memory
controller

- Peripherals include Ethernet, DMAs, I2Cs, UARTSs, timers, ADCs, DACs and
additional analog resources

e USB connection for programming and debug from Actel's design tools
e USB to UART connection to UART_O for HyperTerminal examples

« 10/100 Ethernet interface with on-chip MAC and external PHY

e Mixed-signal header for daughter card support

SmartFusion Device RVI - Header OLED Display
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FPGA work
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“Smart Design” configurator

\Documents and Settings\brehob\Desktop\373lab\lab5_fpga\lab5_fpga.prj - [mary_smart_design]

u Project File Edit View Tools SmartDesign Canvas Window Help @ - &8 %X
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Reading file
Reading file
Reading file
Reading file

'mary_swart_design.v'.
'coreaph3.v'.
'coreaph3_muxptob3.v'.
'timer.v'.

The labS_fpga project was opened.
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Eclipse-based “Actel SoftConsole IDE”

E C/C++ - lab5/main.c - Actel SoftConsole IDE v3.2

File Edit Source Refactor

Ci~ [SRNFTIEES A - ai-
%Project Explorer E?; =] <;_3V -

o

[~
=0

Mavigate Search Project Run Window Help

L7 assembly_test
1L forCheatSheet
1 Lab2
17 lab3_test
7 lab¢
17 lab4again

55 labS

Google News - Mozill

G- R-®- i B-0-Q- @ P @I L 5 %5 vebug (B cic+ |
¢l main.c £3 = B 5= outlin 52 _ Make | = O
ss am A SRR
5: if (status & 0x01) = stdioh
;: ¢ nbE ("Overflo L la\mhz". O-ti . =l drivers{mss_uartjmss_uart
- printf{ ertlow latency % mir”, O-time); = driversfmss_watchdogfmss
:U } = mytimer.h
si if (status & O0x02Z) @ Fabric_IRQHandler(void) :
- {. 4@ main() :int
53 /7 printf("Compare latency %ldin\r", (1<<29) - tine):
64 H
65 if (status & 0x4)
66 {
67 printf ("Capture SYNC 31ld\n\r", sync_cap):
68 }
69 if (status & 0x8)
70 {
71 printf ("Capture ASYNC %1ldin\r", async_cap):
i
NVIC ClearPendingIRQ( Fabric IROn ):
cint main()
/* Watchdog Disabling function */
HSS_WD_disable():
/* Setup MYTIMER */
MYTIMER_init():
MYTIMER load((1<<31)); // low time
MYTIMER cowpare((1<<27)); // high time b
// MYTIMER ensble_overflow():
//MYTIMER enable_compare()
MYTIMER ensble_capture():
MYTIMER enable_pumi)
// MYTIMER enable_interrupts():
NVIC EnsbleIRQ(Fabric IROn):
MYTIMER enable():
mrEinEF (MTHR ] 1 annnn S ey e ™
< 3 |= | =
[2 Problems | ¥ Tasks | B Console 2 _Ej Properties‘ﬁ%Debug‘ * B-rg-=0
No consoles to display at this time.
Writable Smart Insert | 79:1

desktop2.bmp - Paint
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Debugger is GDB-based. Includes command line.
Works really quite well.

EDebug - lab5/main.c - Actel SoftConsole IDE v3.2 [D E]
File Edit Source Refactor Mavigate Search Project Run Window Help
SCEHS @m0 @™ S T | %5 Debug | B crc+
%5 Debug 52 8o = i% 3 @ Y 7 O 9= varisbles | 9% Breakpoints 52 i Registers | = Modules & 1} g5&% Y =0
= B/ 8= outline | [} Disassembly £2 v =0
~
if (status & 0x01)
{
printf ("Overflow latency %1ld\n\r", O-time):;
60 }
61 if (status & 0x02)
62 {
63 24 printf ("Compare latency %1ldin\r", (1<<29) - time):;
54 }
65 if (status & 0x4)
66 {
67 printf ("Capture SYNC %1ldin\r", sync_cap):
63 }
69 if (status & 0x8)
70 {
71 printf ("Capture ASYNC %ldin\r", async_cap):’ =
72 3
73 NVIC_ClearPendingIRQ( Fabr.z'c_IRQn )
74}
75
76int maini()
78 /* Watchdog Disabling function */
79 MSS_UD_disable () :
80
1 /% Setun MYTTMER */ ™
El console 52 i Tasks | [2 Problems | € Executables | [ Memory < B-rg-=0
No consoles to display at this time.
o* Writable Smart Insert | 79: 1
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ARM ISA: Elements of an Instruction Set Architecture

(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC

xPSR

Endidness

31 30 29 28 27 26

32-bits

mov ro, #4

ldr rl, [ro,#8]

v
rl=mem((ro)+8)

bne loop

subs rz:\;I\\\\\

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM  1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

Code 0.5GB

Endianess

OXFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

N|Z(C|V]|Q

RESERVED




Assembly example:
Work through on your own. We’ll discuss next time

data:

.byte 0x12, 20, 0x20, -1

func:

top:

mov r0, #O0

mov r4, #0

MOVW rl, #:lowerl6:data
movt rl, #:upperl6:data
1drb r2, [rl],#1

add r4, r4, r2

add r0, r0, #1

cmp r0, #4

bne top



Questions?

Comments?

Discussion?



