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iPhone Clock App 
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•  World Clock – display 
real time in multiple 
time zones 

•  Alarm – alarm at certain 
(later) time(s).  

•  Stopwatch – measure 
elapsed time of an event 

•  Timer – count down time 
and notify when count 
becomes zero 

Motor/Light Control 
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•  Servo motors – PWM 
signal provides control 
signal 

•  DC motors – PWM signals 
control power delivery 

•  RGB LEDs – PWM signals 
allow dimming through 
current-mode control 

Methods from android.os.SystemClock 
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Standard C library’s <time.h> header file 
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Standard C library’s <time.h> header file: struct tm 
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Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); !
  input clr, ena, clk;!
  output alrm;!
  reg alrm;!
  reg [3:0] count;!
!
  always @(posedge clk) begin!
    alrm <= 0;!
    if (clr) count <= 0;!
    else count <= count+1;!
  end!
endmodule!
!

...!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O 

R/W R/W R/W 

typedef struct timer {!
  timer_handler_t handler;!
  uint32_t time;!
  uint8_t mode;!
  timer_t* next_timer;!
} timer_t;!

timer_tick:!
  ldr r0, count;!
  add r0, r0, #1!
  ... !

Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); !
  input clr, ena, clk;!
  output alrm;!
  reg alrm;!
  reg [3:0] count;!
!
  always @(posedge clk) begin!
    alrm <= 0;!
    if (clr) count <= 0;!
    else count <= count+1;!
  end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O 

R/W R/W R/W 

typedef struct timer {!
  timer_handler_t handler;!
  uint32_t time;!
  uint8_t mode;!
  timer_t* next_timer;!
} timer_t;!

timer_tick:!
  ldr r0, count;!
  add r0, r0, #1!
  ... !

What do we really want from our timing subsystem? 
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•  Wall clock date & time 
•  Date: Month, Day, Year 
•  Time: HH:MM:SS:mmm 
•  Provided by a “real-time clock” or RTC 

•  Alarm: do something (call code) at certain time later 
•  Later could be a delay from now (e.g. Δt) 
•  Later could be actual time (e.g. today at 3pm) 

•  Stopwatch: measure (elapsed) time of an event 
•  Instead of pushbuttons, could be function calls or 
•  Hardware signals outside the processor 

•  Timer – count down time and notify when count = 0 
•  Could invoke some code (e.g. a handler)  
•  Could take some action (e.g. set/clear an I/O line) 

What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 
•  Timer – count down time and notify when count = 0 

•  void timer(callback, delta) 
•  Timer fires ! Set/Clear GPIO line (using DMA) 

Wall Clock from a Real-Time Clock (RTC) 
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•  Often a separate module 
•  Built with registers for 

•  Years, Months, Days 
•  Hours, Mins, Seconds 

•  Alarms: hour, min, day 
•  Accessed via 

•  Memory-mapped I/O 
•  Serial bus (I2C, SPI) 

What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 
•  Timer – count down time and notify when count = 0 

•  void timer(callback, delta) 
•  Timer fires ! Set/Clear GPIO line (using DMA) 



Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); !
  input clr, ena, clk;!
  output alrm;!
  reg alrm;!
  reg [3:0] count;!
!
  always @(posedge clk) begin!
    alrm <= 0;!
    if (clr) count <= 0;!
    else count <= count+1;!
  end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O 

R/W R/W R/W 

typedef struct timer {!
  timer_handler_t handler;!
  uint32_t time;!
  uint8_t mode;!
  timer_t* next_timer;!
} timer_t;!

timer_tick:!
  ldr r0, count;!
  add r0, r0, #1!
  ... !

Oscillators – RC  
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Oscillators – Crystal  
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Anatomy of a timer system 

16 

Prescaler 

Counter 

Clock Driver 

Xtal/Osc 

Compare Capture 

Low-Level Timer Subsystem Device Drivers 

Timer Abstractions and Virtualization 

Application Software 

Software 
 

Hardware 

Applications 
 

Operating System 

Internal 
 

External 

module timer(clr, ena, clk, alrm); !
  input clr, ena, clk;!
  output alrm;!
  reg alrm;!
  reg [3:0] count;!
!
  always @(posedge clk) begin!
    alrm <= 0;!
    if (clr) count <= 0;!
    else count <= count+1;!
  end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O 

R/W R/W R/W 

typedef struct timer {!
  timer_handler_t handler;!
  uint32_t time;!
  uint8_t mode;!
  timer_t* next_timer;!
} timer_t;!

timer_tick:!
  ldr r0, count;!
  add r0, r0, #1!
  ... !

What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 
•  Timer – count down time and notify when count = 0 

•  void timer(callback, delta) 
•  Timer fires ! Set/Clear GPIO line (using DMA) 

•  There&are&two&basic&ac/vi/es&one&wants&/mers&for:&
–  Measure&how&long&something&takes&

•  �Capture�&
–  Have&something&happen&once&or&every&X&/me&period&

•  �Compare�&

Why should we care? 



•  FAN 
–  Say you have a fan spinning and you want to know how fast it is 

spinning.  One way to do that is to have it throw an interrupt 
every time it completes a rotation.  

•  Right idea, but might take a while to process the interrupt, 
heavily loaded system might see slower fan than actually 
exists. 

•  This could be bad. 
–  Solution?  Have the timer note immediately how long it took 

and then generate the interrupt. Also restart timer 
immediately. 

•  Same issue would exist in a car when measuring speed 
of a wheel turning (for speedometer or anti-lock 
brakes). 

Example # 1: Capture 

•  Driving&a&DC&motor&via&PWM.&
– Motors&turn&at&a&speed&determined&by&the&
voltage&applied.&
• Doing&this&in&analog&land&can&be&hard.&

–  Need&to&get&analog&out&of&our&processor&
–  Need&to&amplify&signal&in&a&linear&way&(opGamp?)&

• Generally&prefer&just&switching&between&�Max�&and&
�Off�&quickly.&
–  Average&is&good&enough.&
–  Now&don�t&need&linear&amplifier—just&�on�&and&�off�.&
(transistor)&

–  Need&a&signal&with&a&certain&duty&cycle&and&
frequency.&
•  That&is&%&of&/me&high.&

Example # 2: Compare 

•  Assume&1&MHz&CLK&
•  Design&“highGlevel”&circuit&to&

–  Generate&1.52&ms&pulse&
–  Every&6&ms&
–  Repeat&

•  How&would&we&generalize&this?&

Servo motor control: class exercise 

SmartFusion Timer System 

•  SysTick Timer 
–  ARM requires every Cortex-M3 to have this timer 
–  Essentially a 24-bit down-counter to generate system 

ticks 
–  Has its own interrupt 
–  Clocked by FCLK with optional programmable divider 

•  See Actel SmartFusion MSS User Guide for 
register definitions 

Timers on the SmartFusion 

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf&

Timers on the SmartFusion 



Timers on the SmartFusion 

•  System&/mer&
–  �The&System&Timer&consists&of&two&programmable&&32Gbit&

decremen/ng&&counters&that&generate&interrupts&to&the&ARM®&
Cortex™GM3&and&FPGA&fabric.&Each&&counter&has&two&possible&
modes&of&opera/on:&Periodic&mode&or&OneGShot&mode.&&The&
two&/mers&can&be&concatenated&to&create&a&64Gbit&/mer&with&
Periodic&and&OneGShot&modes.&The&two&32Gbit&/mers&are&
iden/cal�&

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf&

Timers on the SmartFusion 

Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); !
  input clr, ena, clk;!
  output alrm;!
  reg alrm;!
  reg [3:0] count;!
!
  always @(posedge clk) begin!
    alrm <= 0;!
    if (clr) count <= 0;!
    else count <= count+1;!
  end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O 

R/W R/W R/W 

typedef struct timer {!
  timer_handler_t handler;!
  uint32_t time;!
  uint8_t mode;!
  timer_t* next_timer;!
} timer_t;!

timer_tick:!
  ldr r0, count;!
  add r0, r0, #1!
  ... !

•  You&never&have&enough&/mers.&
–  Never.&

•  So&what&are&we&going&to&do&about&it?&
–  How&about&we&handle&in&sojware?&

Virtual Timers 

•  Simple&idea.&
–  Maybe&we&have&10&events&we&might&want&to&generate.&

•  Just&make&a&list&of&them&and&set&the&/mer&to&go&off&for&the&
first&one.&&&
–  Do&that&first&task,&change&the&/mer&to&interrupt&for&
the&next&task.&

Virtual Timers 

•  Only&works&for&�compare�&/mer&uses.&
•  Will&result&in&slower&ISR&response&/me&

–  May&not&care,&could&just&schedule&sooner…&

Problems? 



•  Shared&userGspace/ISR&data&structure.&
–  Inser/on&happens&at&least&some&of&the&/me&in&user&
code.&

–  Dele/on&happens&in&ISR.&
• We&need&cri/cal&sec/on&(disable&interrupt)&

•  How&do&we&deal&with&our&modulo&counter?&
–  That&is,&the&/mer&wraps&around.&
–  Why&is&that&an&issue?&

•  What&func/onality&would&be&nice?&
–  Generally&oneGshot&vs.&repea/ng&events&
–  Might&be&other&things&desired&though&

•  What&if&two&events&are&to&happen&at&the&same&
/me?&
–  Pick&an&order,&do&both…&

Implementation Issues 

•  What&data&structure?&
–  Data&needs&be&sorted&

•  Inser/ng&one&thing&at&a&/me&
–  We&always&pop&from&one&end&
–  But&we&add&in&sorted&order.&

Implementation Issues (continued) 

Data$structures$ Some loose ends…glitches and all that 

Full adder (from Wikipedia) 

•  Assume 
–  XOR delay = 0.2ns 
–  AND delay = 0.1ns  
–  OR delay = 0.1 ns 

•  What is the worst 
case propagation 
delay for this 
circuit?  

x 

y 

z 

Timing delays and propagation 
x 

y 

z 
Full adder (from Wikipedia) 

Consider the adjacent circuit diagram. Assuming the XOR gates have  
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in 
the following chart.  

Only selected causality 
arrows shown… 

Glitches 



Glitching: a summary 

•  When input(s) change 
–  The output can be wrong for a time 
–  However, that time is bounded 

 

•  And more so, the output can change during this 
“computation time” even if the output ends up 
where it started! 

Effect of Glitches 

•  Think back to EECS 370. 
–  Why don’t glitches cause errors? 

–  The trick is that the inputs all change 
at the same time 

•  In this case, the ID/EX registers all 
change some time shortly after the 
rising edge of the clock. 

–  And we’ve chosen the clock period 
such that the next edge doesn’t 
happen until the combinational logic 
has stopped glitching. 

•  In fact, we use the worst-case 
combinational logic delay in the whole 
system when determining the clock 
period! 

 

So, how can glitches hurt us? 

•  There are a handful of places: 
–  Asynchronous resets 

•  If you’ve got a flip-flop that has an 
asynchronous reset (or “preset”) you need to 
be sure the input can’t glitch. 

–  That pretty much means you need a flip-
flop driving the input (which means you 
probably should have used a sync. reset!) 

–  Clocks 
•  If you are using combinational logic to drive a 

clock, you are likely going to get extra clock 
edges. 

Traditionally, CLR is used 
to indicate async reset.  “R” 
or “reset” for sync. reset. 

If clk is high and cond  
glitches, you get extra  
edges! 

Design rules 

1.  Thou shall Not use asynchronous 
resets 
 

2.  Thou shall not drive a clock with 
anything other than a clock or 
directly off of a flip-flop’s output 

X 
X 

Really?  Seriously? 

•  People do use asynchronous resets and clock gating! 

–  Yep.  And people use goto in C programs. 
•  Sometimes they are the right thing. 

–  But you have to think really hard about them to insure 
that they won’t cause you problems. 

–  Our “simple” bus used 
combinational logic for 
the clock 

•  Works because REQ goes 
low only after everything 
else has stopped switching 

–  So no glitch. 
•  Not fun to reason about… 

•  Avoid unless you must 
–  Then think really carefully. 

Setup and hold time 

•  The idea is simple. 
–  When the clock is changing 

if the data is also changing it 
is hard to tell what the data 
is.   

•  Hardware can’t always tell 
–  And you can get meta-stable behavior too (very 

unlikely but…) 
–  So we have a “guard band” around the clock rising time 

during which we don’t allow the data to change. 
•  See diagram.  We call the time before the clock-

edge “setup time” and the time after “hold time” 



Example: 

Fast and slow paths;  
impact of setup and hold time 

So what happens if we violate set-up or hold time? 

•  Often just get one of the two values. 
–  And that often is just fine. 

•  Consider getting a button press from the user. 
•  If the button gets pressed at the same time as the 

clock edge, we might see the button now or next 
clock. 

–  Either is generally fine when it comes to human 
input. 

–  But bad things could happen. 
•  The flip-flop’s output might not settle out to a “0” or 

a “1” 
–  That could cause latter devices to mess up. 

•  More likely, if that input is going to two places, one 
might see a “0” the other a “1” 

•  Important: don’t feed an async input to multiple 
places! 

Example 

•  A common thing to do is reset a state machine 
using a button. 
–  User can “reset” the system. 

•  Because the button transition could violate set-
up or hold time, some state bits of the state 
machine might come out of reset at different 
times. 
–  And you quickly end up at a wrong or illegal state. 

So… 

•  Dealing with inputs not synchronized to our local clock 
is a problem. 
–  Likely to violate setup or hold time. 

•  That could lead to things breaking. 

•  So we need a clock synchronization circuit. 
–  First flip-flop might have problems. 
–  Second should be fine. 
–  Sometimes use a third if  

really paranoid 
•  Safety-critical system for example. 

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!  

Design rules 

3.  Thou shalt use a clock 
synchronization circuit when 
changing clock domains or using 
unclocked inputs! 

➼
/* Synchonization of Asynchronous switch input */ 
 
always@(posedge clk) 
begin 
 sw0_pulse[0] <= sw_port[0]; 
 sw0_pulse[1] <= sw0_pulse[0]; 
 sw0_pulse[2] <= sw0_pulse[1]; 
end 
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL}; 48 

 
 
 

Questions? 
 

Comments? 
 

Discussion? 


