
1

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 8: Clocks, Counters, Timers, Capture, and Compare
September 25 & 30, 2014

Some slides by Mark Brehob and Thomas Schmid

iPhone Clock App

2

•  World Clock – display
real time in multiple
time zones

•  Alarm – alarm at certain
(later) time(s).

•  Stopwatch – measure
elapsed time of an event

•  Timer – count down time
and notify when count
becomes zero

Motor/Light Control

3

•  Servo motors – PWM
signal provides control
signal

•  DC motors – PWM signals
control power delivery

•  RGB LEDs – PWM signals
allow dimming through
current-mode control

Methods from android.os.SystemClock

4

Standard C library’s <time.h> header file

5

Standard C library’s <time.h> header file: struct tm

6

Anatomy of a timer system

7

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); !
 input clr, ena, clk;!
 output alrm;!
 reg alrm;!
 reg [3:0] count;!
!
 always @(posedge clk) begin!
 alrm <= 0;!
 if (clr) count <= 0;!
 else count <= count+1;!
 end!
endmodule!
!

...!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O

R/W R/W R/W

typedef struct timer {!
 timer_handler_t handler;!
 uint32_t time;!
 uint8_t mode;!
 timer_t* next_timer;!
} timer_t;!

timer_tick:!
 ldr r0, count;!
 add r0, r0, #1!
 ... !

Anatomy of a timer system

8

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); !
 input clr, ena, clk;!
 output alrm;!
 reg alrm;!
 reg [3:0] count;!
!
 always @(posedge clk) begin!
 alrm <= 0;!
 if (clr) count <= 0;!
 else count <= count+1;!
 end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O

R/W R/W R/W

typedef struct timer {!
 timer_handler_t handler;!
 uint32_t time;!
 uint8_t mode;!
 timer_t* next_timer;!
} timer_t;!

timer_tick:!
 ldr r0, count;!
 add r0, r0, #1!
 ... !

What do we really want from our timing subsystem?

9

•  Wall clock date & time
•  Date: Month, Day, Year
•  Time: HH:MM:SS:mmm
•  Provided by a “real-time clock” or RTC

•  Alarm: do something (call code) at certain time later
•  Later could be a delay from now (e.g. Δt)
•  Later could be actual time (e.g. today at 3pm)

•  Stopwatch: measure (elapsed) time of an event
•  Instead of pushbuttons, could be function calls or
•  Hardware signals outside the processor

•  Timer – count down time and notify when count = 0
•  Could invoke some code (e.g. a handler)
•  Could take some action (e.g. set/clear an I/O line)

What do we really want from our timing subsystem?

10

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
•  Timer – count down time and notify when count = 0

•  void timer(callback, delta)
•  Timer fires ! Set/Clear GPIO line (using DMA)

Wall Clock from a Real-Time Clock (RTC)

11

•  Often a separate module
•  Built with registers for

•  Years, Months, Days
•  Hours, Mins, Seconds

•  Alarms: hour, min, day
•  Accessed via

•  Memory-mapped I/O
•  Serial bus (I2C, SPI)

What do we really want from our timing subsystem?

12

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
•  Timer – count down time and notify when count = 0

•  void timer(callback, delta)
•  Timer fires ! Set/Clear GPIO line (using DMA)

Anatomy of a timer system

13

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); !
 input clr, ena, clk;!
 output alrm;!
 reg alrm;!
 reg [3:0] count;!
!
 always @(posedge clk) begin!
 alrm <= 0;!
 if (clr) count <= 0;!
 else count <= count+1;!
 end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O

R/W R/W R/W

typedef struct timer {!
 timer_handler_t handler;!
 uint32_t time;!
 uint8_t mode;!
 timer_t* next_timer;!
} timer_t;!

timer_tick:!
 ldr r0, count;!
 add r0, r0, #1!
 ... !

Oscillators – RC

14

Oscillators – Crystal

15

Anatomy of a timer system

16

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); !
 input clr, ena, clk;!
 output alrm;!
 reg alrm;!
 reg [3:0] count;!
!
 always @(posedge clk) begin!
 alrm <= 0;!
 if (clr) count <= 0;!
 else count <= count+1;!
 end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O

R/W R/W R/W

typedef struct timer {!
 timer_handler_t handler;!
 uint32_t time;!
 uint8_t mode;!
 timer_t* next_timer;!
} timer_t;!

timer_tick:!
 ldr r0, count;!
 add r0, r0, #1!
 ... !

What do we really want from our timing subsystem?

17

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
•  Timer – count down time and notify when count = 0

•  void timer(callback, delta)
•  Timer fires ! Set/Clear GPIO line (using DMA)

•  There&are&two&basic&ac/vi/es&one&wants&/mers&for:&
–  Measure&how&long&something&takes&

•  �Capture�&
–  Have&something&happen&once&or&every&X&/me&period&

•  �Compare�&

Why should we care?

•  FAN
–  Say you have a fan spinning and you want to know how fast it is

spinning. One way to do that is to have it throw an interrupt
every time it completes a rotation.

•  Right idea, but might take a while to process the interrupt,
heavily loaded system might see slower fan than actually
exists.

•  This could be bad.
–  Solution? Have the timer note immediately how long it took

and then generate the interrupt. Also restart timer
immediately.

•  Same issue would exist in a car when measuring speed
of a wheel turning (for speedometer or anti-lock
brakes).

Example # 1: Capture

•  Driving&a&DC&motor&via&PWM.&
– Motors&turn&at&a&speed&determined&by&the&
voltage&applied.&
• Doing&this&in&analog&land&can&be&hard.&

–  Need&to&get&analog&out&of&our&processor&
–  Need&to&lify&signal&in&a&linear&way&(opGamp?)&

• Generally&prefer&just&switching&between&�Max�&and&
�Off�&quickly.&
–  Average&is&good&enough.&
–  Now&don�t&need&linear&lifier—just&�on�&and&�off�.&
(transistor)&

–  Need&a&signal&with&a&certain&duty&cycle&and&
frequency.&
•  That&is&%&of&/me&high.&

Example # 2: Compare

•  Assume&1&MHz&CLK&
•  Design&“highGlevel”&circuit&to&

–  Generate&1.52&ms&pulse&
–  Every&6&ms&
–  Repeat&

•  How&would&we&generalize&this?&

Servo motor control: class exercise

SmartFusion Timer System

•  SysTick Timer
–  ARM requires every Cortex-M3 to have this timer
–  Essentially a 24-bit down-counter to generate system

ticks
–  Has its own interrupt
–  Clocked by FCLK with optional programmable divider

•  See Actel SmartFusion MSS User Guide for
register definitions

Timers on the SmartFusion

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf&

Timers on the SmartFusion

Timers on the SmartFusion

•  System&/mer&
–  �The&System&Timer&consists&of&two&programmable&&32Gbit&

decremen/ng&&counters&that&generate&interrupts&to&the&ARM®&
Cortex™GM3&and&FPGA&fabric.&Each&&counter&has&two&possible&
modes&of&opera/on:&Periodic&mode&or&OneGShot&mode.&&The&
two&/mers&can&be&concatenated&to&create&a&64Gbit&/mer&with&
Periodic&and&OneGShot&modes.&The&two&32Gbit&/mers&are&
iden/cal�&

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf&

Timers on the SmartFusion

Anatomy of a timer system

27

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); !
 input clr, ena, clk;!
 output alrm;!
 reg alrm;!
 reg [3:0] count;!
!
 always @(posedge clk) begin!
 alrm <= 0;!
 if (clr) count <= 0;!
 else count <= count+1;!
 end!
endmodule!
!

!
timer_t timerX;!
initTimer();!
...!
startTimerOneShot(timerX, 1024);!
...!
stopTimer(timerX);!

I/O I/O

R/W R/W R/W

typedef struct timer {!
 timer_handler_t handler;!
 uint32_t time;!
 uint8_t mode;!
 timer_t* next_timer;!
} timer_t;!

timer_tick:!
 ldr r0, count;!
 add r0, r0, #1!
 ... !

•  You&never&have&enough&/mers.&
–  Never.&

•  So&what&are&we&going&to&do&about&it?&
–  How&about&we&handle&in&sojware?&

Virtual Timers

•  Simple&idea.&
–  Maybe&we&have&10&events&we&might&want&to&generate.&

•  Just&make&a&list&of&them&and&set&the&/mer&to&go&off&for&the&
first&one.&&&
–  Do&that&first&task,&change&the&/mer&to&interrupt&for&
the&next&task.&

Virtual Timers

•  Only&works&for&�compare�&/mer&uses.&
•  Will&result&in&slower&ISR&response&/me&

–  May¬&care,&could&just&schedule&sooner…&

Problems?

•  Shared&userGspace/ISR&data&structure.&
–  Inser/on&happens&at&least&some&of&the&/me&in&user&
code.&

–  Dele/on&happens&in&ISR.&
• We&need&cri/cal&sec/on&(disable&interrupt)&

•  How&do&we&deal&with&our&modulo&counter?&
–  That&is,&the&/mer&wraps&around.&
–  Why&is&that&an&issue?&

•  What&func/onality&would&be&nice?&
–  Generally&oneGshot&vs.&repea/ng&events&
–  Might&be&other&things&desired&though&

•  What&if&two&events&are&to&happen&at&the&same&
/me?&
–  Pick&an&order,&do&both…&

Implementation Issues

•  What&data&structure?&
–  Data&needs&be&sorted&

•  Inser/ng&one&thing&at&a&/me&
–  We&always&pop&from&one&end&
–  But&we&add&in&sorted&order.&

Implementation Issues (continued)

Data$structures$ Some loose ends…glitches and all that

Full adder (from Wikipedia)

•  Assume
–  XOR delay = 0.2ns
–  AND delay = 0.1ns
–  OR delay = 0.1 ns

•  What is the worst
case propagation
delay for this
circuit?

x

y

z

Timing delays and propagation
x

y

z
Full adder (from Wikipedia)

Consider the adjacent circuit diagram. Assuming the XOR gates have
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
the following chart.

Only selected causality
arrows shown…

Glitches

Glitching: a summary

•  When input(s) change
–  The output can be wrong for a time
–  However, that time is bounded

•  And more so, the output can change during this
“computation time” even if the output ends up
where it started!

Effect of Glitches

•  Think back to EECS 370.
–  Why don’t glitches cause errors?

–  The trick is that the inputs all change
at the same time

•  In this case, the ID/EX registers all
change some time shortly after the
rising edge of the clock.

–  And we’ve chosen the clock period
such that the next edge doesn’t
happen until the combinational logic
has stopped glitching.

•  In fact, we use the worst-case
combinational logic delay in the whole
system when determining the clock
period!

So, how can glitches hurt us?

•  There are a handful of places:
–  Asynchronous resets

•  If you’ve got a flip-flop that has an
asynchronous reset (or “preset”) you need to
be sure the input can’t glitch.

–  That pretty much means you need a flip-
flop driving the input (which means you
probably should have used a sync. reset!)

–  Clocks
•  If you are using combinational logic to drive a

clock, you are likely going to get extra clock
edges.

Traditionally, CLR is used
to indicate async reset. “R”
or “reset” for sync. reset.

If clk is high and cond
glitches, you get extra
edges!

Design rules

1.  Thou shall Not use asynchronous
resets

2.  Thou shall not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

X
X

Really? Seriously?

•  People do use asynchronous resets and clock gating!

–  Yep. And people use goto in C programs.
•  Sometimes they are the right thing.

–  But you have to think really hard about them to insure
that they won’t cause you problems.

–  Our “simple” bus used
combinational logic for
the clock

•  Works because REQ goes
low only after everything
else has stopped switching

–  So no glitch.
•  Not fun to reason about…

•  Avoid unless you must
–  Then think really carefully.

Setup and hold time

•  The idea is simple.
–  When the clock is changing

if the data is also changing it
is hard to tell what the data
is.

•  Hardware can’t always tell
–  And you can get meta-stable behavior too (very

unlikely but…)
–  So we have a “guard band” around the clock rising time

during which we don’t allow the data to change.
•  See diagram. We call the time before the clock-

edge “setup time” and the time after “hold time”

Example:

Fast and slow paths;
impact of setup and hold time

So what happens if we violate set-up or hold time?

•  Often just get one of the two values.
–  And that often is just fine.

•  Consider getting a button press from the user.
•  If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

–  Either is generally fine when it comes to human
input.

–  But bad things could happen.
•  The flip-flop’s output might not settle out to a “0” or

a “1”
–  That could cause latter devices to mess up.

•  More likely, if that input is going to two places, one
might see a “0” the other a “1”

•  Important: don’t feed an async input to multiple
places!

Example

•  A common thing to do is reset a state machine
using a button.
–  User can “reset” the system.

•  Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.
–  And you quickly end up at a wrong or illegal state.

So…

•  Dealing with inputs not synchronized to our local clock
is a problem.
–  Likely to violate setup or hold time.

•  That could lead to things breaking.

•  So we need a clock synchronization circuit.
–  First flip-flop might have problems.
–  Second should be fine.
–  Sometimes use a third if

really paranoid
•  Safety-critical system for example.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

Design rules

3.  Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

➼
/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL}; 48

Questions?

Comments?

Discussion?

