EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 8: Clocks, Counters, Timers, Capture, and Compare
September 25 & 30, 2014

Some slides by Mark Brehob and Thomas Schmid

iPhone Clock App

il ATRT 5 10:36

PM 7 © 100% « World Clock - display
lock real time in multiple
time zones

e Alarm - alarm at certain
10:36 v (later) time(s).

New York 11:36Fm
Today

St. Louis

Denver

9:36rm « Stopwatch - measure
Today elapsed time of an event

Los Angeles

@ Today

« Timer - count down time
and notify when count
becomes zero

Motor/Light Control

» Servo motors - PWM
signal provides control
signal

« DC motors - PWM signals
control power delivery

* RGB LEDs - PWM signals
allow dimming through
current-mode control

Methods from android.os.SystemClock

Public Methods

staticlong

staticlong

staticlong

static boolean

staticvoid

staticlong

currentThreadTimeMillis ()

Returns milliseconds running in the current thread.
elapsedRealtime ()

Returns milliseconds since boot, including time spent in sleep.
elapsedRealtimeNanos ()

Returns nanoseconds since boot, including time spent in sleep.
setCurrentTimeMillis (long millis)

Sets the current wall time, in milliseconds.
sleep (long ms)

Waits a given number of milliseconds (of uptimeMillis) before returning.
uptimeMillis ()

Returns milliseconds since boot, not counting time spent in deep sleep.

Standard C library’s <time.h> header file

Library Functions
Following are the functions defined in the header time.h:

S.N. Function & Description

4 char *asctime(const struct tm “timeptr)
Returns a pointer to a string which represents the day and time of the structure timeptr.

clock_t clock(void)
2 Returns the processor clock time used since the beginning of an implementation-defined era
(normally the beginning of the program).

3 char “ctime(const time_t *timer)
Returns a string representing the localtime based on the argument timer.

double difftime(time_t time1, time_t time2)
Returns the difference of seconds between time1 and time2 (time1-time2).

struct tm “gmtime(const time_t *timer)
5 The value of timer is broken up into the structure tm and expressed in Coordinated Universal
Time (UTC) also known as Greenwich Mean Time (GMT).

6 struct tm *localtime(const time_t *timer)
The value of timer is broken up into the structure tm and expressed in the local time zone.

time_t mktime(struct tm *timeptr)
7 Converts the structure pointed 1o by timeptr into a time_t value according to the local time
zone.

size_t stritime(char *str, size_t maxsize, const char *format, const struct tm “timeptr)
8 Formats the time represented in the structure timeptr according to the lormaumg rules
defined in format and stored into str.

time_t time(time_t “timer)
Calculates the current calender time and encodes it into time._t format.

Standard C library’s <time.h> header file: struct tm

struct tm {
int tm sec;
int tm_min;
int tm_hour;
int tm _mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst

/* seconds, range 0 to 59 =/
/* minutes, range 0 to 59 */
/* hours, range 0 to 23 =/
/* day of the month, range 1 to 31 =/
/* month, range 0 to 11 */
/* The number of years since 1900 */
/* day of the week, range 0 to 6 =/
/* day in the year, range 0 to 365 */
; /* daylight saving time =/

Anatomy of a timer system Anatomy of a timer system

timer_t timerX;

tiner_t timert;
initTimer(); initTimer();
Application Software startTineroneshot (timerk, 1024); Application Software startTineroneshot (timerx, 1024);
Applications A stopTimer (timerx); Applications T stopTimer (timerx);
Operating System Vv typedef struct timer {
tiner_handler_t handler;
‘ Timer Abstractions and Virtualization ‘ e T e
y tiner_t+ next_timer;
} timert;
A timer_tick:
‘ Low-Level Timer Subsystem Device Drivers ‘ o o counst
4 A 4
Software p
R/W R/W R/W
Hardware v \ N
Compare }(——/—{ Counter }—/—9{ Capture module timer(clr, ema, clk, alm);
input clr, ena, clk;
output alm;
reg almm;
reg [3:0] count;
Prescaler always @(posedge clk) begin
m <= 0;
if (clr) count <= 0;
else count <= count+l;
ena
Clock Driver endnodule
Internal

External ,
';' Xtal/Osc ~
1/0 1/0

What do we really want from our timing subsystem? What do we really want from our timing subsystem?

Wall clock date & time
« Date: Month, Day, Year
e Time: HH:MM:SS:mmm
« Provided by a “real-time clock” or RTC
« Alarm: do something (call code) at certain time later
« Later could be a delay from now (e.g. At)
« Later could be actual time (e.g. today at 3pm)
Stopwatch: measure (elapsed) time of an event
« Instead of pushbuttons, could be function calls or
« Hardware signals outside the processor
o Timer - count down time and notify when count = 0
« Could invoke some code (e.g. a handler)
« Could take some action (e.g. set/clear an /0 line)

« Wall clock
« datetime_t getDateTime()

Wall Clock from a Real-Time Clock (RTC) What do we really want from our timing subsystem?

v = i T » Often a separate module
L= = = « Built with registers for
« Years, Months, Days
« Hours, Mins, Seconds
e Alarms: hour, min, day
* Accessed via
» Memory-mapped I/0
= J| o Serial bus (12C, SPI)

050«

=

e Alarm
« void alarm(callback, delta)
« void alarm(callback, datetime_t)

MINUTES

HOURS.

DAY OF WEEK

DATE

MONTH

YEAR

CONTROL
REGISTERS

UsER
SRAM

Ral

INTERNAL >
Fol

Anatomy of a timer system

L ’
External 'v' 'T' \/ » ‘

1/0 170

Oscillators - RC

C Sguare Wave
Oscillator

Oscillators - Crystal

Rf

Rs

Figure 1: Fundamental Mode Isolated
Pierce-Gate Oscillator

Anatomy of a timer system

Hardware me w ¢'N w ¢lm w
Compare }(——/—{ Counter }—/—9{ Capture

Clock Driver

Internal

What do we really want from our timing subsystem?

« Stopwatch: measure (elapsed) time of an event
e t1 =now(); ... ; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address
o Timer - count down time and notify when count = 0
« void timer(callback, delta)
o Timer fires > Set/Clear GPIO line (using DMA)

Why should we care?

e There are two basic activities one wants timers for:
— Measure how long something takes
e “Capture”
— Have something happen once or every X time period
e “Compare”

Example # 1: Capture

* FAN

— Say you have a fan spinning and you want to know how fast it is
spinning. One way to do that is to have it throw an interrupt
every time it completes a rotation.

« Right idea, but might take a while to process the interrupt,
heavily loaded system might see slower fan than actually
exists.

* This could be bad.

— Solution? Have the timer note immediately how long it took
and then generate the interrupt. Also restart timer
immediately.

* Same issue would exist in a car when measuring speed

of a wheel turning (for speedometer or anti-lock
brakes).

Example # 2: Compare

e Driving a DC motor via PWM.

— Motors turn at a speed determined by the
voltage applied.
¢ Doing this in analog land can be hard.
— Need to get analog out of our processor
— Need to amplify signal in a linear way (op-amp?)
e Generally prefer just switching between “Max” and
“Off” quickly.
— Average is good enough.
— Now don’ t need linear amplifier—just “on” and “off”.
(transistor)
— Need a signal with a certain duty cycle and
frequency.
e That is % of time high.

Servo motor control: class exercise

e Assume 1 MHz CLK

¢ Design “high-level” circuit to
— Generate 1.52 ms pulse
— Every 6 ms
— Repeat

¢ How would we generalize this?

SmartFusion Timer System

Timers on the SmartFusion

* SysTick Timer
— ARM requires every Cortex-M3 to have this timer

— Essentially a 24-bit down-counter to generate system
ticks

— Has its own interrupt

— Clocked by FCLK with optional programmable divider
* See Actel SmartFusion MSS User Guide for

register definitions

Timers on the SmartFusion

« Real-Time Counter (RTC) System
- Clocked from 32 kHz low-power crystal
- Automatic switching to battery power if necessary
- Can put rest of the SmartFusion to standby or sleep to reduce power
- 40-bit match register clocked by 32.768 kHz divided by 128 (256 Hz)

FPGA Fabric vee ?—

o ash veesnp
Bits

RTC VR Logic 15V Voltage

w-Power
Crystal Oscillator Regulator

Interrupt System

Cortex M3

aps 0 :
MATCH FPGA_VRON FTBASE

[e—jEnasLe i
PTEM |

1

LPXIN RTCPSMMATCH i

LN ron |{veey ;
CLKOUT|—~{ RTCCLK PUN|

I Veaoe 1

i I |
Toggle Contro
gw%g(h

Timers on the SmartFusion

» Watchdog Timer
- 32-bit down counter
- Either reset system or NMI Interrupt if it reaches 0!

| APB Bus |

WDOGLOAD WDOGSTATUS \ WDOGVALUE

WDOGENABLE WDOGREFRESH

RCOSCCLK RCOSCRESETN
SLEEPING ———> WDOGTIMEQUT
MALTED. 32-8it Down Counter WDOGTIMEOUTINT

WDOGWAKEUPINT
WDOGMVRP WDOGCONTROL

\ WhOGRS

PRO!

Timers on the SmartFusion

e System timer

— “The System Timer consists of two programmable 32-bit
decrementing counters that generate interrupts to the ARM®
Cortex™-M3 and FPGA fabric. Each counter has two possible
modes of operation: Periodic mode or One-Shot mode. The
two timers can be concatenated to create a 64-bit timer with
Periodic and One-Shot modes. The two 32-bit timers are
identical”

T]
Anatomy of a timer system Virtual Timers
* You never have enough timers.
Operating System typedes struct timer { — Never.

uint32_t time;
uints_t mode;
timer_t* next_timer;
} timer_t;

Timer Abstractions and Virtualization

timer_handler_t handler;

¢ So what are we going to do about it?
— How about we handle in software?

Virtual Timers

e Simple idea.
— Maybe we have 10 events we might want to generate.
¢ Just make a list of them and set the timer to go off for the
first one.
— Do that first task, change the timer to interrupt for
the next task.

Problems?

e Only works for “compare” timer uses.
e Will result in slower ISR response time

— May not care, could just schedule sooner...

Implementation Issues

¢ Shared user-space/ISR data structure.

— Insertion happens at least some of the time in user
code.

— Deletion happens in ISR.
* We need critical section (disable interrupt)

e How do we deal with our modulo counter?
— That s, the timer wraps around.
— Why is that an issue?
¢ What functionality would be nice?
— Generally one-shot vs. repeating events
— Might be other things desired though
¢ What if two events are to happen at the same
time?
— Pick an order, do both...

Implementation Issues (continued)

e What data structure?
— Data needs be sorted
¢ Inserting one thing at a time
— We always pop from one end
— But we add in sorted order.

Data structures

typedef struct timer
{

timer_handler_t handler;

uint32_t time;
uints_t mode;
timer t* next_timer;

} timer_t;
timer t* current_timer;

void initTimer() |
setupHardwareTimer () ;
initLinkedList () ;
current_timer = NULL;

}

error_t startTimerOneShot (timer
/7 add handler to linked list a
// if this

idler_t handler, uint32_t t) {
d sort it by time
is first element, start hardware timer

}

error_t startTimerContinuous(Limer handler t handler, uint32_t dt) {
7 add handler to linked list for (n t), set mode to continuous
// if this first element, start hardware timer

}

error_t stopTimer (timer_handler_ t handler) (
/7 find element for handler and remove it from list

}

Some loose ends...glitches and all that

Timing delays and propagation

» Assume
- XOR delay = 0.2ns
- AND delay = 0.1ns
- OR delay = 0.1 ns

- W

TR p

Co

« What is the worst
case propagation
delay for this
circuit?

z

Full adder (from Wikipedia)

Glitches
=EDAD——

ci

Consider the adjacent circuit diagram. Assuming the XOR gates have
Y a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
co the following chart.

00 01 02 03 04 05 06 07 08 03 1.0 1Ll(ns)

z
Full adder (from Wikipedia)

Only selected causality |
arrows shown... '

Glitching: a summary

« When input(s) change
- The output can be wrong for a time
- However, that time is bounded

« And more so, the output can change during this
“computation time” even if the output ends up
where it started!

Effect of Glitches

o Think back to EECS 370.

- Why don’t glitches cause errors?

<]

D/ EX/
EX Mem
So, how can glitches hurt us? Design rules
PRE PRE
« There are a handful of places: 9 a 1. Thou shall Not use asynchronous <
- Asynchronous resets < resets =
« If you’ve got a flip-flop that has an R dl R d
asynchronou.s reset (oyr preset) you need to da 2. Thou shall not drive a clock with -l
be sure the input can’t glitch. . _— .
. Traditionally, CLR is used anything other than a clock or
- That pretty much means you need a flip- [¢ndicas e reset. "¢ directlv off of a flip-floo’ tout
flop driving the input (which means you : irectly oft ot a flip-Tiop's outpu
probably should have used a sync. reset!)
n out n out
- Clocks condE—D» cond
« If you are using combinational logic to drive a oIk
clock, you are likely going to get extra clock If ks high and cond
edges. f‘l;;l\\::\\nu get extra

Really? Seriously?

« People do use asynchronous resets and clock gating!

- Yep. And people use goto in C programs.
« Sometimes they are the right thing.

- But you have to think really hard about them to insure
that they won’t cause you problems.

- Our “simple” bus used

combinational logic for ADS[7] c
ADS[6] ————C

the clock A .
« Works because REQ goes ADS[4] J

low only after everything 2350
else has stopped switching aps[!

- So no glitch. REQ#
« Not fun to reason about...
« Avoid unless you must
- Then think really carefully.

Setup and hold time

Setup, Hold Time
« The idea is simple. .

a a,

- When the clock is changing
if the data is also changing it
is hard to tell what the data
is.
« Hardware can’t always tell
- And you can get meta-stable behavior too (very
unlikely but...)
- So we have a “guard band” around the clock rising time
during which we don’t allow the data to change.
« See diagram. We call the time before the clock-
edge “setup time” and the time after “hold time”

PRI

D changing ! D changing

Device Min | Max | Example:
DFF:
edoad s [as] Fast and slow paths;
T impact of setup and hold time
OR/AND 2ns 6ns
NOT 1ns 3ns
NAND/NOR 2ns 5ns
XOR 3ns 7ns L
; X
A
D Q|
SCLK QP
CLK

Assume that the input A is coming from a flip-flop that has the same properties as the flip-flops that
are shown and is clocked by the same clock.

a. Add inverter pairs as needed to the above figure to avoid any “fast path” problems. Do soina
way that has least impact on the worst-case delay (as a first priority) and which keeps the
number of inverter pairs needed to a minimum (as a second priority).

b. After you've made your changes in part a, compute the maximum frequency at which this
device can be safely clocked.

So what happens if we violate set-up or hold time?

» Often just get one of the two values.
- And that often is just fine.
« Consider getting a button press from the user.

« If the button gets pressed at the same time as the
c{ocllz edge, we might see the button now or next
clock.

- Either is generally fine when it comes to human
input.
- But bad things could happen.
« The flip-flop’s output might not settle out to a “0” or
a “1”

- That could cause latter devices to mess up.
« More likely, if that input is going to two places, one
might see a “0” the other a “1”
» Important: don’t feed an async input to multiple
places!

Example

« A common thing to do is reset a state machine
using a button.

- User can “reset” the system.

» Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.

- And you quickly end up at a wrong or illegal state.

So...

» Dealing with inputs not synchronized to our local clock
is a problem.
- Likely to violate setup or hold time.
« That could lead to things breaking.
« So we need a clock synchronization circuit.
- First flip-flop might have problems.
- Second should be fine.

- Sometimes use a third if
really paranoid

’
« Safety-critical system for exampte. : B
Goct — i I I >

Synchronization Register Chain

Figure from . we use the same thing to deal with external inputs too!

Design rules

3. Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

Synchronization Register Chain

Data_in

/* ization of switch input */

.
/
1
|
1
Clockl :
always@ (posedge clk) |
begin Clock2
sw0_pulse[0] <= sw_port[0]; ~ od
sw0_pulse[1] <= sw0_pulse[0];
sw0_pulse[2] <= sw0_pulse[1];
end

always @ (posedge clk) SSELr <= {SSELr[1:0], SSEL};

Questions?

Comments?

Discussion?

