[AL

EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 7: Interrupts (2)
September 23, 2014

Some slides prepared by Mark Brehob

Announcements

« Homework 2 due now.

« Homework 3 will be posted later this week.
« Start thinking about projects

« Start planning for “special topics”

[AL

High-level review of interrupts

» Why do we need them? Why are the alternatives
unacceptable?
Convince me!

» What sources of interrupts are there?
Hardware and software!
« What makes them difficult to deal with?
- Interrupt controllers are complex: there is a lot to do!

« Enable/disable, prioritize, allow premption (nested
interrupts), etc.

- Software issues are non-trivial
« Can’t trash work of task you interrupted
« Need to be able to restore state
« Shared data issues are a real pain

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Resat —3 (Highest) Resat

2 NMI -2 Nonmaskable interrupt (external NMI input)
3 Hard fauit -1 Al fault conditions if the corresponding fault

handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
toillegal locations

5 Bus fault Programmable Bus error; ocours when Advanced High-
Performance Bus (AHB) interface recaives an
eror response from a bus slave (also called
prefetch abort if it is an instruction fetch or
dataabort ffitis a data access)

6 Usage fauit Programmable Exceptions resitting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

11 sve Programmable Supenvisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

18 Reserved NA —

14 Pendsv Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #2389 Programmable

SmartFusion interrupt sources

[AL

Table 15+ Smartuson terupt Sourcss

i s e et e RGO G i
s WoosTIEGUT waraizoe L e R FAG R =
) WoOGARED Ra WaG0e s e o A R e
AT ST W e e R PGS G e
LE] RO . L) AT e
e RN 7 e e e v iAch v e
L] o e e e v A R i
W SR s AT R TG G e
T VR e Lo R AL =
T o o A e e A =
nTisaja] ENVM_1_IRQ ENVM Controller INTISR[74] T ACE_PC2_FLAGZ_IRQ T ace
T o 2 et oVA s e 7 AGH =
Aol Garr 0w o g RGE AOX0 DATAVALD G =
AT AT T T AT A DVATO G i
T o EX T AGE Ao ORTAVAG G i
T Ea LB e Ao G0N 12 i
A acoma aco sl e AT GAONE 12 e
[B0 SuBALET o DED e AOGL GALDONE 12 =
s oo svests o o WL RE Ao CATART 2 =
T BTG BT LG A AT AT G e
INTISR 18] T2C_1_SMBALERT_IRQ. 2C1 nTisr{sa] 'ACE_ADC2_CALSTART IRQ T A
A G s et Cowro FALL i
e e e il e couPr LG A
AR TR R iG] Lz e CoMFE LG =
R o W R e con LR T
e OGO CeC) R COMPLFALRG &
i o ewvor o s AT o Ace cowrs raL e
AT e e e e conps AL =
A e el D ReE o AL e
A e ered G e o LG =
GEeE et ered e e con A C
NTisaizs] Reserved Reserved iNTisR{as] T ACE_COMP10_FALL_IRQ T ace
Aol = ened

T 7eRQ 54 more ACE specific interrupts
A EL o

e EE

GPIO_3_IRQ to GPIO_31_IRQ cut

And the interrupt vectors
(in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

Table 7.1 Listof System Exceptions

g_pfnVectors: Nmpor” Excopton o Dosaripton
.word _estack 1 Focet
.word Reset Handler . et
.word NMI_Handler . Membanege fau Programmabie

.word HardFault_ Handler
.word MemManage_Handler
.word BusFault_Handler

Busfau Proganmatie

[AL

Ussgota Progammasie
.word UsageFault Handler
.word O o T
.word 0 IH Ostug marier
-word 0 5 ol

word 0 s svsmek
.word SVC_Handler

— Table 7.2 List of External Interupt=

.word DebugMon_Handler Exception Number Exception Type Priorty
-word 0 s e
-word Pendsv—Ha ndler 255 Extemal Interrupt #239 Programmable

.word SysTick Handler

.word WdogWakeup_IRQHandler

.word BrownOut_1_ 5V_IRQHandler

.word BrownOut_3_3V_IRQHandler
.............. (they continue)

Interrupt handlers

.word _estack
.word Reset_Handler
26 .word NMI_Handler
.word HardFault_Handler
.word MemManage_ Handler
29 .word BusFault_Handler
.word UsageFault_Handler

195 .global Reset_Handler
.type Reset_Handler, %function
197Reset_Handler:
g_start:

Pending interrupts

f Hardware cleared interrupt request

Interrupt
Request

Interrupt
Pending Status

Handler Mode

—
\
/

Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

FAZ)

Interrupt

Request \

Interrupt

Pending Status r

Pending status
cleared by software

Active Status set during handler execution

Interrupt request

X~ Cleared by software
Interrupt

Request \

Interrupt

Pending Status

Interrupt
Active Status

Thread Handler Mode o~ Interrupt returned
Processor Mode
Mode
Processor Thread
Mode Mode
In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped |/0 register)
[nNya) [nNya)
Interrupt Request not Cleared Answer
Interrupt request stays active
Interrupt Interrupt Interrupt request stay active

Request \

Interrupt
Pending Status

Interrupt
Active Status

Handler Mode

Processor Thread
Mode Mode

request

Interrupt
pending status

Interrupt
active statLE’s Interrupt return /’U
Handler mode \y

Processor Thread

mode mode Interrupt reentered

Interrupt pulses before entering ISR

Multiple interrupt pulses
before entering ISR

Interrupt

Request

Interrupt

Pending Status

Interrupt
Active Status

~J

Answer

Multiple interrupt pulses
Interrupt ~ before entering ISR

request

y

Interrupt

pending status

Interrupt
active status
Handler mode

Processor Thread

mode _mode Interrupt return
"o
New Interrupt Request after Pending Cleared Configuring the NVIC
VS e

Interrupt request
pulsed again

Interrupt

Request \

Interrupt

Pending Status

Interrupt P

Active Status

Handler Mode

Thread
Processor Mode
Mode

« Interrupt Set Enable and Clear Enable
- 0xEOOOE100-0xE000E11C, OxEOOOE180-0XEO0OE19C

O0xEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

FaZ

» Set Pending & Clear Pending
- 0xEO00E200-0xE000E21C, OxEOOOE280-0xEO00E29C

0xEO00E200 SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO00E280 CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bic[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3)

« Interrupt Active Status Register
- OXEO0OE300-0xEO00E31C

Address Name Type Reset Value Description

0xEO00E300 ACTIVEO R 0 Active status for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1
bit[31] for interrupt #31

0xEO00E304 ACTIVET R 0 Active status for external interrupt #32-63

Interrupt Priority -V

| michican |
Vi

» What do we do if several interrupts arrive at the same time?
* NVIC allows to set priorities for (almost) every interrupt

« 3 fixed highest priorities, up to 256 programmable priorities
- 128 preemption levels
- Not all priorities have to be implemented by a vendor!

Bit 7 ‘BitG ‘BitS Bit 4 ‘Bit3 ‘BitZ ‘Bit1 ‘Bito

Interrupt Priority (2)

* Interrupt Priority Level Registers
- 0XEO0OE400-0xEOOOE4EF

N Address Name Type Reset Value Description
Implemented Not implemented, read as zero 0xE0D0E400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0
0xE000E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1
- SmartFusion has 32 priority levels, i.e., 0x00, 0x08, ..., OxF8 - - - -
« Higher priority interrupts can pre-empt lower priorities 0xE000E41F PRI_31 R/W 0 (8-bit) Priority-level external interrupe #31
« Priority can be sub-divided into priority groups
- splits priority register into two halves, preempt priority and subpriority
- preempt priority: indicates if an interrupt can preempt another
- subpriority: used if two interrupts of same group arrive concurrently
Preemption Priority and Subpriority PRIMASK, FAULTMASK, and BASEPRI

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit[7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bic [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OxEOOOEDOC)

Bits | Name Type | Reset | Description
Value
31:16 | VECTKEY RW |- Access key; 0x0SFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0<FA0S

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BES)
and 0 for lircle endian; this can only change after a reset

10:8 | PRIGROUP RW |0 Priority group

2 | svsreserreq w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE | W/ - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

» What if we quickly want to disable all interrupts?

* Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

» Write 0 into PRIMASK to enable all interrupts

o FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

» What if we want to disable all interrupts below a certain
priority?

» Write priority into BASEPRI
- MOV RO, #0x60
- MSR BASEPRI, RO

Masking

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
is explained in detail in Execution priority and priority boosting within the core on page B1-18:

the exception mask register (PRIMASK) which has a 1-bit value
the base priority mask (BASEPRI) which has an 8-bit value
the fault mask (FAULTMASK) which has a 1-bit value.

All mask registers are cleared on reset. All unprivileged writes are ignored

The formats of the mask registers are illustrated in Table B1-4
Table B1-4 The special-purpose mask registers

31 8 7 1 0
PRIMASK RESERVED PM
[FAULTMASK| RESERVED FM
BASEPRI RESERVED BASEPRI

Interrupt Service Routines

1. Automatic saving of registers upon exception
« PC, PSR, RO-R3, R12, LR pushed on the stack
2. While bus busy, fetch exception vector
3. Update SP to new location
4. Update IPSR (low part of PSR) with new exception nhumber
5. Set PC to vector handler
6. Update LR to special value EXC_RETURN

« Several other NVIC registers get updated
 Latency: as short as 12 cycles

The xPSR register layout

The APSR, IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR, IPSR and EPSR registers is referred to as the xPSR register.

Table B1-2 The xPSR register layout

31 30 29 28 27 26 25 24 23 16 15 10 9 8 0

?

APSR]\"Z C|v

IPSR 0 or Exception Number

[EPSR| ICTIT| T

‘ ICTIT

ARM interrupt summary

Vi

1. We’ve got a bunch of memory-mapped registers
that control things (NVIC)
- Enable/disable individual interrupts
- Set/clear pending
- Interrupt priority and preemption

2. We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3. And how we figure out where to set the PC to
point to for a given interrupt source.

1. NVIC registers (example)

» Set Pending & Clear Pending
- 0xEO00E200-0xE000E21C, OxEOOOE280-0xEO00E29C

1. More registers (example)

* Interrupt Priority Level Registers
- 0XEO0OE400-0xEOOOE4EF

Application Interrupt and Reset Control Register (Address OxEOOOEDOC)

Pending Status

O0xEO00E200 | SETPENDO | R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)
bie[31] for interrupt #31 (exception #47) Address Name Type Reset Value Description
Write 1 to set bit to 1; write 0 has no effect 0xEO00E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0
Read value indicates the current status 0xEO00E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1
0XEO00E280 | CLRPENDO | R/W 0 Clear pending for external interrupt #0-31 - - - -
bit[0] for interrupt #0 (exception #16) 0xEO0OE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31
bit[1] for interrupt #1 (exception #17) - - - -
bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect
Read value indicates the current pending status
1. Yet another part of the NVIC registers! 2. How external lines interact with the NVIC
Vil Vil
Priority Group Preempt Priority Field Subpriority Field
0 Bic [7:1] Bit [0]
1 Bic[7:2] Bic[1:0] f Hardware cleared interrupt request
2 Bit[7:3] Bit [2:0]
3 Bit [7:4] Bit [3:0] Interrupt
4 Bic [7:5] Bit [4:0] Request
5 Bit [7:6] Bit [5:0]
6 Bic [7] Bit [6:0]
7 N Bit[7:0
one i [7:0) Interrupt

Bits | Name Type | Reset | Description
Value
31:16 | VECTKEY RW |- Access key; 0x0SFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0sFA0S

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for liccle endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 | svsreserreq w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE w - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

Handler Mode

Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

3. How the hardware figures out what to set the PC to

F 3\ Z % So let’s say a GPIO pin goes high
- When will we get an interrupt?
g,pf?xiigorzstack BE" oo e - What happens if the interrupt is allowed to proceed?
.word Reset Handler . o
.word NMI_Handler 4 Memhanage faut

.word HardFault_ Handler
.word MemManage_Handler
.word BusFault_Handler
.word UsageFault Handler

.word O e T
.word O =
.word 0 "
.word 0 =
.word SVC_Handler
— Table 7.2 List of Extermal Interupt=
.word DebugMon_Handler Exception Number
.word O "

b

.word PendSV_Handler

.word SysTick Handler

.word WdogWakeup_IRQHandler

.word BrownOut_1_ 5V_IRQHandler

.word BrownOut_3_3V_IRQHandler
.............. (they continue)

235 Extemalinternupt 2259 Progammatie

What happens when we return from an ISR? Other stuff: The xPSR register layout

The APSR. IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR., IPSR and EPSR registers is referred to as the xPSR register.

Table B1-2 The xPSR register layout
3130 29 28 27 26 25 24 23 16 15 1098 0
Q ‘

5

<RN‘Z c|v

PSR 0 or Exception Number

ICL]T‘ T

[EPSR]

‘ ICIIT

Example of Complexity: The Reset Interrupt Interrupt types

e | oo [y (T e Two main types
ABPOWERON 12| Power-Down)

- Level-triggered

Edge-triggered

FPGAls vmgyjﬁ—‘me

100 s delay before PSM is turned on to allow for BG to power up.
20 s delay for NVM to power up

1) No power
2) System is held in RESET as long as VCC15 < 0.8V
a) In reset: registers forced to default
b) RC-Osc begins to oscillate
¢) MSS_CCC drives RC-Osc/4 into FCLK
d) PORESET_N is held low
3) Once VCC15GO0D, PORESET_N goes high
a) MSS reads from eNVM address 0x0 and 0x4

Level-triggered interrupts

« Signaled by asserting a line low or high

« Interrupting device drives line low or high and holds it
there until it is serviced

« Device deasserts when directed to or after serviced

o Can share the line among multiple devices (w/ OD+PU)

« Active devices assert the line

« Inactive devices let the line float

« Easy to share line w/o losing interrupts

« But servicing increases CPU load > example

« And requires CPU to keep cycling through to check

« Different ISR costs suggests careful ordering of ISR checks
« Can’t detect a new interrupt when one is already asserted

Edge-triggered interrupts s

« Signaled by a level *transition* (e.g. rising/falling edge)
« Interrupting device drive a pulse (train) onto INT line

* What if the pulse is too short? Need a pulse extender!
« Sharing *is* possible...under some circumstances

« INT line has a pull up and all devices are OC/OD.

« Devices *pulse* lines

« Could we miss an interrupt? Maybe...if close in time

« What happens if interrupts merge? Need one more ISR pass
« Must check trailing edge of interrupt

o Easy to detect "new interrupts”

« Benefits: more immune to unserviceable interrupts

« Pitfalls: spurious edges, missed edges

« Source of "lockups” in early computers

Group talks in EECS 373

Special topics talks

« Groups of 2-3 folks
- Not your lab partner (or your project group member)
- This is 1% of your grade (20% of the presentation)

* 12 minutes for the talk, ~3 minutes for questions

« Four parts
- Meet with me 2-3 weeks ahead of time to discuss topic
- 15t practice talk 1-2 weeks before scheduled date (20%)
- 2" practice talk 1-2 days before scheduled date (20%)
- Give talk in class (40%)

Special topics talk (2)

» Each talk must include
- Explanation of how the topic relates to embedded systems
- An understanding of high-level issues including tradeoffs
» Must produce at least two original graphs explaining tradeoffs.
- Some detailed explanation of a relevant part of the topic
- Where others can go to learn more information

« Time permitting
- We’ll take 10 minutes at the end of class to form groups of 2-3

- We’ll discuss some topics that I’d like to see (BLE, Cortex-M3s,
accelerometers, gyroscopes, microphones, etc.)

