N

Vil

EECS 373

Design of Microprocessor-Based Systems

PLEASE FEEL FREE TO INTERRUPT

IF YOU HAVE A QUESTION. "

Thomas Schmid
University of Michigan

Lecture 7: Interrupts, ARM NVIC A EE
September 28, 2010 | e |

http://home.netcom.com/~swansont/science.html

Minute Quiz...

Recap of the last lecture
'

e Why is Reset Vector +17

- I1t’s an ARM specific thing. The least significant bit in jump
instructions indicates the type of instruction at that location (O:
for ARM, 1: for Thumb). Since the Cortex-M3 can only execute

Thumb2, this will always

The SAT instruction

Without
/ saturation
Dynamic)
Range v Amplify
With
signed 0
saturation

From: The Definitive Guide to the ARM Cortex-M3

Saturating at 32-bit sighed value to a 16-bit

SSAT.W <Rd>, #<immed>, <Rn>, {,<shift>}

el Vel

SSAT.W R1, #16, RO

Input (RO) Output (R1) Q Bit
0x00020000 0x00007FFF Set
0x00008000 0x00007FFF Set
0x00007FFF 0x00007FFF Unchanged
0x00000000 0x00000000 Unchanged
OxFFFF8000 OxFFFF8000 Unchanged
OxFFFF8001 OxFFFF8000 Set
OxFFFEO0QO OxFFFF8000 Set

From: The Definitive Guide to the ARM Cortex-M3

Vil

Interrupts

Generalization of Interrupts

el Vel

e Merriam-Webster:
“to break the uniformity or continuity of”

e Informs a program of some external events
e Breaks execution flow

« Where do interrupts come from?

« How do we save state for later continuation?
 How can we ignore interrupts?

e« How can we prioritize interrupts?

« How can we share interrupts?

How does an embedded system boot?

The Reset Interrupt

BG and PSM VCC33GOOD Rl\gssst BROWNOUT3_3VINT | . =
i C -M
BGPSMENABLE) PSM_EN, O — VCC15GO0D Controller BROWNOUT1_5VINT N o ortex-M3
ABPOWERON ; Power-Down
X VCC | VCC15 VCC15UP I
Detect - BGGOOD) PPB
" PORESET_N SYS REG
VCC33A |[VvCC33 VCC33UP
X Detect i
>13V soH
>08YV oRr
> FPGAGOOD
FPGA Is Programed Delay
~100 ps delay before PSM is turned on to allow for BG to power up
~20 ps delay for NVM to power up

1. No power
2.System is held in RESET as long as VCC15 < 0.8V

a. In reset: registers forced to default
b. RC-Osc begins to oscillate

c. MSS_CCC drives RC-Osc/4 into FSCK
d. PORESET_N is held low

3. Once VCC15GO0D, PORESET N goes high
a. MSS reads from eNVM address 0x0 and 0x4

The Reset Interrupt (2)

el Vel

BROWNOUT3_3VINT

BROWNOUT1_5VINT

PORESET_N q
MSS_RESET_N._| ,
TRSTB

>,
F2M_RESET_N

MSS_RESET_N_O

M2F _RESET N

A A

SOFT RESETS

/

/

Reset Controller

l

INTISR[1] INTISR[2]
»! PORESET N
M3 _PORESET_N LOCKUP
< s MSS_RESET REQ
> NTRST Cortex-M3
MSS_SYSTEM_RESET N _lsvs RESET N
. »| PRESET N
RCOSC RESET_N .
- Watchdog Timer
<VDOG TIMEOUT

p- MSS_SYSTEM_RESET_N

e The Reset Interrupt is Non-Maskable!

Interrupt Handling

Source — Controle — MPU

e On the Cortex-M3

- Source: Software, Peripheral
- Controller: Nested Vectored Interrupt Controller (NVIC)
- MPU: Cortex-M3 Core

Sources of Interrupts

14

Types of Interrupts

el Vel

e Physical interrupts
- Level-triggered
- Edge-triggered (positive, negative)
- Hybrid
e Look for edges, but signal must stay for a while
e Often used for non-maskable interrupts to avoid glitches

e Non-maskable interrupts
 Interrupt priorities
e Software interrupts

The Nested Vectored Interrupt Controller (NVIC)
on the Cortex-M3 Vil

e Control registers are memory mapped
« Contains control logic for interrupt processing
e Also contains MPU, SYSTICK Timer, and Debug

e 15 internal interrupts (defined by ARM)

e Supports up to 240 external interrupts (vendor specific)
e Accessed at OxEOOOEOOO on any Cortex-M3!

» Register definitions can be found at:
- ARM Cortex-M3 Technical Reference Manual v2.1, Chapter 6
- The Definitive Guide to the ARM Cortex-M3

System Exceptions
NVIC Interrupts 1-15

Exception | Exception Type Priority Description

Number

T Reset —3 (Highest) Reset

2 NMI —2 Nonmaskable interrupt (external NMI input)
3 Hard Fault —1 All fault conditions, if the corresponding fault

handler is not enabled

4 MemManage Fault | Programmable Memory management fault; MPU violation or access
to illegal locations

5 Bus Fault Programmable Bus error; occurs when AHB interface receives an
error response from a bus slave (also called prefetch
abort if it is an instruction fetch or data abort if it is a

data access)

6 Usage Fault Programmable Exceptions due to program error or trying to access
coprocessor (the Cortex-M3 does not support a
COprocessor)

7-10 Reserved NA -

11 SVCall Programmable System Service call

12 Debug Monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

From: The Definitive Guide to the ARM Cortex-M3

Actel SmartFusion Interrupts

Table 1-5 ¢« SmartFusion Interrupt Sources

INTISR[64] ACE_PCO_FLAGO_IRQ ACE
INTISR[65] ACE_PCO_FLAG1_IRQ ACE
INTISR[66] ACE_PCO_FLAG2_IRQ ACE
INTISR[67] ACE_PCO_FLAG3_IRQ ACE
INTISR[68] ACE_PC1_FLAGO_IRQ ACE
INTISR[69] ACE_PC1_FLAG1_IRQ ACE
INTISR[70] ACE_PC1_FLAG2_IRQ ACE
INTISR[71] ACE_PC1_FLAG3_IRQ ACE
INTISR[72] ACE_PC2_FLAGO_IRQ ACE
INTISR[73] ACE_PC2_FLAG1_IRQ ACE
INTISR[74] ACE_PC2_FLAG2_IRQ ACE
INTISR[75] ACE_PC2_FLAG3_IRQ ACE
INTISR[76] ACE_ADCO_DATAVALID_IRQ ACE
INTISR[77] ACE_ADC1_DATAVALID_IRQ ACE
INTISR[78] ACE_ADC2_DATAVALID_IRQ ACE
INTISR[79] ACE_ADCO_CALDONE_IRQ ACE
INTISR[80] ACE_ADC1_CALDONE_IRQ ACE
INTISR[81] ACE_ADC2_CALDONE_IRQ ACE
INTISR[82] ACE_ADCO_CALSTART_IRQ ACE
INTISR[83] ACE_ADC1_CALSTART_IRQ ACE
INTISR[84] ACE_ADC2_CALSTART_IRQ ACE
INTISR[85] ACE_COMPO_FALL_IRQ ACE
INTISR[86] ACE_COMP1_FALL_IRQ ACE
INTISR[87] ACE_COMP2_FALL_IRQ ACE
INTISR[88] ACE_COMP3_FALL_IRQ ACE
INTISR[89] ACE_COMP4_FALL_IRQ ACE
INTISR[90] ACE_COMP5_FALL_IRQ ACE
INTISR[91] ACE_COMP6_FALL_IRQ ACE
INTISR[92] ACE_COMP7_FALL_IRQ ACE
INTISR[93] ACE_COMPS8_FALL_IRQ ACE
INTISR[94] ACE_COMPO_FALL_IRQ ACE
INTISR[95] ACE_COMP10_FALL_IRQ ACE

Cortex-M3 NVIC Input IRQ Label IRQ Source
NMI WDOGTIMEOUT_IRQ WATCHDOG
INTISR[O] WDOGWAKEUP_IRQ WATCHDOG
INTISR[1] BROWNOUT1_5V_IRQ VR/PSM
INTISR[2] BROWNOUT3_3V_IRQ VR/PSM
INTISR[3] RTCMATCHEVENT_IRQ RTC
INTISR[4] PU_N_IRQ RTC
INTISR[5] EMAC_IRQ Ethernet MAC
INTISR[6] M3_IAP_IRQ IAP
INTISR[7] ENVM_O0_IRQ ENVM Controller
INTISR[8] ENVM_1_IRQ ENVM Controller
INTISR[9] DMA_IRQ Peripheral DMA
INTISR[10] UART_0_IRQ UART_O
INTISR[11] UART_1_IRQ UART_1
INTISR[12] SPI_O_IRQ SPI_0
INTISR[13] SPI_1_IRQ SPI_1
INTISR[14] 12C_0_IRQ 12C_0
INTISR[15] 12C_0_SMBALERT_IRQ 12C_0
INTISR[16] 12C_0_SMBSUS_IRQ 12C_0
INTISR[17] 12C_1_IRQ 12C_1
INTISR[18] 12C_1_SMBALERT_IRQ 12C_1
INTISR[19] 12C_1_SMBSUS_IRQ 12C_1
INTISR[20] TIMER_1_IRQ TIMER
INTISR[21] TIMER_2_IRQ TIMER
INTISR[22] PLLLOCK_IRQ MSS_CCC
INTISR[23] PLLLOCKLOST_IRQ MSS_CCC
INTISR[24] ABM_ERROR_IRQ AHB BUS MATRIX
INTISR[25] Reserved Reserved
INTISR[26] Reserved Reserved
INTISR[27] Reserved Reserved
INTISR[28] Reserved Reserved
INTISR[29] Reserved Reserved
INTISR[30] Reserved Reserved
INTISR[31] FAB_IRQ FABRIC INTERFACE
INTISR[32] GPIO_0_IRQ GPIO
INTISR[33] GPIO_1_IRQ GPIO
INTISR[34] GPIO_2_IRQ GPIO

INITICDIDC1

GPIO_3_

Dl D 1IN

RQ to GPIO_31_

NN

IRQ cut

54 more ACE specific interrupts

Pending Interrupts

f Hardware cleared interrupt request

Interrupt

Request \

Interrupt
Pending Status

Thread
Processor Mode

/

Handler Mode

Mode

From: The Definitive Guide to the ARM Cortex-M3

ERERA

Pending Interrupts (2)

Interrupt
Request \
Interrupt
Pending Status (
Pending status
cleared by software
Thread

Processor Mode

Mode

e Software clears pending status while PRIMASK/
FAULTMASK is 1

From: The Definitive Guide to the ARM Cortex-M3

Active Status set during handler execution

B Ve

Interrupt request
x~ Cleared by software

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status K
Handler Mode o Interrupt returned
Processor Thread
Mode Mode

From: The Definitive Guide to the ARM Cortex-M3

Interrupt Request not Cleared

Vil

Interrupt request stays active

Interrupt

Request \

Interrupt
Pending Status

Interrupt ®
Active Status
\C Handler Mode
Processor Thread
Mode Mode

From: The Definitive Guide to the ARM Cortex-M3

Multiple Interrupt Pulses

Vil

Multiple interrupt pulses
before entering ISR

Interrupt
Request \
Interrupt {

Pending Status

Interrupt ?
Active Status

Processor
Mode

From: The Definitive Guide to the ARM Cortex-M3

New Interrupt Request after Pending Cleared

Vil

Interrupt request
pulsed again

Interrupt

Request \

Interrupt
Pending Status

Interrupt ®
Active Status

Handler Mode

Thread

Processor Mode
Mode

From: The Definitive Guide to the ARM Cortex-M3

Configuring the NVIC

el Vel

e Interrupt Set Enable and Clear Enable
- OxEOOOE100-0xEOOOE11C, OxEOOOE180-0xEOOOE19C

OxEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

Vil

e Set Pending & Clear Pending
- OxEOOOE200-0xEOOOE21C, OXxEOOOE280-0xEOOOE29C

OxEOOOE200 SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280 | CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[O] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3)

BV el
e Interrupt Active Status Register
- OxEOOOE300-0xEOOOE31C
Address Name Type Reset Value Description
OxEOOOE300 ACTIVEO R 0 Active status for external interrupt #0-31

bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31

OxEOOOE304 ACTIVE1 R 0 Active status for external interrupt #32-63

Interrupt Priority e
LV i

« What do we do if several interrupts arrive at the same time?
e NVIC allows to set priorities for (almost) every interrupt

3 fixed highest priorities, up to 256 programmable priorities
- 128 preemption levels

- Not all priorities have to be implemented by a vendor!

Bit/ |Bité |Bit5 |Bit4 (Bit3 [Bit2 |[Bit1 |BitO

Implemented Not implemented, read as zero

- SmartFusion has 32 priority levels, i.e., 0x00, 0x08, ..., OxF8
e Higher priority interrupts can pre-empt lower priorities
e Priority can be sub-divided into priority groups
- splits priority register into two halves, preempt priority and subpriority
- preempt priority: indicates if an interrupt can preempt another
- subpriority: used if two interrupts of same group arrive concurrently

Interrupt Priority (2)

BV el
e Interrupt Priority Level Registers
- OxEOOOE400-0xEOOOE4EF
Address Name Type Reset Value Description
OxEOOOE400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0
OxEOOOE401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

Preemption Priority and Subpriority

Vil

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [O]

1 Bit [7:2] Bit [1:0]

) Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OXxEOOOEDOC)

Bits Name Type Reset Description

Value

31:16 VECTKEY R/W - Access key; 0xO0SFA must be written to this field to write
to this register, otherwise the write will be ignored; the

read-back value of the upper half word is OxFA0S

15 ENDIANNESS R — Indicates endianness for data: 1 for big endian (BES8)
and O for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ W - Requests chip control logic to generate a reset

1 VECTCLRACTIVE W - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET W - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

Exercise: How many preemption priorities and

subpriority levels do we get on the Smart Fusion if
we set Priority Group to 5?

Vil

-3 4 Reset Preempt levels Subpriority
-2 NMI with priority levels
-1 Hard Fault group set to 5

0x00

PRIMASK, FAULTMASK, and BASEPRI

el Vel

 What if we quickly want to disable all interrupts?

e Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

e Write 0 into PRIMASK to enable all interrupts

« FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

 What if we want to disable all interrupts below a certain
priority?
» Write priority into BASEPRI

- MOV RO, #0x60
- MSR BASEPRI, RO

What exactly is an interrupt handler?

Vector Table

By Vi
e Upon an interrupt, the Cortex-M3 needs to know the
address of the interrupt handler (function pointer)
o After powerup, vector table is located at 0x00000000
Address Exception Number Value (Word Size)
0x00000000 - MSP initial value
0x00000004 T Reset vector (program counter initial value)
0x00000008 2 NMI handler starting address
0x0000000C 3 Hard fault handler starting address
Other handler starting address

e Can be relocated to change interrupt handlers at
runtime (vector table offset register)

Vector Table in SoftConsole

e Located in startup_a2fxxxm3.s
eklg pfnVectorsE O/ e ——

24 .word _estack 16 * Vector table

25 .word Reset Handler 17 %/

26 .word NMI Handler 18 .global g_pfnVectors

27 .word HaraFault_Handler 19 .Section .isr vector,"a",%progbits

28 .word MemManage Handler 20 . type g_pfnVectors, %object

29 .word BusFault_gandler 21 .8ize g_pfnVectors, .-g pfnVectors
30 .word UsageFault Handler 22

31 .word O

32 .word O

-

e Put at 0x00000000 in linker script

42 SECTIONS
3 {

44 .text :

45 {

46 CREATE OBJECT_SYMBOLS

47 __text load = LOADADDR(.text):
48 __text start = .;

49 *(.1isr_vector)

Interrupt Handlers

B Vel

I R A O o e O .

[

9{_, ___
193 * Reset Handler
1385 .global Reset Handler
196 . type Reset Handler, %function
197Reset Handler:
198 _start:

281 * NMI_iard-er
283 .weak NMI_Handler
284 . type NMI Handler, %function
EESNMI_Bandler:
286 B
289 ~* Ha:dFa:;t_Handler
291 .weak HardFault_Handler
292 . type HardFault Handler, %function
293HardFault Handler:
94 B

NN

(n Wb

Interrupt Handler in GNU C

« We can overwrite the predefined interrupt handlers

___attribute ((_ iInterrupt)) void Timerl IRQHandler ()
{

MSS TIM1 disable 1rqg();
MSS TIM1 clear 1irqg();

NVIC ClearPendingIRQ(Timerl IRQn);

int main ()

{
MSS TIM1 enable 1rqg();
NVIC EnableIRQ(Timerl IRQn);

%hile(l){}

Interrupt Service Routines

el Vel

1. Automatic saving of registers upon exception
« PC, PSR, RO-R3, R12, LR pushed on the stack

. While bus busy, fetch exception vector

. Update SP to new location

. Update IPSR (low part of PSR) with new exception number
. Set PC to vector handler

. Update LR to special value EXC_RETURN

o U1 AN W N

e Several other NVIC registers get updated
e Latency: as short as 12 cycles

Return from ISR

By Vi
e 3 ways to return from an ISR
Return Instruction Description
BX <reg> If the EXC_RETURN value is still in LR, we can use the BX LR instruction to
perform the interrupt return.
POP {PC}, or Very often the value of LR is pushed to the stack after entering the exception
POP{...., PC} handler. We can use the POP instruction, either a single POP or multiple POPs, to

put the EXC_RETURN value to the program counter. This will cause the processor
to perform the interrupt return.

LDR, or LDM It is possible to produce an interrupt return using the LDR instruction with PC as

the destination register.

e Unstack and reset SP
e Update NVIC registers

Nested Interrupts

Vil

e Built into the Cortex-M3 (not every MCU has this)
« Make sure main stack is large enough!

e Two methods:
- Tail Chaining
- Late Arrival (preemption)

Tail Chaining

Interrupt #1
Interrupt #2
Interrupt Interrupt exits Interrupt exits
Event #1 \ v
Interrupt Service \/ Interrupt Service
Routine #1 Routine #2
Main Program Main Program
Stacking Unstacking
Processor
State ! ! !
Thread Mode . Handler Mode . Handler Mode | Thread Mode

e If first interrupt has same or higher priority
 Skip stacking/unstacking for efficiency

Late Arrival (Preemption)

Interrupt #1
(Low Priority)

Interrupt #2
(High Priority)

Processor Thread Exception Sequence Handler #2
State
| | | | | | |
Data Bus Stacking
| | | | | | |
|nStrUCgﬁg Thread Handler Instruction Fetch
4

Vector Fetch

e Main stack must be able to hold maximum number
of preemptions!

Different Concepts of Interrupt Sharing ETCHIORRS

el Vel

« Number of potential interrupts usually larger than interrupt
lines availability on Core

e One peripheral often only has one interrupt
» Different types of events are stored in a status register

« Example, UART
- lIR, 0x40000008

3:0

Interrupt
identification
bits

0b0001

0b0110 = Highest priority. Receiver line status interrupt due
to overrun error, parity error, framing error or break
interrupt. Reading the Line Status Register resets this
interrupt.

0b0100 = Second priority. Receive data available interrupt
modem status interrupt. Reading the Receiver Buffer
Register (RBR) or the FIFO drops below the trigger level
resets this interrupt.

0b1100 = Second priority. Character timeout indication
interrupt occurs when no characters have been read from the
RX FIFO during the last four character times and there was at
least one character in it during this time. Reading the Receive
Buffer Register (RBR) resets this interrupt.

0b0010 = Third priority. Transmit Holding Register Empty
interrupt. Reading the IIR or writing to the Transmit Holding
Register (THR) resets the interrupt.

0b0000 = Fourth priority. Modem status interrupt due to
Clear to Send, Data Set Ready, Ring Indicator, or Data Carrier
Detect being asserted. Reading the Modem Status Register
resets this interrupt.

This register is read only; writing has no effect. Also see
Table 15-9.

ISR Sharing, i.e., Callbacks in C

e There is only one interrupt handler

e Functions have to “subscribe” for events
e Callbacks

- Driver provides function to register a function pointer
- Driver stores function pointers in list
- Upon interrupt, each registered function gets called

typedef void (*radioalarm handler t) (void);
radioalarm handler t radio alarm fired;

void RadioAlarm init(radioalarm handler t handler)

{

radio alarm fired = handler;

}

__attribute ((interrupt)) void Timerl IRQHandler ()
{

alarm state = FREE;
MSS TIM1 disable 1irqg();
MSS TIM1 clear 1irg();
NVIC ClearPendingIRQ(Timerl IRQn);
(* (radio alarm fired)) (); // call the callback function

Common Problems and Pit-Falls

el Vel

e« TOO many interrupts

- Your core can’t keep up with handling interrupts

o Concurrency issues

- One interrupt handler modifies global variables

- Can be avoided using atomic sections protected through PRIMASK

e Lost interrupts

- It can happen that an interrupt doesn’t get treated by the Core
- State machine and peripheral has to be aware of this possibility

- Danger for deadlocks

Summary

el Vel

e Overwrite default Interrupt Handler

e |Initialization
- Enable interrupt in NVIC
- Enable interrupt in Peripheral

e Upon Interrupt
- Clear interrupt in Peripheral

- Clear pending bit in NVIC
- Potentially disable interrupts temporarely

