

Intro to Cortex M0 and
LPCxpresso 1114

Minute Quiz

Minute Quiz

 Just kidding, but...
 What are the steps to go from source code to

an executable?
 Compile
 Link

Compile

 What makes ”gcc” different from ”arm-none-
eabi-gcc”?

 What does the ”-mach” flag do to gcc?
 All ARM assembly is the same, right?

 So why can't I run code for the SmartFusion on my
ARM-based Android phone?

Linking

 What is linking?
 We added this to every SoftConsole, what is it?

 -T ../CMSIS/startup_gcc/debug-in-actel-
smartfusion-esram.ld

Linking

 What is linking?
 We added this to

every SoftConsole,
what is it?
 -T

../CMSIS/startup_gcc/
debug-in-actel-
smartfusion-esram.ld

Static vs Dynamic Linking

 What does ”#include <stdlib.h>” do?
 Compiler?
 Linker?

 Where is stdlib.o?
 On your laptop

 /usr/lib/libc.so
 On your SmartFusion?

Vocabulary

 Cross-compiler
 arm-none-eabi-gcc
 arm-none-eabi-clang

 Toolchain
 compiler + linker + supporting scripts / configuration

Background

 ARM
 Cortex M0

 LPCxpresso 114
 Peripherals
 LPCxpresso (development suite)
 CooCox (OS)
 TinyOS

ARM

 32-bit RISC ISA
 With 16-bit subset: Thumb

 Simple, efficient cores
 Dominant in mobile / embedded space
 Trivia (ARM vs. ARM Holdings)

 The acronym ARM originally stood for Acorn RISC Machine.
The company name ARM stands for Advanced RISC
Machines. This name was changed, around the time of the
IPO, to "ARM Holdings", since it was felt the term RISC,
which indicates a type of CPU design, being phonetically
identical to "risk," would deter people unfamiliar with
computers. [wikipedia]

ARM: Cortex Family

 Cortex == ARMv7
 3 ”Families”

 Cortex-A: Applications
 Smartphones, etc

 Cortex-R: Real-Time
 Cortex-M: Microcontrollers

ARM: Cortex M Family

 Cortex-M4
 ARMv7-ME

 Thumb, Thumb2, FPU. Hardware MAC, SIMD,
and divide

 Cortex-M3
 ARMv7-M

 Thumb2, hardware divide

 Cortex-M0
 ARMv6-M

 Thumb2 subset (16-bit Thumb instructions & BL,
MRS, MSR, ISB, DSB, and DMB(16-bit Thumb
instructions & BL, MRS, MSR, ISB, DSB, and
DMB)

Cortex M0

 Simplest, smallest ”current generation” ARM
 85 µW/MHz (0.085 milliWatt)
 12K gates
 Only 56 instructions

 Subset of M3/M4; Thumb and some Thumb2

 3-stage pipeline
 Interrupts: NMI + 1-32 physical interrupts

 16 cycle latency

 Complex Hardware Ops
 Single-Cycle 32x32 multiply

LPCxpresso 1114 Specs

 Cortex-M0 @ 50 Mhz (max)
 32kB Flash
 8kB RAM
 12.000 MHz clock crystal
 Timers:

 4 capture inputs, 13 match outputs
 Two 32-bit counter/timers
 Two 16-bit counter/timers
 One Programmable Watchdog timer

LPCxpresso 1114 Specs

 Clocks:
 12 MHz RC oscillator, 1% accuracy
 Crystal operator, ranged 1-25MHz

 PLL allows CPU frequency up to 50MHz
 Watchdog oscillator, ranged 7.8KHz-1.8MHz
 Clock output with divider can source any clock

LPCxpresso 1114 Specs

 42 GPIOs with configurable pull-up/down
resistors

 Any GPIO usable as edge/level triggered
interrupt

 High-current output driver (20 mA) on one pin.
 High-current sink drivers (20 mA) on two I2C-

bus pins in Fast-mode Plus.
 Four general purpose counter/timers with a

total of four capture inputs and 13 match
outputs.

LPCxpresso 1114 Specs

 Analog:
 10-bit ADC

 single 10-bit successive approximation ADC with
eight channels

 Measurement range 0 V to VDD.
 10-bit conversion time ≥ 2.44 μs.

 Serial:
 UART
 1 SPI with SSP support
 I2C with FastMode (up to 1 Mbit/s)

LPCxpresso 1114

Let there be Light!

 (emitted in a blinking pattern
from diodes)

 Blinky
 Set a 10ms timer

void TIMER32_0_IRQHandler(void)

{

LPC_TMR32B0->IR = 1;/* clear
interrupt flag */

timer32_0_counter++;

return;

}

And loop forever:
while (1) {

 /* Each time we wake up... */

 /* Check TimeTick to see whether to set or
 clear the LED I/O pin */

 if ((timer32_0_counter%LED_TOGGLE_TICKS) <
 (LED_TOGGLE_TICKS/2))

 {

 GPIOSetValue(LED_PORT, LED_BIT, LED_OFF);

 } else {

 GPIOSetValue(LED_PORT, LED_BIT, LED_ON);

 }

 /* Go to sleep to save power between timer
 interrupts */

 __WFI();

}

OS'es for Cortex M0

 Linux Kernel?
 make allnoconfig

 With some editing to target the closest NXP board
 And LZMA (best, slowest) compression...

 ls -lh
 943K Image
 343K zImage

 32k of flash...

TinyOS

 Event-driven, non-preemptable
 Except for the thread library

 More extenisive networking stack
 Doesn't support M0 'out of the box'

 ”There is work underway to support the Cortex M3”

CooCox CoOS

 ”CooCox CoOS is an embedded real-time
multi-task OS specially for ARM Cortex M
series.”
 Scalable, minimum system kernel is only 974Bytes
 Supports preemptive priority and round-robin
 Interrupt latency is 0
 Stack overflow detection option
 Semaphore, Mutex, Flag, Mailbox and Queue for

communication & synchronisation

 http://www.coocox.org/CoOS.htm

http://www.coocox.org/CoOS.htm

Programming the 1114 (on Linux)

 LPCxpresso tools installed and working
 Build, run, debug, etc

 CoIDE and tools installed and mostly working
 Everything except CoFlash works
 But can flash from command line with LPC tools...

 crt_emu_lpc11_13_nxp -g -mi -2 -pLPC1114/301
-wire=winUSB -flash-load-exec=blinky.axf

 Demo IDEs

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

