

Intro to Cortex M0 and
LPCxpresso 1114

Minute Quiz

Minute Quiz

 Just kidding, but...
 What are the steps to go from source code to

an executable?
 Compile
 Link

Compile

 What makes ”gcc” different from ”arm-none-
eabi-gcc”?

 What does the ”-mach” flag do to gcc?
 All ARM assembly is the same, right?

 So why can't I run code for the SmartFusion on my
ARM-based Android phone?

Linking

 What is linking?
 We added this to every SoftConsole, what is it?

 -T ../CMSIS/startup_gcc/debug-in-actel-
smartfusion-esram.ld

Linking

 What is linking?
 We added this to

every SoftConsole,
what is it?
 -T

../CMSIS/startup_gcc/
debug-in-actel-
smartfusion-esram.ld

Static vs Dynamic Linking

 What does ”#include <stdlib.h>” do?
 Compiler?
 Linker?

 Where is stdlib.o?
 On your laptop

 /usr/lib/libc.so
 On your SmartFusion?

Vocabulary

 Cross-compiler
 arm-none-eabi-gcc
 arm-none-eabi-clang

 Toolchain
 compiler + linker + supporting scripts / configuration

Background

 ARM
 Cortex M0

 LPCxpresso 114
 Peripherals
 LPCxpresso (development suite)
 CooCox (OS)
 TinyOS

ARM

 32-bit RISC ISA
 With 16-bit subset: Thumb

 Simple, efficient cores
 Dominant in mobile / embedded space
 Trivia (ARM vs. ARM Holdings)

 The acronym ARM originally stood for Acorn RISC Machine.
The company name ARM stands for Advanced RISC
Machines. This name was changed, around the time of the
IPO, to "ARM Holdings", since it was felt the term RISC,
which indicates a type of CPU design, being phonetically
identical to "risk," would deter people unfamiliar with
computers. [wikipedia]

ARM: Cortex Family

 Cortex == ARMv7
 3 ”Families”

 Cortex-A: Applications
 Smartphones, etc

 Cortex-R: Real-Time
 Cortex-M: Microcontrollers

ARM: Cortex M Family

 Cortex-M4
 ARMv7-ME

 Thumb, Thumb2, FPU. Hardware MAC, SIMD,
and divide

 Cortex-M3
 ARMv7-M

 Thumb2, hardware divide

 Cortex-M0
 ARMv6-M

 Thumb2 subset (16-bit Thumb instructions & BL,
MRS, MSR, ISB, DSB, and DMB(16-bit Thumb
instructions & BL, MRS, MSR, ISB, DSB, and
DMB)

Cortex M0

 Simplest, smallest ”current generation” ARM
 85 µW/MHz (0.085 milliWatt)
 12K gates
 Only 56 instructions

 Subset of M3/M4; Thumb and some Thumb2

 3-stage pipeline
 Interrupts: NMI + 1-32 physical interrupts

 16 cycle latency

 Complex Hardware Ops
 Single-Cycle 32x32 multiply

LPCxpresso 1114 Specs

 Cortex-M0 @ 50 Mhz (max)
 32kB Flash
 8kB RAM
 12.000 MHz clock crystal
 Timers:

 4 capture inputs, 13 match outputs
 Two 32-bit counter/timers
 Two 16-bit counter/timers
 One Programmable Watchdog timer

LPCxpresso 1114 Specs

 Clocks:
 12 MHz RC oscillator, 1% accuracy
 Crystal operator, ranged 1-25MHz

 PLL allows CPU frequency up to 50MHz
 Watchdog oscillator, ranged 7.8KHz-1.8MHz
 Clock output with divider can source any clock

LPCxpresso 1114 Specs

 42 GPIOs with configurable pull-up/down
resistors

 Any GPIO usable as edge/level triggered
interrupt

 High-current output driver (20 mA) on one pin.
 High-current sink drivers (20 mA) on two I2C-

bus pins in Fast-mode Plus.
 Four general purpose counter/timers with a

total of four capture inputs and 13 match
outputs.

LPCxpresso 1114 Specs

 Analog:
 10-bit ADC

 single 10-bit successive approximation ADC with
eight channels

 Measurement range 0 V to VDD.
 10-bit conversion time ≥ 2.44 μs.

 Serial:
 UART
 1 SPI with SSP support
 I2C with FastMode (up to 1 Mbit/s)

LPCxpresso 1114

Let there be Light!

 (emitted in a blinking pattern
from diodes)

 Blinky
 Set a 10ms timer

void TIMER32_0_IRQHandler(void)

{

LPC_TMR32B0->IR = 1;/* clear
interrupt flag */

timer32_0_counter++;

return;

}

And loop forever:
while (1) {

 /* Each time we wake up... */

 /* Check TimeTick to see whether to set or
 clear the LED I/O pin */

 if ((timer32_0_counter%LED_TOGGLE_TICKS) <
 (LED_TOGGLE_TICKS/2))

 {

 GPIOSetValue(LED_PORT, LED_BIT, LED_OFF);

 } else {

 GPIOSetValue(LED_PORT, LED_BIT, LED_ON);

 }

 /* Go to sleep to save power between timer
 interrupts */

 __WFI();

}

OS'es for Cortex M0

 Linux Kernel?
 make allnoconfig

 With some editing to target the closest NXP board
 And LZMA (best, slowest) compression...

 ls -lh
 943K Image
 343K zImage

 32k of flash...

TinyOS

 Event-driven, non-preemptable
 Except for the thread library

 More extenisive networking stack
 Doesn't support M0 'out of the box'

 ”There is work underway to support the Cortex M3”

CooCox CoOS

 ”CooCox CoOS is an embedded real-time
multi-task OS specially for ARM Cortex M
series.”
 Scalable, minimum system kernel is only 974Bytes
 Supports preemptive priority and round-robin
 Interrupt latency is 0
 Stack overflow detection option
 Semaphore, Mutex, Flag, Mailbox and Queue for

communication & synchronisation

 http://www.coocox.org/CoOS.htm

http://www.coocox.org/CoOS.htm

Programming the 1114 (on Linux)

 LPCxpresso tools installed and working
 Build, run, debug, etc

 CoIDE and tools installed and mostly working
 Everything except CoFlash works
 But can flash from command line with LPC tools...

 crt_emu_lpc11_13_nxp -g -mi -2 -pLPC1114/301
-wire=winUSB -flash-load-exec=blinky.axf

 Demo IDEs

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

