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Abstract
To achieve more accurate global time synchronization,

this paper argues for decoupling the clock distribution net-
work from the routing tree in a multihop wireless network.
We find that both flooding and routing-integrated time syn-
chronization rapidly propagate node-level errors (typically
due to temperature fluctuations) across the network. There-
fore, we propose that a node chooses synchronization neigh-
bors that offer the greatest frequency stability. We propose
two methods to estimate a neighbor’s stability. The first
approach selects the neighbor whose Frequency Error Vari-
ance, or simply FEV, is smallest with respect to the local
clock. The second approach selects the neighbor that reports
the lowest FEV relative to its synchronization parent. We
also propose the node-level time-variance FEV as an additive
metric for selecting more stable clock trees than either naı̈ve
flooding or routing-integrated time synchronization can pro-
vide. We incorporate these techniques into FTSP, a widely-
used time synchronization protocol, and show that the mean
error in global time significantly improved (by a factor of
five) when some nodes are warmed and others are not.
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1 Introduction
Time synchronization is one of the most fundamental and

widely used middleware services in distributed wireless sen-
sor networks. Accurate and stable time estimates are es-
sential for correlating distributed observations [3], decreas-
ing communications energy [5], improving localization ac-
curacy [12], increasing security [21], and improving coor-
dination [2]. Modern sensornet time sync protocols, like
the Flooding Time Synchronization Protocol (FTSP) [16] or
its many optimizations [11, 13, 22, 23], are able to quickly
establish network time, accurately estimate clock skews,
steadily maintain global virtual time, and efficiently integrate
with routing. Today, microsecond-level time synchroniza-
tion can be readily achieved and steadily maintained under
the kind of stable environmental conditions that one might
find in the lab or in a temperature-controlled indoor setting.

Unfortunately for time synchronization, many modern
sensor networks are being deployed in forests [24], data cen-
ters [14], and mixed indoor/outdoor settings [19] where the
temperature field is neither uniform across the nodes nor
fixed in time. When the sun shines at daybreak in a for-
est, the nodes at the top of a tree heat up faster than those
in the middle or bottom. When a rack-mounted server’s uti-
lization increases suddenly, its exhaust temperature profile
changes quickly. And when a network consisting of nodes
located both indoors and out experiences a partly cloudy day,
different nodes experience vastly different temperature pro-
files. These temperature differences lead to frequency er-
rors which are then rapidly propagated across the network
by routing-integrated or flooding-based time synchronization
protocols, resulting in time synchronization errors.

To achieve more accurate global time synchronization, we
argue for a logical decoupling of time synchronization from
naı̈ve flooding. In other words, we propose to decouple the
clock distribution network from the routing tree in multihop
wireless networks. Today’s time synchronization protocols
liberally integrate timing information offered by neighbor-
ing nodes into their own estimates. We argue that instead
of blindly integrating such information, especially when of-
fered by neighbors with dubious frequency stability on an ad
hoc basis, that a node chooses the synchronization neighbor
that offers the most stable path from the root. The challenge,
then, becomes how nodes estimate and propagate path sta-
bility without access to a stable clock source – a seemingly
circular problem.
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In this paper, we propose two methods to estimate a
neighbor’s frequency stability and, by induction, path sta-
bility. Our key insight is that a node’s time estimation er-
rors, when expressed as a variance, provides an additive path
metric by which time sync protocols can choose synchro-
nization neighbors. Similar to additive metrics like hopcount
in routing, and expected number of transmissions (ETX) in
wireless, we propose a new metric called Frequency Error
Variance or simply FEV. The FEV metric is additive, and we
describe how it can be estimated locally by a node, or co-
operatively by neighbors. Using FEV, selecting a synchro-
nization parent is straightforward – a node simply selects the
neighbor that offers the lowest FEV.

The Autonomous Time Information Routing Protocol (A-
TIRP) selects the neighbor whose frequency error variance
is smallest, with respect to the local clock. In this approach,
the FEV is computed locally, and the additive property of
frequency variance is expressed by the neighbors announce-
ment of their global time estimates. This approach can be
introduced incrementally and does not require changes to
current protocols. However, it can result in deviant cliques
of nodes forming timing loops (which are similar to routing
loops) when nodes have frequency errors that are not inde-
pendent or real-world quantization errors are considered.

The Cooperative Time Information Routing Protocol (C-
TIRP) selects the neighbor that reports the lowest frequency
error variance. When the parent and child’s time estimates
diverge, then either the parent or the child is experiencing
clock instability. But even if these two values track, the
nodes may still be experiencing correlated frequency errors.
To detect this situation, we also require that the root of the
network employ a stable clock and include a hopcount in its
TIRP beacons. The hopcount is then used to break the timing
loops that we discussed earlier.

This paper makes several contributions. First, we show
how three basic sources of error – noise, quantization error,
and frequency instability – conspire to affect network time
synchronization. Second, we formulate the problem of time
information routing as an optimization problem: the selec-
tion of a master clock by a slave in the presence of multiple
clocks advertising themselves as being stable. We show that
the variance of frequency skew is an additive property and
we leverage this fact to propose the Frequency Error Vari-
ance (FEV) metric for routing time. Minimizing the FEV
becomes the node-level objective function. We implement
A-TIRP and C-TIRP using TinyOS and we compare the per-
formance of the default FTSP implementation with and with-
out our protocol. Our results show that by using FEV as
the metric for clock tree construction, the accuracy of time
synchronization is greatly improved, time error propagation
is greatly attenuated and compartmentalized, and transients
due to sudden temperature changes are quickly detected and
corrected. Our design mitigates one of the major remaining
sources of error in multihop wireless time synchronization
systems, paving the way to better correlated distributed ob-
servations, reduced communication energy, improved local-
ization accuracy, increasing security, and more tightly coor-
dinated actions.

2 Estimating Clock Stability
The objective of a time synchronization protocol is main-

taining clock accuracy at each node in the network with re-
spect to a reference clock. It does this by nullifying the time
offset and the frequency error of the local clock with respect
to a global clock. In order to achieve this in a multi-hop
wireless network, the protocol exchanges a sequence of syn-
chronization messages between nodes. The synchronization
messages originate at a master node that advertises its clock
as being stable and is received by slave nodes that would like
to stabilize their own clocks.

These messages are typically time-stamped transmissions
that enable the synchronization algorithm on a slave node to
estimate two quantities. One, by observing the difference in
the transmission time reported in the message and the recep-
tion time measured locally, the slave node is able to compute
the offset between clocks on the two nodes. Two, by observ-
ing the trend of offset measurements over a time window, the
synchronization algorithm on the slave node can estimate the
skew between the frequencies of the clocks. Applying these
estimates to the local clock to cancel offset and skew, the
slave node’s clock accuracy can theoretically be equivalent
to the master’s. By performing this operation in succession
from the root node to the rest of the network hop-by-hop, all
nodes in the network can have a clock accuracy equivalent to
the root node.

Three sources of error creep into this perfect system.
First, timestamps are noisy because of jitter in processing
delay during transmission at the master and reception at the
slave. Second, since we are dealing with digital clocks,
timestamp accuracy is limited by quantization error in time
measurements. Quantization error is especially pronounced
when the frequency of clocks is low due to a larger time am-
biguity between consecutive ticks of the clock. Third, fre-
quency error between master and slave clocks may change
during the time window needed to collect sufficient offset
measurements. An assumption made in practical synchro-
nization algorithms is that the frequency error remains con-
stant during the measurement period and thus the offsets can
be fit to a linear function, the slope of which is the frequency
error. When clock frequency changes, either at the master or
the slave, it contributes to error in the offset measurement,
which manifests as an error in the frequency error estimate.
This error in frequency error estimation eventually leads to
inaccuracy in clock synchronization.

The issue we would like to address in this paper is the
selection of a master clock by a slave in the presence of mul-
tiple clocks advertising themselves as being stable. We term
this problem time information routing to form an analogy
with network routing, which addresses a similar issue - that
of selecting the next hop to forward a packet toward its final
destination based on wireless link estimations. In time infor-
mation routing, the “next hop” for a slave node is the master
clock it synchronizes to and the final destination is always
the root clock in the system. In this way, time information
routing is considered a tree routing problem: construct a time
information tree rooted at the most stable clock in the system
such that each clock in the network attains the highest accu-
racy possible.
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As in network routing, the time information routing pro-
tocol must find the optimal tree with reasonable overhead
cost, in a distributed manner, and be able to rapidly converge
to a new tree if the topology of the network changes or the
quality of clocks differs. A myriad of network routing pro-
tocols have been developed over the past three decades that
each make distinct assumptions and trade offs in their design
to realize these goals. A cornerstone of all routing proto-
cols is the estimation of a cost metric, which quantifies the
cost of a particular path to a destination. When this met-
ric is monotonic along the path, there exist algorithms that
compute the optimal path in polynomial time. For network
routing, these gradient cost metrics are typically link delay,
packet reception ratio or ETX [4]. For time information rout-
ing, we propose the use of Frequency Error Variance FEV as
a cost gradient metric. The following section describes FEV
and shows why it is an appropriate time information routing
metric.

2.1 Frequency Error Variance as Routing
Metric

In order to illustrate the concept behind FEV, we first an-
alyze the effects of errors introduced in measurements using
a simplified three node, two hop, linear network - N0 → N1
→ N2. Without loss of generality, we let node N0 be the root
node and assume that it has a perfect clock, i.e. its offset and
frequency error with respect to a universal clock is always
zero. From synchronization messages that N0 broadcasts, N1
can compute the offset c1 between its local clock and N0. For
the i-th synchronization message, the offset can be modeled
as:

c1(i) = o1(i)+ e1(i) (1)

Here, o1(i) corresponds to the true offset between the clocks
at the i-th message exchange and e1(i) is the error in the off-
set measurement introduced due to the three factors men-
tioned above. An additional factor could be included to ac-
count for the offset that builds up during the message ex-
change itself, but this error is short enough for wireless prop-
agation times to be neglected in our analysis. Let the interval
between two periodic synchronization messages be denoted
as T . One could model the true offset at message i as:

o1(i) = o1(0)+
iT δ1

f0
(2)

where, o1(0) is the true initial offset between the clocks and
δ1 is the frequency error of N1 with respect to N0. f0 is the
nominal frequency of the N0 master clock. The second term
in the above relation is the drift in the offset between the
clocks due to a difference in their frequencies. If f1 is the
frequency of N1’s clock, δ1 = f1− f0.

It is the objective of the time synchronization algorithm
to estimate offset o1(0) and frequency error δ1 from a se-
quence of messages that provide noisy offset measurements,
c1. Since Equation (2) has an affine form, we consider the
use of a least squares linear regression model to estimate
both parameters. Using a window of w offset measurements,
the estimates can be computed using [10]:

ô1(0) = c̄1−b1w̄ (3)

c̄1 =
1
w

w

∑
i=1

c1(i) (4)

w̄ =
1
w

w

∑
i=1

i =
w+1

2
(5)

b1 =
∑

w
i=1(c1(i)− c̄1)(i− w̄)

∑
w
i=1(i− w̄)2 (6)

δ̂1 =
f0b1

T
(7)

Assuming that the offset measurement error e1(i) is in-
dependent across messages and is normally distributed ∼
N (0,σ2

1), the variance in the estimates ô1(0) and δ̂1 is given
by [10]:

Var(ô1) =
1
w

[
1+

w̄2

σ2
w

]
σ

2
1 (8)

Var(δ̂1) =
f 2
0

wσ2
wT 2 σ

2
1 (9)

σ
2
w =

1
w

w

∑
i=1

(i− w̄)2 (10)

The final relationships in Equations (8) and (9) map the
variance at the input of the time synchronization algorithm
in terms of offset measurement noise, σ2

1, to a variance at the
output in the offset and frequency error estimates.

After the reception of w messages, N1 is considered syn-
chronized with N0 and the estimates from Equations (7) and
(3) are applied to the local clock to cancel offset and fre-
quency error. Since these estimates are not perfect (unless
σ2

1 = 0), the local clock at N1 will not be an exact replica of
the master clock at N0. Nevertheless, once N1 considers itself
synchronized, it commences broadcasting messages too. N2
hears these messages and repeats the process after receiving
w of them to estimate ô2(0) and δ̂2. However, as the clock
at N1 is not as accurate as the master clock, the noisy offset
measurements at N2 will now include additional terms:

c2(i) = o2(i)+ e2(i)+ eo1 +
iT
f0

eδ1 (11)

eo1 = o1(0)− ô1(0) (12)

eδ1 = δ1− δ̂1 (13)

where, o2(i) is the true offset of the clock at N2 with respect
to the clock at N0, e2(i) is the offset measurement error at N2
and eo1 and eδ1 are the errors introduced in offset measure-
ment due to imperfect offset and frequency error estimation
at N1 respectively for message i.

One may perceive the error terms as being a combined
error, the variance for which, after receiving w messages, is
given by:
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σ
′2
2 = Var(e2 + eo1 +

wT
f0

eδ1) (14)

= Var(e2)+Var(eo1)+
w2T 2

f 2
0

Var(eδ1)

+
2wT

f0
Cov(eo1,eδ1) (15)

= Var(e2)+Var(ô1)+
w2T 2

f 2
0

Var(δ̂1)

+
2wT

f0
Cov(ô1, δ̂1) (16)

= σ
2
2 +

σ2
1

w

[
1+

w̄2

σ2
w

]
+

w2T 2

f 2
0
·

f 2
0 σ2

1
wσ2

wT 2

−2wT
f0
· fow̄σ2

1
Twσ2

w
(17)

= σ
2
2 +

σ2
1

w

[
1+

w̄2

σ2
w
+

w2

σ2
w
− 2ww̄

σ2
w

]
(18)

= σ
2
2 +σ

2
1

[
1
w
+

(w− w̄)2

wσ2
w

]
(19)

= σ
2
2 +κσ

2
1 (20)

Equation (15) is derived by expanding Equation (14) as-
suming independence between the error terms at N1 and
N2. This assumption is reasonable because they are deemed
physically independent as well. Equation (17) uses Equa-
tions (8) and (9) and results from [10] for the covariance
term. Simplifying the resulting terms gives the final result
in Equation (19). σ2

2 is the inherent offset error variance that
would be perceived at N2 if it received synchronization mes-
sages directly from N0. If one were to compute the variance
of the frequency error estimate (FEV) at N2 from the above,
we would obtain:

Var(δ̂2) =
f 2
0

wσ2
wT 2 ·

(
σ

2
2 +κσ

2
1
)

(21)

κ(w) =
1
w
+

(w− w̄)2

wσ2
w

(22)

We glean a few observations from the above derivation.
First, since all terms in Equation (22) are positive, κ > 0.
This means that FEV is additive in nature along a time in-
formation path. Second, κ is the factor by which variance
of offset measurements at the input of the master clock time
synchronization algorithm influences FEV at the slave. Inter-
estingly, κ is only dependent on the window size w of sam-
ples used. The variation of κ vs. w is plotted in Figure (1),
which shows that as the window size is increased, this fac-
tor reduces. For FTSP [16], w = 8, which corresponds to
κ = 0.417. This indicates that 41% of the offset error vari-
ance at a master clock is passed on to the slave clock. How-
ever, the length of w is bounded by the assumption that the
frequency error has to be constant over the whole length of
w, in effect limiting the maximum length of the synchroniza-
tion window.
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Figure 1. A plot of κ, the factor by which variance at the
master clock is introduced in the slave.

Third, comparing Equations (9) and (21) for the case
when σ2

1 = σ2
2 = σ2, we see that FEV at N2 is higher than

that at N1. Recall that σ2 is a contribution of three factors:
processing jitter, quantization error and frequency error vari-
ation. The case of σ2

1 = σ2
2 = σ2 represents a steady state

condition for a homogeneous network of nodes when there
is no change in the environment and thus no change in fre-
quency error. This implies that, in steady state, the variance
of the frequency error estimate at a node that is two hops
away from the root clock is higher than that at a node that
can hear messages from the root clock directly. This is intu-
itive because a slave node that uses another node as the mas-
ter clock must have a lower accuracy if they have equivalent
offset measurement noise.

The above argument and analysis can be extended to a
larger network to show that FEV is a monotonically increas-
ing quantity along paths to a root in a time information tree.
The FEV of a node k in the tree is given by the recurrence
relation:

Var(δ̂k) =
f 2
0 σ2

k
wσ2

wT 2 +κ ·Var(δ̂master(k)) (23)

Where, master(k) is the node a slave synchronizes to and
Var(δ̂root) = 0. We can now outline how this could be used
practically to construct the time information tree itself.

Let there be another node, N3, that is one hop away from
the root and is synchronized to it. Let N3 also be in com-
munication range of N2. Since N2 can hear synchronization
messages from both N1 and N3, it must decide which one to
pick as master. If N1 and N3 could advertise their σ2

1 and σ2
3

respectively, N2’s obvious choice would be to pick the node
with lower offset error variance. However, since σ2

1 and σ2
3

are unknown to N1 and N3 themselves, they can compute
and advertise their FEV Var(δ̂1) and Var(δ̂3) respectively.
For nodes one-hop away from the root, such as N1 and N3,
Var(δ̂) maps directly to σ2 through Equation (9). Thus, by
picking the node with lower Var(δ̂), N2 picks the one with
lower σ2.
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If the topology of the network is unknown, however, N2
does not know whether N1/N3 are in direct communication
with the root. This would mean that Equation (9) may not ap-
ply, but rather Equation (23). The synchronization objective
of attaining the highest clock stability is met when Var(δ̂2)

is minimized. As all other terms except Var(δ̂master(k)) for
Equation (23) are constant at N2, it can still pick the node
that advertises the lowest Var(δ̂master(k)) to ensure lowest
Var(δ̂2). Scaling this concept to a large multi-hop network
scenario, by selecting a master based on their advertised
FEV, each node in the network is assured the highest sta-
bility clock possible and the routing tree constructed would
be optimal for disseminating time information.

Interestingly, this process can be accomplished directly
from timestamp messages without master nodes explicitly
advertising their Var(δ̂). This makes the protocol robust to
erroneous advertisements and allows backward compatibil-
ity to existing time synchronization protocols. Observe that
N2 receives synchronization messages from both potential
masters N1 and N3, even after it has selected one of them. Us-
ing these messages, N2 can continuously and simultaneously
compute Var(δ̂2/1) and Var(δ̂2/3) – FEV at N2 with respect to
N1 and N3 respectively. This is implemented by computing
the statistical variance of the output of Equation (7). Refer-
ring Equation (23) again, we see that with all other terms
held equal, Var(δ̂2/1) and Var(δ̂2/3) differ only in the FEV
of the master clock, Var(δ̂1) or Var(δ̂3). Therefore, selecting
the master clock by computing and comparing Var(δ̂2/x) for
each potential master node x is equivalent to learning FEV
from each node explicitly. The trade-off to this process is
the delay in acquiring sufficient δ̂2/x samples for maintain-
ing statistical significance of Var(δ̂2/x).

The above procedure can not only be used to construct the
time information tree but also to preserve it against clock fre-
quency changes due to environmental variation. Frequency
error changes at clocks close to the root will propagate fur-
ther down the tree so a time information path should try
to circumvent nodes that show high FEV. In order to track
this error, we track changes in Var(δ̂2/1) and Var(δ̂2/3) over
time for N2, for example. From Equation (23), we learn
that Var(δ̂2/x) could fluctuate due to two factors – σ2

2 and
Var(δ̂x). When the frequency error at N2 increases, due to
local changes in temperature, say, σ2

2 increases. This mani-
fests as an increase in both Var(δ̂2/1) and Var(δ̂2/3) equally,
indicating a local problem. Whereas, if the frequency er-
ror at either N1 or N3 increases, only one of Var(δ̂2/1) or
Var(δ̂2/3) will increase, indicating that N2 must switch mas-
ters to the one with a lower variance. In this way, by contin-
uously monitoring the relative variation of Var(δ̂2/x) across
potential master nodes, N2 will always select the best clock to
synchronize to. This notion is easily extendible to the rest of
the network, resulting in distributed preservation of the opti-
mal time information tree in spite of environmental changes
causing clock instability.

2.2 Root Clock Selection
It is expected that the base station node is equipped with

a high stability time keeping device so that the time informa-
tion tree is rooted at the same node as the data collection tree.
When this is not the case, one may like to extend the mas-
ter clock selection mechanism per node based on frequency
error variance to select the root clock for the entire network.
The root clock must be the most stable clock in the network.
It would seem that if every node picks a master with the low-
est frequency error variance, that a root will be selected con-
sequently and that this root would be the most stable one in
the network. This is untrue.

When a node k computes its frequency error variance
Var(δ̂k/ j), it does so from the output of Equation 7 with re-
spect to another node j. Because FEV is always relative,
there is at least one unknown in the system of equations that
is unsolvable. To see this, consider our three node linear net-
work once again, but this time make no assumption about
the stability of N0’s clock. Each node computes Var(δ̂k/ j).
Thus, each node now has two FEV values and one can form
a system of equations based on Equation 23 to solve:

Var(δ̂k/ j) =
f 2
0

wσ2
wT 2 ·σ

2
k +κ ·Var(δ̂ j) (24)

∀k ∈ {0,1,2} j ∈ {0,1,2}\k

This leads to six equations in six unknowns – σ2
k and Var(δ̂k)

for k ∈ {0,1,2} but the system is under-determined. The rea-
son is that when a node k computes Var(δ̂k/ j), it does so to
decide which of the other two j nodes it should pick, but
not itself. Since it is impossible to compute frequency er-
ror without a reference, it is impossible for a clock to know
its own stability and pick itself as the root. Thus, while the
metric of FEV works well for master selection from a set of
candidates, it does not work when one of the candidates is
the node itself.
2.3 Timing Loops

A key assumption we used in deriving frequency error
variance as a gradient time routing metric was that σ2

1 =

σ2
2 =σ2, which implies a steady state homogeneous network.

When conditions in the network change, however, this as-
sumption is violated and it could result in timing loops in the
network akin to forwarding loops in network routing. To
show why this might happen, compare Equations (9) and
(21) that model the FEV at N1 and N2 respectively. If an-
other node, say N4, can hear messages from both N1 and N2,
it would seem intuitive to expect N4 to select N1 as its master
since it is closer to the root and N2’s clock is derived from N1
anyway. However, N4 selects N1 as master only if:

Var(δ̂1) < Var(δ̂2) (25)

σ
2
1 < σ

2
2 +κ ·σ2

1 (26)

σ
2
1(1−κ) < σ

2
2 (27)

In the ideal limiting case, we would like κ→ 0. Thus, N4
selects N1 as master over N2 only if : σ2

1 < σ2
2. Since the

reverse is a likely possibility considering variations in the
network, N4 might choose N2 at times and N1 at other times.
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This behavior causes route oscillations. A worse situa-
tion can occur if at some instant later Var(δ̂4) < Var(δ̂1),
even temporarily. If at this point, N2 can hear synchroniza-
tion messages from N1 and N4, N2 will pick N4 as its master.
Coupled with the fact that N4 could have chosen N2 as master
itself, N4 and N2 will form a timing loop picking each other
as master clocks. They will drift away from the rest of the
network and will never pick N1 again as master since it will
always be worse in terms of FEV. We will present a solution
to the timing loop problem in Section 3.4.
3 The Time Information Routing Protocol

Section 2 outlined two approaches on how to use the fre-
quency variance as a routing metric. In this section, we will
go into details of these two approaches while presenting the
Time Information Routing Protocol (TIRP).

The goal of TIRP is to optimally disseminate the global
time established at a root synchronization node within a
multi-hop network. The key function behind TIRP is the
measurement of frequency variance with respect to a fre-
quency reference clock. Previous work [16] proposed to
select the synchronization root as the node with the lowest
node id. This is not ideal for TIRP because it does not guar-
antee that the node with the lowest id has a stable clock fre-
quency. Ideally, we would like to choose the clock with the
lowest frequency variance within the whole network. But as
we showed in Section 2.2 this can not be accomplished.

We assume that the synchronization root has access to a
stable clock source, like a GPS receiver, or a temperature
compensated crystal oscillator (TCXO). This assumption fits
well within the common system architecture of wireless sen-
sor networks for data collection. The gateway node or sink
node is usually a more capable platform with access to a
larger energy storage. We can equip this node with a more
stable time source, even if it consumes more energy.

In TIRP, a node chooses its synchronization parent within
its radio neighborhood according to a statistical measure-
ment of frequency stability. We showed in Section 2.1 that
the estimated frequency variance Var(δ̂) has the right proper-
ties, i.e., it is monotonic along the path. As described earlier,
there are two ways how a node k with neighborhood Vk re-
trieves these measurements.

1. Nodes j in Vk advertise their Var(δ̂ j/master( j)) inside
the synchronization beacons

2. Node k calculates Var(δ̂k/ j), ∀ j ∈ Vk based on the re-
ceived synchronization beacons.

Since these two systems are significantly different, we will
call them Cooperative - TIRP (C-TIRP) and Autonomous -
TIRP (A-TIRP). In both cases, node k minimizes the syn-
chronization objective of attaining the highest clock stability,
i.e., it chooses master(k) from j ∈Vk such that

master(k) = argmin
j

Var(δ̂ j/master( j)), ∀ j ∈Vk, (28)

for C-TIRP or

master(k) = argmin
j

Var(δ̂k/ j), ∀ j ∈Vk, (29)

for A-TIRP respectively.

There are several trade-offs between C-TIRP and A-TIRP.
C-TIRP has a smaller memory and calculation footprint
since every node tracks only one frequency statistics, while
in A-TIRP, a node has to track the frequency statistics of
every potential synchronization neighbor. Nevertheless, in
C-TIRP a node has to trust the variance calculated by their
neighbors, while in A-TIRP a node makes its own decisions.
This adds robustness to erroneous or even malicious adver-
tisements since a node can not fake a lower frequency stabil-
ity.

We implemented and evaluated both the C-TIRP and A-
TIRP algorithm and the reminder of this section will go into
some more protocol details. For both implementations, we
assume that each node has a local clock source and a mech-
anism for low-level precision message time stamping. These
two mechanisms allow a node to measure clock offsets o(·)
between the local clock c(·) and the global clock advertised
by a radio neighbor r(·).
3.1 Calculating Frequency Error Variance

Algorithm 1 Frequency Variance Calculation
regressionT bl[n%N] = (c(n), o(n))
n += 1
if n > 1 then

δ̂ = calculateFrequencyError(regressionT bl)
VarT bl[m%M] = δ̂

m += 1
if m > 1 then

var = calculateVariance(VarT bl)
end if

end if

Algorithm 1 gives a high level overview on how a node
estimates the frequency error variance of the local clock with
respect to a remote clock. The algorithm consists of three
steps:

1. Collect pairs of local time c(n), remote time r(n) times-
tamps from synchronization beacons and store c(n) and
the offset o(n) = r(n)− c(n).

2. Once enough pairs are collected, calculate the fre-
quency error δ̂ using a regression algorithm on the
(c(n), o(n)) pairs and store it in memory.

3. Once a significant number of frequency errors are col-
lected, calculate the statistical variance for the fre-
quency error measurements.

Note that the (c(n), o(n)) pairs are stored in a circular
buffer of size N, and the frequency error estimates in a circu-
lar buffer of size M. Thus, after an initial phase of filling the
buffers, every new (c(n), o(n)) pair will result in a new fre-
quency error estimate, and thus a new value for the frequency
error variance. The size of the circular buffers depends on the
clock frequency, and resynchronization rate. They should be
chosen such that the variance becomes statistically signifi-
cant.
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3.2 Cooperative - TIRP
C-TIRP resembles the architecture of wireless collection

routing protocols, where every node advertises its current
path metric. A node chooses the neighbor with the best path
metric as its routing parent. In C-TIRP, this path metric is
the calculated frequency variance with respect to the nodes
synchronization master Var(δ̂k/master(k)).

Message Format: A C-TIRP synchronization message
contains the timestamp r(·), the root id, a hop count,
and a compressed representation of the frequency variance
Y (Var(δ̂k/master(k))). The timestamp r(·) contains the global
time estimated by the transmitting node. The root id field
contains the id of the synchronization root that provides the
global time, while the hop count is the number of interme-
diate hops between the transmitting node and the root. This
field is used to avoid time loops, which will be discussed in
Subsection 3.4.

The compressed variance Y (·) is an 8-bit representation of
the locally calculated variance. C-TIRP calculates the vari-
ance using floating point math, and converts it to an 8-bit
representation using a mapping function. A linear mapping
with constant resolution is not sufficient as the resolution for
smaller variances is inadequate. Therefore, we give more
resolution on small variances, and less resolution the bigger
the variance becomes. The intuition is that small changes
at low variance are more important to resolve than small
changes at high variance. If a node exhibits high variation
in its frequency error, we know that the node itself is bad,
and thus can ignore it.

One mapping following this requirement is of the form

Y (var) = Ymax ·
(

1− e−
var

var0

)
, (30)

where Ymax = 255, and var0 represents the variance which
will indicate 63.2% of Ymax.

Before a node calculates its own frequency variance, it
must select a synchronization parent from its radio neigh-
borhood. At initialization, only the synchronization root can
start to send out synchronization messages and thus the first
nodes calculating their frequency variance will be the imme-
diate root neighbors at 1-hop distance. Once these nodes col-
lected enough information for statistical significance of their
variance, the nodes become synchronized and start them-
selves sending out beacons. Thus the 2-hop nodes will start
calculating their variances before they start sending out their
own beacons. This repeats until all the nodes in the network
can overhear another node’s beacons, and the whole network
becomes synchronized.
3.3 Autonomous - TIRP

The main idea behind A-TIRP is reduced reliance on
other nodes’ calculations. A-TIRP exploits the fact that the
time beacons themselves indirectly include the accumulated
path-frequency changes of all the nodes in the synchroniza-
tion branch, i.e., the second term of Equation (23). A node
receiving the synchronization beacons can extract the path
variance by calculating the frequency error variance of the
beacon time with respect to the local clock. This is drasti-
cally different from regular network routing, where the rout-
ing metric can not be extracted from the routing beacons.

Message Format: A-TIRP uses the same message for-
mat as C-TIRP, except that it does not need the frequency
variance field Y (·). The rest of the fields are identical.

The major difference between A-TIRP and C-TIRP is the
amount of storage and calculation a node has to perform.
While in C-TIRP, a node tracks only one frequency error
variance, in A-TIRP the node needs to calculate the fre-
quency error variance for every radio neighbor. Thus, the
storage and computation requirements for A-TIRP increase
linearly with the size of the radio neighborhood.

Memory Considerations: We can imagine that for dense
wireless networks a node limits itself to a subset of radio
neighbors. For example, assume a node can only track a
maximum of 10 nodes. Initially, the node would start cal-
culating the frequency variance of the first 10 neighbors it
overhears. Once the node calculated the variance of each
neighbor, it could choose the 5 nodes with highest frequency
variance and replace them with 5 new neighbors. This would
allow the node to eventually go through all the radio neigh-
bors finding the most stable nodes.
3.4 Time Loops

A common problem in wireless routing protocols are
routing loops, where messages are sent around in a loop of
nodes. A similar phenomena in TIRP are time loops as was
described in Section 2.3, where nodes synchronize to each
other in a loop. These time loops have to be avoided as they
introduce large global synchronization errors for the nodes
participating in the loop.

A common technique in routing to detect loops is dupli-
cate packet inspection, i.e., routers actively search for iden-
tical packets. This is often achieved by means of the Time
To Live (TTL) value of a packet. In TIRP, we decided to use
an incrementing hop variable that gets incremented by one at
each hop. This is similar to the THL field in the Collection
Tree Protocol [9].

A node detects a time loop by observing the hop count
of the beacon message. If the hop count keeps increasing
with every beacon received, then there exists a loop and the
beacon messages should be ignored. At the same time, if this
particular neighbor was the chosen synchronization parent,
then we should switch to a different neighbor.
4 Evaluation

We implemented A-TIRP and C-TIRP in TinyOS for the
TelosB sensor network platform by extending the Flooding
Time Synchronization Protocol [16]. The choice of platform
limits our time resolution to a 32kHz clock, since the TelosB
is not equipped with a high frequency crystal oscillator. At
the same time, the timestamping accuracy of the Texas In-
struments CC2420 radio chip employed on the TelosB has a
latency between transmit and receive timestamp of 3.15 µs,
and a variance of about 45 ns [23]. This is well below the 1-
tic resolution of the 32kHz clock, and thus a uni-directional
synchronization process, as is used in FTSP, achieves the
same synchronization accuracy as a bi-directional synchro-
nization exchange. Nevertheless, we show in our evaluation
how temperature can introduce large time errors even at these
low frequencies, and how TIRP prevents these errors from
propagating through the network.
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Figure 2. Experimental node connectivity. Node 5 has
the possibility to switch its master from 2 to 3 if neces-
sary, while node 4 was forced to use node 2 exclusively.
This allows to show the difference between a node that
switches its master, and a node that does not switch, in
case the master becomes unstable.

4.1 C-TIRP vs. Routing Integrated
The experimental scenario to test C-TIRP involved a

small 5 node network. Figure 2 illustrates the communi-
cation links within the network. Node 1 is the dedicated
time root, and nodes 2 and 3 are the 1-hop synchronization
nodes. In order to show the disadvantages of a routing in-
tegrated time synchronization protocol, we forced node 4 to
always synchronize using node 2’s beacons. Node 5 was free
to choose between nodes 2 and 3 and is allowed to switch
dynamically between the two nodes, depending on their ad-
vertised FEV. To induce a change in node 2’s frequency, we
started to heat node 2 about 400 seconds into the experiment.
This simulates an abrupt change in environmental tempera-
ture that will impact the synchronization accuracy of node 2,
but not the communication network itself.

We used the same mapping function as was proposed in
Equation (30) to map the calculated frequency variance to a 1
byte value, and set the 63.2% mark to var0 = 4 ·10−12. This
represents a standard deviation of 2 ppm, i.e., if the standard
deviation of the frequency error is measured to be 2 ppm,
then the var field in the C-TIRP message will be set to 161.
It is to note that a standard deviation of 2 ppm is bad for the
purpose of synchronization, and that if the temperature envi-
ronment is stable, the standard deviation for this experiment
was closer to 0.1 ppm.

Figure 3 shows the effect that heating node 2 has on nodes
4 and 5. Shortly after node 2 heats up, node 2’s synchro-
nization accuracy becomes worse. Since node 4 uses node 2
as synchronization parent, it too incurs this inaccuracy, even
though node 4 is in a stable temperature environmental. On
the other hand, node 5 which is also at a 2-hop distance from
the synchronization root does not change its accuracy at all.

Figure 4 depicts the explanation of node 5’s behavior.
While in the beginning, both node 4 and 5 use node 2 as
synchronization parent, node 4 was forced to stay with node
2. Node 5 was however free to change its parent according to
the C-TIRP algorithm. As we can see on Figure 4, node 2’s
stability sharply increases once the node gets heated, while
node 3’s stability stays low since it is away from the heat
source. Thus, about 450 seconds into the experiment, node
5 switches its synchronization master from node 2 to node
3, successfully circumventing the instabilities it would else
have experienced.
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Figure 3. C-TIRP runtime evaluation. 400 seconds into
the simulation of the network depicted in Figure 2, a hot
air blower started to heat node 2. We can see how node
4 gets affected by this change, while node 5 switches its
master to node 3 (see Figure 4).

4.2 A-TIRP vs. Flooding
We implemented A-TIRP in TinyOS by modifying the

Flooding Time Synchronization Protocol implementation.
While FTSP throws away synchronization messages with the
same sequence number, A-TIRP uses them to calculate the
per-neighbor FEV.

We performed two experiments to evaluate the perfor-
mance of A-TIRP. For both experiments, we deployed two
identical networks, one running FTSP, the other running A-
TIRP, where nodes with the same id were collocated. To
avoid collisions, we chose a different radio channels for each
network. Running both networks concurrently and collocat-
ing the nodes allows us to make a comprehensive comparison
between the two algorithms because the nodes experience the
same temperature environment.

Figure 5 illustrates the network connectivity. Each node
in the eleven node network can communicate with two neigh-
bors of lower id, and two with a higher id. This network ar-
chitecture allows the dynamic routing around a node with a
high FEV value.

Node 1 was a specially modified TelosB mote with a
Maxim DS32kHz TCXO [18]. Figure 6 shows a picture of
the modified node. Two such nodes, one for the FTSP, the
other for the LK-TIRP network, provided a temperature in-
variant and stable time source.

We performed two different experiments. The first exper-
iment, described in Subsection 4.2.1, performs a controlled
heating of one node in the network. This allows a detailed
look at what happens if a node within a network becomes un-
stable. While this is a controlled environment, it allows us to
rule out other effects of inaccuracies in the synchronization
process.

In the second experiment, described in Subsection 4.2.2,
we investigate how A-TIRP and FTSP handle a mixed
indoor-outdoor node deployment. We observed the network
time synchronization accuracy over a period of 5 days. This
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Figure 5. Experimental network architecture. Node 1
features a TCXO and acts as synchronization root.

experiment illustrates what happens if some nodes are ex-
posed to a more variable climate, while other nodes are
not. This experiment directly shows how a real deploy-
ment would perform, where a mixed environment of shaded,
sunny, windy, and indoor/outdoor nodes can be found.
4.2.1 Controlled Heating

The change in environmental temperature is the most sig-
nificant cause of changes in local clock frequency. Thus,
heating a node using a hot air source will inevitably change
the crystal frequency of an embedded system.

For this first experiment, we set the resynchronization rate
to 30 seconds. This is the same value as the authors of FTSP
[16] used in their evaluation. While longer resynchroniza-
tion rates would be appreciated in actual deployments, we
show that even at 30 second intervals we observe significant
temperature stability problems.

Figure 7(b) illustrates the effect of heating node 3 in the
two experimental networks depicted in Figure 5. Since both
networks run concurrently, and the nodes 3 of FTSP and
TIRP are collocated, they both experience the same tempera-
ture changes. We can see this in the synchronization error ac-
cumulating in node 3 for both networks. However, in FTSP
the instability of node 3 starts to propagate down the network
to the nodes further away from the root. Figure 7(a) depicts
this as an inaccuracy ripple. TIRP protects itself against such
errors by excluding node 3 from propagating time informa-
tion.

Figure 6. Modified TMote Sky used as a stable time refer-
ence. We replaced the regular 32 kHz tuning fork crystal
with a precision TCXO from Maxim [18].
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Figure 8. Average network synchronization error of the
controlled heating experiment. The change in just one
node impacts the whole network by increasing the aver-
age synchronization accuracy of FTSP.

We can also look at the average and maximum network
synchronization accuracy. Figure 8 shows this for both net-
works. We observe that the average synchronization accu-
racy of TIRP stays below 100 µs, even though node 3 be-
comes desynchronized. The error introduced through node 3
in the FTSP network however propagates to the other nodes,
decreasing the average synchronization accuracy to above
300 µs, or more than 3× that of TIRP.

4.2.2 Long-Term Indoor - Outdoor Experiment
The artificial heating of a node using a hot air source can

be seen as a simulation of an industrial setup, where nodes
might be placed close to machinery that exhaust air or fumes.
One example are servers in a data center. While idling, the
machines stay cold. But when the utilization suddenly in-
creases, hot air will exhaust from the vents and heat a poten-
tial temperature sensing node.
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Figure 7. Controlled heating experiment. After 2 minutes, a hot-air source gets applied to node 3 in the network from
Figure 5. We can see how the error propagates in the FTSP network in Figure (a), while A-TIRP in Figure (b) avoids
any further error propagation.

Figure 9. Collocated outdoors nodes 3 and 5. Nodes 3
were wind and sun exposed, while nodes 5 were wind pro-
tected.

While industrial applications can see drastic changes in
environmental temperature, similar changes can be observed
in nodes performing environmental sensing. Sunlight ex-
posed nodes for example can exhibit drastic changes in tem-
perature due to sun/shade transitions.

To test the performance of TIRP in such a scenario, we
partitioned the two experimental setups into indoor and out-
door nodes. More specifically, we placed two of the 11 nodes
outdoors, while the rest remained indoors. Both the FTSP

and A-TIRP nodes 3 from the network depicted in Figure 5
were placed in a sunlight exposed area where wind was able
to reach them. Both nodes 5 were placed in a sunlight ex-
posed area which was wind protected. Figure 9 depicts their
collocation setup. The rational behind this particular con-
stellation was to test if wind introduces more temperature
fluctuations, or if it helps cooling the nodes to reduce drastic
temperature changes.

We observed the mixed indoor – outdoor network for sev-
eral days using the same 30 second resynchronization inter-
val as used in the controlled heating experiment from Sub-
section 4.2.1. Figure 10 shows the average network synchro-
nization error for every 15 minutes over the period of 7 days
of both the FTSP and A-TIRP network. While the observed
errors are not as big as in the controlled heating experiment,
there is a clear rise in the synchronization error during day
time. A-TIRP is not fully immune to changes in temperature
because the nodes that experience the change will be affected
by them. However, A-TIRP’s average synchronization accu-
racy rises only slightly during daytime, while FTSP’s error
almost triples.

The effects of changing temperature on synchronization
accuracy becomes more pronounced as the resynchroniza-
tion rate increases. While already at 30 seconds an increased
error in FTSP is clearly visible, we redeployed the same net-
work with a resynchronization rate of 60 seconds. Figure 11
shows a detailed per-node error analysis of 9 hours of the 18
hour deployment.

As expected, the synchronization error significantly in-
creases, now reaching 1 ms in the worst case. Figure 11
shows as in the controlled heating experiment, that the two
unstable nodes 3 and 5 are the source of synchronization
error in FTSP. In A-TIRP, the two nodes still have higher
synchronization errors than the other nodes. But the other
nodes only rarely choose them as synchronization masters
since their FEV is unstable.
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Figure 10. Average network synchronization accuracy of the mixed indoor-outdoor deployment. The average was taken
over all nodes and for every 15 minutes. Even though the synchronization rate was 30 seconds, we can see effects of
temperature impacting the FTSP network during day time. This behavior becomes more pronounced the longer the
synchronization interval.

Another way of looking at the same data is by generat-
ing the synchronization graph depicting which node chooses
which neighbor as synchronization master. Figure 12 depicts
this information in two different ways for the times before
9h30, and the time after 9h30. We can observe that during
the night, the network makes heavy use of node 3 and 5 as
synchronization master. The cause is a stable night time tem-
perature that keeps the crystals at a stable frequency. But as
the day progresses, and temperatures start to fluctuate, node
3 gets chosen less often, and node 5 gets almost completely
ignored as synchronization parent. This shows the effective-
ness of A-TIRP and how it routes information around unsta-
ble nodes.

5 Discussion and Future Work
There are several knobs that can tweak the performance

and accuracy of TIRP. In the following sections, we discuss
three such improvements that address changes to TIRP for
higher frequency clocks, how we can avoid time-loops and
thus remove the hop-count field, and how a node can reduce
its own frequency variance alternatively changing its resyn-
chronization rate.

5.1 High-Frequency Clocks
The current implementation of TIRP relies on a 32 kHz

crystal and a uni-lateral communication scheme. This limits
the synchronization accuracy to about 30.5 µs or 1 jiffy. If
we want to get higher precision, a higher frequency clock
is imperative [23]. But at higher frequencies, a uni-lateral
communication scheme will introduce new error sources as
time of flight becomes more significant.

The solution is to move to a bi-lateral synchronization ex-
change as used in IEEE 1588 [6] or proposed in TPSN [8].
However, bi-lateral synchronization exchanges necessitate a
tree structure since a synchronization exchange now can no
longer be performed as a broadcast as in FTSP, but needs to
be two unicast messages between the node and its selected
synchronization master.

C-TIRP can directly apply a bi-lateral synchronization ex-
change since it only needs to overhear neighbor traffic, and
extract the FEV metric from them. A-TIRP is slightly more
complicated as the neighbor messages are used to locally
compute their FEV metric. But fortunately, the frequency er-
ror estimation is immune to constant offset errors, like errors
introduced through radio latency or time of flight. Therefore,
overhearing neighbor’s unicast messages with their synchro-
nization masters is enough to extract their FEV metric.

5.2 Removing Hop-Counts
As Section 2.3 showed, the current choice of FEV has sig-

nificant limitations and the potential of time loops. In order
to remove the hop-count field we need a truly monotonically
increasing time routing metric.

If we could measure the individual per link frequency
variance, then a node could just add the link variances to the
FEV the synchronization master reports. This metric would
be truly additive along the time information path since no κ

would decrease the additive variance.
However, in order to get the per link frequency variance

we will have to significantly change the structure of the syn-
chronization message, and thus TIRP would not be back-
wards compatible anymore. In addition to the global time
timestamp, a node would also have to send the unmodified
local time together with the FEV of the synchronization mas-
ter. Using these three fields, a node can now calculate the per
link variance by using the unmodified local time, but still get
a global time reference from the global time timestamp.

5.3 Adjusting the Synchronization Interval
As we can observer from Equation (9) and (23) decreas-

ing the resynchronization rate T will also decrease the fre-
quency error variance. Thus, a node has two possibilities to
increase the measurement stability. First, it can switch to a
different, more stable master, or second, it can simply in-
crease the synchronization interval.
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Figure 11. Propagation of time errors in A-TIRP and FTSP in the mixed indoor-outdoor deployment and a synchro-
nization rate of 60 seconds. Node 3 and 5 were both sun exposed, while node 3 was also wind exposed. This helped
to cool the node and thus decrease the change in frequency error. We can see how starting at 6h (sunrise), small time
ripples start to manifest both in FTSP and A-TIRP. By 9h30, the changes in temperature become significant and FTSP
starts to have large time ripple problems, even though only two nodes were in an unstable environment.
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Figure 12. Time information routing graph before and after 9h30. The edges indicate the probability with which a
certain path was taken. The stacked bar graph represents the same data. Note that for clarity, edges with <5% were
removed. We can see how after 9h30, node 3 and 5 are avoided as synchronization masters in order to mitigate time
error propagation.

278



Switching to a different master is more desirable since in-
creasing the synchronization interval increases the commu-
nication overhead of the synchronization process. However,
there are situations where increasing the synchronization in-
terval is the only solution to increased stability. For exam-
ple, if the node itself is the cause of instability due to local
changes in temperature, changing the master node will not
help in increasing the frequency stability. Only decreasing
the synchronization interval will work in that case.
6 Related Work

Using clock characteristics to chose a synchronization
master is not entirely new. IEEE 1588 [1], the Precision
Time Protocol for measurement and control systems, relies
on clock characterizations provided by a manufacturer of an
instrument. Every clock in an instrument gets assigned to a
class. This clock class is comparable to the Stratum defini-
tion in NTP. Furthermore, each clock estimates its clock ac-
curacy. The clock accuracy indicates the expected accuracy
of a clock when it is the master, or in the event it becomes a
master. The last measurement is a scaled log variance repre-
senting the characteristics of the local clock as measured by
a perfect clock. The standard specifies two possible ways of
calculating this value:

1. A static constant determined by the manufacturer

2. Computed based on measurements and the environment
While the first case is a static assignment, the second is

similar to our approach. However, the standard does not ex-
plain how the measurements get collected or how the envi-
ronment gets integrated into these measurements.

Additionally to metrics for the master node, IEEE 1588
provisions for a synchronization slave to measure the varia-
tions within its parents clock. However, these fields are op-
tional and don’t get transmitted to other nodes. Therefore,
they become purely informational and can not be used in a
multi-hop scenario.

For NTP, clock frequency variation is less important than
path latency estimation. The multi-hop nature of NTP and
difference in path length between the synchronization host
and the multiple synchronization servers introduces large er-
ror in the offset measurements. These errors come from
changing packet queue lengths in intermediate routers and
switches. NTP uses Marzullo’s algorithm [17] to derive a
consensus between the different measurements coming from
different servers. While wireless sensor networks dissem-
inate the time information over multiple hops, intermedi-
ate nodes participate in the synchronization process. This
removes the hard to predict queue latencies because nodes
timestamp the reception and transmission of messages.

The Flooding Time Synchronization Protocol [16]
(FTSP) takes a different approach towards time informa-
tion dissemination. In order to reduce redundant informa-
tion, FTSP considers only the first message it receives from
a flood, and drops all the others. The intuition is that the first
message will come from the node that most recently heard
from the root node, and is thus the most recent time esti-
mate. The disadvantage is that if the first node overheard
is an unstable node, then our synchronization accuracy will
suffer and the errors propagate through the network.

Earlier work showed [22], and more recent work formal-
ized [13], the need for rapid dissemination of time informa-
tion in a multi-hop network in order to minimize the propa-
gation of frequency errors. While FTSP considers only the
first overheared message of a flood, the rebroadcasting of
this information is an independent timer with potential sig-
nificant different phase. Thus, significant time can pass until
a node rebroadcasts the new time information.

Lenzen et. al [13] propose with PulseSync to modify
FTSP to re-broadcast time information as soon as it has been
received. By minimizing the on-node dwell time of timing
information, PulseSync reduces the introduced inaccuracies
of local clock instability. While PulseSync solves the same
symptoms TIRP addresses, it relies on rapid flooding of the
network. Rapid flooding in low duty-cycle wireless networks
is difficult [15]. While the end result of TIRP and Puls-
eSync are similar, TIRP works even if the time information
is disseminated in an asynchronous fashion. However, the
approaches are orthogonal and could be combined for more
robustness.

Recently, Sallai et al. [22] and Neto et al. [20] proposed to
piggy-back the time synchronization messages on the rout-
ing beacons. This is motivated by the reduction of commu-
nication overhead and the ensuing gains in energy efficiency.
However, it ignores the difference between the clock distri-
bution and the routing tree. This can have harmful effects
on the synchronization accuracy as nodes are forced to use
synchronization neighbors according to the network routing
tree, and not according to the best clock source available.

The Reference-Broadcast Synchronization (RBS) algo-
rithm is used to synchronize a set of receivers within a single
broadcast domain. Elson et al. [7] describe how the RBS
system can scale to a multi-hop architecture by using bound-
ary clocks that translate from one broadcast domain into the
next. Using these boundary clocks Elson describes how a
routing tree can be established between the different broad-
cast domains. He even proposes a different routing metric
using the residual error (RMS) of the linear fit to the broad-
cast observations. Thus a minimum error conversion can be
found between any two nodes of the network using an algo-
rithm like Dijkstra or Bellman-Ford. However, RBS fails to
implement this strategy and show its effectiveness, especially
in a scenario with a dynamic environments.

7 Conclusion
Much of the prior work on integrating time synchroniza-

tion with routing has focused on the efficiency gains from
doing so. In this paper, we show that naı̈ve integration of
time synchronization and routing extracts a harmful accu-
racy penalty. Since such errors are critical for applications
like acoustic source localization, which require accurate and
precise time synchronization, reducing these errors improves
application performance. We show that by decoupling the
clock distribution tree from the routing tree, much of this er-
ror can be reduced. This decoupling is not literal – messages
from many surrounding neighbors will still be received by
each node – but rather logical – in that we wish to better se-
lect which of the many neighbors to use as the parent for time
synchronization purposes.
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We show the best choice for a parent – the one that mini-
mizes error with respect to the root – is the neighbor that of-
fers the smallest accrued frequency variance along the path.
We formalize this variance as the critical path metric for time
synchronization, much like hopcount is critical to distance-
vector routing protocols. We propose two methods to esti-
mate this variance. Our results show that by using variance
as the metric for clock tree construction, the accuracy of time
synchronization is greatly improved, time error propagation
is greatly attenuated and compartmentalized, and transients
due to sudden temperature changes are quickly detected and
corrected. Although these results are promising, there are
a number of other ways of estimating and propagating the
variance metric at the heart of this work, but we leave a more
exhaustive exploration of these techniques for future work.
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