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Abstract

While domain-specific languages (DSLs) can be powerful, textual code interfaces can be unfamiliar to domain
practitioners compared to mainstream graphical tools. For example, in board-level electronics design, DSLs
enable libraries that automate design calculations, but graphical schematics and their visual patterns dominate
mainstream practice. An underappreciated yet inexpensive technique to bridge the power-familiarity gap is
to exploit existing and familiar graphical tools, but augmented with DSL semantics and interoperability by
hijacking graphical notions of annotation and naming. In this short paper, we apply this technique to our
electronics DSL by supporting the importing of graphical schematics. Unlike simple format conversions, we map
schematic components to DSL library elements and constructs, augmenting a familiar graphical representation
with powerful DSL semantics. We believe this technique can generalize to other domains and help blend the
power of DSLs with the familiarity of conventional tools.
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(b) schematic defined in existing
and familiar graphical tools

(a) HDL block has its implementation
defined by an imported schematic

(c) schematic parts can leverage HDL-based
automation features by mapping to HDL blocks

class DiffAmp(Block):
 def __init__(self, ratio, ...):
  self.gnd = Port(Ground())
  self.in_neg = Port(AnalogSink(...))
  import_sch('DiffAmp.kicad_sch', {
    'r1_val': calculate(ratio, ...),
    ...
  })
    

class Resistor(Block):
 def __init__(self, resistance):
  part_table.find_matching(
    resistance, ...)

Figure 1. An overview of our system which augments an electronics hardware description language (HDL)
with a familiar schematic representation. While HDL code similar to the snippet in (a) and (c) provides
powerful programming constructs supporting user-defined design automation, the textual representation can
be unfamiliar. This work enables users to define the implementation of an HDL subcircuit with a mainstream
schematic editor shown in (b), providing both a more familiar interface and a document that can be shared with
other electronics engineers. Beyond simply importing a schematic as a black box with its limited semantics
of hardcoded values, the import process provides extended semantics including inline HDL and mapping
graphical components to HDL library blocks in (c) which can include powerful and arbitrary design automation
functionality like running code to select parts.

1 Introduction
Domain specific languages (DSLs) can bring significant power to non-software domains through pro-
gramming techniques that automate repetitive tasks and encapsulate expert knowledge. For example,
our Python-embedded hardware description language (HDL) for board-level electronics circuit de-
sign [1], which we extend in this work, enables users to describe circuits as code.

With current mainstream circuit design tools, users draw graphical schematics consisting of com-
ponents and their values. However, the use of concrete values means that these circuits are often
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specialized for a particular application and might not be reusable elsewhere. Adding programming
capability allows users to encode their design processes instead of merely the end results, enabling
libraries of parameterized and generalizable subcircuits that can be shared and re-used.

Though the fundamental HDL concepts and structures were rooted in observations of current de-
sign practice [2], a textual interface is still very different and can be unfamiliar compared to schematics.
Furthermore, graphical structures in schematics also offer readability benefits, for example with con-
ventions like left-to-right signal flows and visual patterns like common arrangements of components
into known functional blocks. Yet, these graphical tools have limited (if any) support for the para-
metricity needed for re-usable designs, and textual code remains the most common representation for
defining more complicated logic such as automatic parts selection from a table. In general, we expect
these trade-offs and issues to apply beyond electronics to other domains which could benefit from
DSLs, especially domains that may be inherently spatial or visual like mechanical design.

So, there is an overall trade-off between familiar graphical interfaces with their widely understood
notations, and powerful but unconventional textual DSLs. While recent work tries to bridge the gap by
generating DSL edits from GUI actions [3], this is still part of a text-centric interface. We contribute a
work-in-progress system that takes the opposite approach: providing a graphical-first interface through
an existing, mature graphical tool, and importing those files into a powerful HDL system in a way
that extends the graphical objects with programmatic semantics. We call our approach greyboxing
because importing externally created objects is similar to blackboxing in digital logic DSLs, but our
importing process is not opaque because of the additional semantics. In the rest of this short paper,
we review related work on DSL usability in general, describe how our system integrates graphical
schematics into an HDL, examine its usage in practice, and close with ideas for extensions.

2 Related Work
While all DSLs must ultimately generate some kind of domain-specific output, some DSLs provide
tooling that uses visualization to aid the development process. A common approach that builds off
of live programming [4], [5] is a side-by-side system, with a view of the output next to the text editor.
Examples include OpenSCAD’s [6] 3d viewer and Overleaf’s [7] LaTeX PDF render, both of which
have relatively fast (seconds) recompilation and provide a tight feedback loop to the user. However, all
editing is still done in the text interface, a very different interaction compared to a direct-manipulation,
what-you-see-is-what-you-get (WYSIWYG) interface.

More recent work has examined enabling code edits to be generated from the graphical interface.
Sketch-n-sketch [8] does this for a DSL for 2d vector graphics, terming this “output-directed pro-
gramming”. SVG-PCB [9] addresses the somewhat similar 2d design problem of circuit board layout
and allows users to modify constants in code by dragging points on the visualization. On the circuit
design side, we previously developed a mixed textual and graphical IDE [3] for our electronics HDL
which generates code snippets such as block instantiations from schematic editor-like interactions on
the block diagram visualization.

While these approaches try to combine all the power of a programming language with the intu-
itiveness of a graphical interface, these systems must typically be built from scratch and may not have
the interface polish of mature graphical-only tools. Furthermore, these are still code-first interfaces
and provide different nonfunctional degrees-of-freedom, for example requiring the user to manage
ordering of code statements, but not supporting spatial placements. However, this metadata can still
be important: for example, all participants in our IDE user study [3] discussed shortcomings in the
layout of the auto-generated block diagrams compared to manually drawn schematics.

Our technical approach of repurposing an existing graphical editor and leveraging popular and ma-
ture tools also has precedent. Ink/Stitch [10] is structured as a plugin to the Inkscape vector graphics
editor, applying its interface and graphical primitives to embroidery design without (re)building ev-
erything from scratch. However, while it adapts a tool between domains, it is not an end-user
programming tool. More broadly, foreign function interfaces (FFIs) in software engineering allow
libraries written in one language to be used from another without being rewritten from the ground
up.
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For PCBs specifically, mainstream design suites like the open-source KiCad[11] as well as many
commercial offerings focus on schematics for circuit design. These schematics ultimately define a list of
components and connections, which feed into physical board layout and ultimately manufacturing [2].
While much recent work on electronics in the HCI community focuses on the novice experience [12]–
[16], some also examines how novices can build PCBs [17]–[19]. More recent PCB design work makes
use of subcircuit libraries, including both academic [20]–[23] and commercial work [24], [25] work,
and sometimes with electronics modeling for error detection and circuit synthesis. Yet, lack of focus
on supporting user-defined libraries limits applicability, something our HDL work [1], [26] addresses
by adapting programming constructs and concepts like type systems to support both generalizable
libraries and top-level board design in a unified interface. In this work, we extend that HDL with a
more familiar graphical interface.

3 System Description
To gain the benefits of graphical interfaces, we add support for importing schematics files produced
by an existing and popular graphical schematic tool, KiCad [11], effectively providing a graphical
frontend for our HDL. By adding on new semantics to schematics as part of our import flow, we also
bolt on some programming capability to the graphical design style.

3.1 Schematic Import
The overall flow is outlined in Figure 1: while there is still an HDL block in (a) to define external
references like externally-connectable ports, its implementation is defined by a graphical schematic
file. The schematic file in (b) is designed in an unmodified version of KiCad and makes use of its
library of graphical circuit symbols.

Because our HDL’s block diagram design model of subcircuit blocks, ports on those blocks, and
connections between those ports is similar to schematic models of components, pins, and connections,
bridging the two is conceptually straightforward at a high level. Schematic components map to HDL
block instantiations, and schematic wires map to HDL connections between block ports. Interface
points between HDL and schematic are matched by name, for example the self.gnd Port in the
HDL is connected to the corresponding gnd wire label on the schematic.

As schematic files are structured as component objects and wires and not graphical primitives
or raster images, the importing process is a straightforward transformation. Furthermore, as the
schematic import is structured as a file reference instead of a code generator, there are no additional
temporary files to get out of date.

3.2 Bridging Different Models
However, despite similarities in the overarching models, the details differ significantly. Our HDL’s
blocks are strongly typed with structured data fields, compared with schematic components being
merely a graphical object with a free-text value field1. For example, a resistor in our HDL has numeric
resistance and power fields which allows automatic matching to compatible parts, compared to the
diverse formats with which engineers might specify a resistance value on a schematic.

We provide a few different options to bridge the representations. First, HDL blocks can define
rules to map components and their values to a block instantiation – for example, the resistor class can
parse the value “120kOhm” on a resistor in an imported schematic, or the opamp class can parse the
triangle in Figure 1 (b) with no additional parameters. This aims to support schematics as commonly
drawn today, especially where static values are sufficient and parameterization is unnecessary. Second,
components can be defined with inline HDL in the value field, such as the resistors in Figure 1 (b). This
style, while different from conventional schematics, allows parameterization in a graphical environment.
Third, blocks can be fully defined in the HDL and correlated to the schematic components by name.
This style can be useful for heavily parameterized blocks requiring complex HDL but where graphical
definition of connectivity is still desirable.

1 Our HDL also has a richer port structure, for example modeling voltages and currents. But because there is no schematic
analogy, there is no schematic integration and this additional modeling must be defined purely in HDL.
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To support schematic components mapping to HDL blocks, HDL blocks must define a mapping
between HDL port names and schematic pin numbers. This also makes this framework general:
user-defined blocks can be used in graphical schematics, without being restricted to a small set of
pre-defined blocks.

3.3 Example
The example shown in Figure 1 has a schematic defining a differential amplifier, a signal processing
subcircuit that outputs the difference of its input voltages. The imported schematic in (b) would be a
more familiar representation to electronics engineers compared to equivalent HDL. However, the HDL
in (a) defines an automatic calculation for the resistance, and the resistor HDL in (c) can then find a
part number from that resistance specification – automation not possible with graphical schematics.

4 Discussion
Overall, our goal is the best of both worlds – the power of an HDL combined with the familiarity of
graphical schematics. Different ways of defining components further allow users to flexibly trade-off
between staying within conventional notations but being limited by static component values, to more
hybrid notations like inline HDL that incrementally add programming power.

Although we’ve mainly focused on the designer experience, the schematic documents themselves
can also be invaluable for readability and documentation. Because the imported schematics define
the block’s implementation, they cannot get out of sync unlike comments or supplementary diagrams.

Yet, with blocks capable of having both an HDL and graphical schematic component, users may
need to juggle both a text editor and schematic editor as neither alone may be sufficient to fully
understand a block. Style guidelines may help reduce confusion by standardizing best practices on
how to split responsibilities. However, this seam may still limit tooling, for example naive static
checkers would be unable to inspect into inline HDL in schematics.

While we’re not sure what a perfect solution might look like, we believe that our approach provides
many benefits of both interfaces at a very low engineering cost – just an importer and component
mapping definitions. In the bigger picture, this is another point in the conceptual design space of
design tools, with graphical schematics and textual HDLs at opposite ends, and this schematic import
and our prior mixed graphical-textual IDE somewhere in the middle. Future user studies might help
illuminate which design points can be more useful to a wider range of people.

4.1 Future Work
Although the examples here focused on new designs, another application of this approach may be to
leverage the vast number of existing schematics and import them. The programming analogy would
be foreign function interfaces enabling a new language to reuse libraries designed for other languages.
This reuse mitigates a major drawback of newer systems, which may not have the strong community
or ecosystem of libraries needed to be productive [27].

The example is also a pretty straightforward mapping from schematic to HDL, with fixed circuit
structure and limited parameterization using inline HDL. However, another major advantage of an
HDL is the ability to parameterize the circuit structure, for example a block of n LEDs. Though
not supported by current schematic editors, informal graphical notations like ellipses can be used
to denote repeating circuit blocks. Extensions to the importer might recognize these notations and
enable graphical parameterization of the circuit structure.

Finally, DSLs for other domains could also benefit from domain-specific representations and inter-
faces, and importing can be a potentially inexpensive solution compared to building a custom output
directed programming tool. One example might be mechanical design, where a text-driven language
like OpenSCAD might provide a way to import 3d parts or even 2d sections defined in a graphical
tool like FreeCAD. Bolting on programming semantics might further enable generalizable designs in
a graphical tool without pre-existing strong parameterization support.
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