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Abstract. Some have argued that the dichotomy between high-performance op-
eration and low resource utilization is false – an artifact that will soon succumb
to Moore’s Law and careful engineering. If such claims prove to be true, then
the traditional 8/16- vs. 32-bit power-performance tradeoffs become irrelevant, at
least for some low-power embedded systems. We explore the veracity of this the-
sis using the 32-bit ARM Cortex-M3 microprocessor and find quite substantial
progress but not deliverance. The Cortex-M3, compared to 8/16-bit microcon-
trollers, reduces latency and energy consumption for computationally intensive
tasks as well as achieves near parity on code density. However, it still incurs a
∼2× overhead in power draw for “traditional” sense-store-send-sleep applica-
tions. These results suggest that while 32-bit processors are not yet ready for
applications with very tight power requirements, they are poised for adoption ev-
erywhere else. Moore’s Law may yet prevail.

1 Introduction

The desire to operate unattended for long periods of time has been a driving force in de-
signing wireless sensor networks (WSNs) over the past decade. By focusing primarily
on this requirement, platform designers have usually sought out those hardware com-
ponents with the lowest sleep and active power draws [10,26]. Modern platforms, for
example, use low-power microcontrollers (MCUs) like the Atmel ATmega128 [5] and
TI MSP430 [37]. These devices draw mW of power while active and µW when sleep-
ing, trading off low power for limited memory and slower clock frequencies. In turn,
the limited processing and memory resources of these platforms restrict the applica-
tions they can support. Typical applications follow a sense-store-send-sleep archetype
where on-board sensors are infrequently sampled and measurements are delivered to
gateways over single- or multi-hop paths. Unfortunately, computationally intensive and
higher-data-rate applications are not well supported on these platforms.

Applications that involve high-performance or high-resolution signal processing,
such as structural monitoring [39], habitat monitoring [2], and motion analysis [20],
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typically have to make compromises to work around platform limitations. These appli-
cations tend to be characterized by alternating intervals of intense activity followed by
periods of relative inactivity. In traditional deployments, designers are forced to make
compromises related to the type of processing that nodes can perform, the responsive-
ness of the overall system, and in the placement of communications and computation
elements [25] within the system. The only alternative is to use platforms that sacri-
fice power for processing speed [32], or platforms that combine low-power MCUs with
either high-performance but energy-hungry CPUs [23] or analog processing [28].

In this paper, we examine whether modern 32-bit processors can rival their 8/16-
bit counterparts in terms of both power and performance. We explore this question in
the context of today’s leading 32-bit embedded architecture – the ARM Cortex-M3
MCU [29] – and find quite substantial progress when compared with a leading 16-bit
embedded architecture – the TI MSP430 MCU [37]. We ground our study in two new
WSN platforms based on the ARM Cortex-M3: Egs and Opal. Both platforms use the
Atmel SAM3U variant of the Cortex-M3 because of its low-power states, fast wakeup
support, and integrated memory protection [6]. Egs targets wireless health applications
while Opal targets robust environmental monitoring. Both target applications demand
higher performance than motes based on 16-bit MCU provide but also require lower
energy consumption than conventional 32-bit systems.

Our results show that Cortex-M3-based platforms can offer significantly better per-
formance and power profiles for next-generation WSN applications with a reasonable
increase in power draw for traditional sense-store-and-sleep applications. Applications
with heavy workload requirements benefit from an order-of-magnitude faster process-
ing, with the potential for further speedups when frequency scaling is used. Addi-
tionally, the Cortex-M3 provides a serial interface that does not limit the end-to-end
throughput of the network. These platforms also achieve good code density due to the
efficient ARM Thumb-2 instruction set, but require between 1.1 and 3 times greater
RAM space, which in turn slightly increases current draw during sleep. In terms of
power, the higher-powered sleep mode on the Cortex-M3 only translates to a ∼ 2×
whole-system power draw while running a typical workload for sense-store-send-sleep-
style applications under TinyOS.

These results show that the dichotomy of low power or high performance is, for
many WSN applications, now a nearly false one. Freed from the limitations of 16-bit
operation, system developers can now focus on higher-performance signal processing,
sensor-hosted databases, and spec-compatible JVMs instead of how to squeeze the last
byte or cycle out of their 16-bit program.

The rest of this paper is structured as follows. In Section 2 we introduce the target
applications for the two platforms presented in Section 3. Section 4 discusses about
our efforts to provide TinyOS support to the Cortex-M3 and Section 5 presents our
evaluations using various applications. Finally, we conclude the paper in Section 6.

2 Application-Driven Platform Requirements

As application developers venture into new computation-intensive domains, they find
existing 8/16-bit mote platforms inadequate. We present applications from two different
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domains that require high performance during some periods of time while maintaining
overall low-power operation and derive a set of requirements that platforms supporting
this new class of applications should provide.

2.1 Emerging Wireless Sensing Applications

(1) Wireless Healthcare: Wireless sensing platforms are being increasingly employed
for healthcare applications [17,22,38]. Such applications are a sub-category of the
emerging class of mobiscopes, which federate distributed mobile sensors into taskable
systems [1]. In this respect, they inherit the requirements for mobility support and low-
power operation, but combine them with network quality-of-service requirements.

(2) Persistent Environmental Monitoring: Government agencies are increasingly
adopting wireless sensors for persistent monitoring of complex environmental systems.
As an example, water catchments collect water from streams and rivers for later re-
finement and prevention of excessive flooding and droughts. Catchments encompass
a number of inter-dependent systems: water eco-systems with aquatic life, adjoining
marsh lands with terrestrial life, and agricultural pastures with cattle. Therefore, mote
platforms need to support a variety of tasks, which include low-power sensing of water
column temperatures, both low- and high-power micro-climate sensing, mobile wildlife
and cattle monitoring and control, and processing of audio/video streams that track the
biodiversity of the entire ecosystem.

2.2 Platform Requirements

(1) Sufficient Computing Resources: Adequate computing resources are required to
process physiological data in near real-time. Similarly, local processing of A/V streams
can reduce high-bandwidth multimedia data to a set of well selected classifiers [21,34].

(2) Low Energy Consumption: Mobiscopes used in medical applications should con-
sume little energy to allow uninterrupted operation for multiple days [17]. Aggressive
energy management and advanced battery charging circuitry are needed to assure unin-
terrupted operation using solar-harvested power in outdoor deployments.

(3) Sensor Support and Extendability: Given the diversity of healthcare, environ-
mental, and climate sensors, platforms should be able to provide developers with the
freedom to extend their sensing capabilities with various sensors.

(4) Storage: When wireless connectivity is intermittent [17] or bandwidth is inadequate
to deliver all measurements [20], the platform should have enough non-volatile storage
to preserve the collected data.

(5) Security: According to U.S. and international laws, physiological data must be
secured to protect patients’ personal information [17].

(6) User Interface: Medical staff are responsible for a large number of patients and
are chronically overworked [8]. Previous deployment experiences suggest that wireless
monitors should include LCDs that display measurements to reduce staff workload [17].
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(7) Network Connectivity and Reliability: Multiple radio interfaces simplify user ac-
cess to the collected data – for example, through Bluetooth-enabled mobile phones.
Robustness and reliability of radio communication between sensor nodes can be im-
proved if the radios exhibit diverse propagation characteristics.

3 ARM Cortex-M3 Platforms: Egs and Opal

In the last decade, low-power mote platforms were mostly based on 8- or 16-bit MCUs.
The common assumption was that such MCUs were adequate and that moving to 32-bit
MCUs would be too costly in terms of energy consumption or device cost. Introducing
the Telos family of motes [26] was a big leap in technology advances. Features like
direct memory access (DMA) allowed high-speed sampling or long MCU sleep times,
as the DMA controller could handle data sampling in the background while the core
was kept asleep.

At the same time, several WSN platforms with 32-bit MCUs have been proposed
to support applications that require higher processing power [9,27,35]. None of those,
however, can match the current draw of 16-bit MCUs in sleep or suspend mode. A
common solution is to use an 8- or 16-bit MCU as a power manager or pre-processor
[23]. In that model, the higher-power 32-bit MCU performs high-speed calculations and
is turned off by the low-power MCU when not needed. While this duty cycling achieves
reasonable energy performance, the multi-MCU nature of these devices makes them
more complex, expensive, and leads to additional leakage currents.

With the introduction of the ARMv7 architecture, ARM and its silicon partners
claim that their 32-bit MCUs can compete with 8- and 16-bit microcontrollers not
just in performance, but also in energy efficiency. The ARM Cortex-M series con-
sists of the Cortex-M0/M1 (ARMv6-M architectures), Cortex-M3, and, more recently,
the Cortex-M4. The Cortex-M3 is currently the most widely used core of the Cortex-
M family by silicon vendors. It provides an excellent balance of energy efficiency
(12.25 DMIPS/mW on TSMC 90 nm G [3]) and calculation performance. It also sup-
ports single-cycle 32x32 multiplications and has a flexible interrupt controller support-
ing up to 256 priority levels. Additionally, silicon vendors can add a memory protection
unit (MPU), whose functionality and interface are defined by ARM.

To address the challenges introduced by the applications outlined in Section 2,
we now present two platforms designed around the Cortex-M3-based Atmel SAM3U
MCU. Among the various Cortex-M3 MCUs, the SAM3U strikes a good balance be-
tween performance (clock speed up to 96 MHz), storage capabilities (NAND flash in-
terface), peripherals (USB, High-Speed MCI, USARTs, etc.), and power efficiency. Its
largest variant (SAM3U4E) provides 256 KB of flash, 52 KB of SRAM, and can wake
up from its lowest power state in < 10 µs, while drawing as low as 8.9 µA. Two types of
ADCs, a high-speed 12-bit, and a low-power 10-bit ADC provide the functionality nec-
essary for a modern sensing system and the USB interface provides a high-speed serial
link to a computer. Finally, the SAM3U’s MPU rounds up the complete SAM3U pack-
age and was one of the key deciding factors when choosing an MCU for the platforms
presented below.
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Fig. 1. Functional diagram of the Egs and Opal platforms

3.1 Egs

Egs (Figure 1(a)) is our attempt to develop a wireless sensing platform for wire-
less healthcare applications that meets the requirements outlined in Section 2. To
satisfy these requirements, Egs uses an Atmel SAM3U2C MCU as its core. The
SAM3U2C, with its compact 100-pin layout, 36 KB of SRAM, and 128 KB of flash
memory, provides a balance between the small form factor required for healthcare mo-
biscopes and the need for ample computing and memory resources. The device can be
(re)programmed using a mini USB connection, which is also used to recharge its 1,200
mAh Li-ion battery.

For persistent data storage, Egs provides an on-board NAND flash memory, con-
nected using the static memory controller (SMC). For removable memory, Egs also ex-
poses a microSD card slot through the High-Speed Multimedia Card Interface (HSMCI).
Egs also incorporates several sensors widely used in healthcare applications. Specifi-
cally, a Nellcor OEM controller provides heart rate and pulse oximetry (SpO2)
measurements, and a 3-axis accelerometer is provided for applications such as fall de-
tection [12] and activity monitoring [38].

These sensors, however, are only a small subset of the sensors that various health-
care applications may require. Given that many physiological sensors provide Bluetooth
connectivity [40], Egs incorporates a Bluetooth module that operates in master or slave
mode [11]. When configured as a master, Egs can aggregate measurements from multi-
ple sensor slaves. Configured as a slave, Egs can upload collected measurements to cell
phones or laptops. To further support low-power wireless mesh connectivity, Egs also
includes the TI CC2520 802.15.4 radio [36] as well.

Feedback from medical staff has consistently ranked a readable display as the most
required feature for physiological monitors [17]. To satisfy this requirement, Egs in-
cludes a 240×320 color LCD screen. It displays text and graphics, including vital signs,
and combined with the two user buttons, is the device’s primary user interface.
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3.2 Opal

To effectively support the requirements for the persistent environmental monitoring ap-
plications introduced in Section 2, we designed the Opal platform. Like Egs, Opal is
built around the SAM3U4E MCU, but provides a different set of peripherals to ful-
fill its varying set of requirements. Figure 1(b) provides a functional diagram of the
components contained in Opal.

In order to achieve high link reliability and connectivity, Opal nodes provide Mul-
tiple Input / Multiple Output (MIMO) capabilities in the form of dual 802.15.4 radios.
Each radio supports switching between two separate antennae and runs at bitrates be-
tween 250 Kbps and 2 Mbps. Incorporating two radios into the system allows us to take
advantage of benefits from radio diversity, as recently introduced by Kusy et al. [18].

For security, the inclusion of a Trusted Platform Module (TPM) allows Opal to sup-
port efficient secure actuation, remote attestation, and improved cryptographic com-
putations over insecure links. This module allows for fast calculations of asymmetric
cryptographic operations and Public Key Infrastructures (PKI) due to improved han-
dling of data and keys in memory.

Additionally, Opal includes a TWI-based temperature sensor, standard flash, and
microSD storage for data logging and storing program images. Opal also exposes a 120-
pin expansion bus of the 144 pins on the SAM3U4E to connect various peripherals. Fi-
nally, the Opal platform enables extreme longevity of unattended sensing deployments
by including a proprietary energy harvesting input that feeds into a hardware-based Li-
ion battery charging circuit. This mechanism allows the MCU to be put to deep sleep
while the batteries are recharged with solar or other ambient energy sources.

4 Porting TinyOS

Considering the large number of developers and resources available for the Cortex-M3,
a variety of software platforms could have been used for application development. How-
ever, given the availability of high-quality software components for power management
and networking in TinyOS, we decided to port TinyOS 2.x to the SAM3U MCU. The
paragraphs below describe the highlights of this effort.

4.1 Memory Protection in TinyOS

As mentioned previously, one of the deciding factors to use the SAM3U was its mem-
ory protection unit (MPU). An MPU is used to isolate software components from one
another by performing memory access checks in hardware. To this end, the MPU is
configured with memory ranges where each component is contained, along with the
appropriate access rights (e.g., read, write, execute) to those memory ranges. Unlike a
memory management unit (MMU) (used in most PC-like architectures), MPUs are not
able to perform address space virtualization and swapping; in other words, all data and
code reside in a single physical address space.

Leveraging the TOSThreads [15] package in TinyOS, we added support for thread
isolation on the SAM3U by configuring and re-configuring the MPU at run time to
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Table 1. SAM3U current draw at different clock speeds. Measurements are taken for active and
sleep modes. In wait mode, the MCU is in deep sleep.

MCU State Active Mode (mA) Sleep Mode (mA)

4 MHz 4.98 0.99
12 MHz 10.01 2.84
48 MHz 30.19 11.72
84 MHz 44.01 20.02
96 MHz 48.00 21.99

Wait Mode — 0.02

constrain all threads to the minimal access permissions they need to run. This includes
read and write permissions to their thread-local data, read and execute permissions to
their thread code, and read and execute permissions to a common code section for sys-
tem call wrappers. Since TOSThreads runs TinyOS inside a special kernel thread, and
the MPU protects all threads from accessing each other’s data, these system call wrap-
pers provide a well-defined interface for user threads to invoke functions on the kernel
thread. Internally, the system call switches the processor from user to supervisor mode,
enabling access to kernel data and code via the kernel system call handler. Memory pro-
tection thereby isolates faults caused by buggy or malicious code by containing them
in the thread that they appeared in. The benefits of containing faults in TinyOS have
recently been explored by Chen et al. by using software-based isolation with a safety-
aware compiler inserting run time checks for fault detection [7]. Our memory-protected
TinyOS does not need a specialized compiler and can be leaner in terms of binary size,
since the hardware implicitly performs run time checks.

In addition to TOSThreads, the Deluge [13] over-the-air reprogramming subsystem
can also benefit greatly from the use of an MPU. Deluge utilizes a boot loader to read
stored program images from flash and load them at startup. If either Deluge or its boot
loader is corrupted by the mismanagement of memory, the entire network may become
unusable. An MPU can be used to ensure proper isolation of Deluge and its boot loader
from buggy or even malicious code.

4.2 Power Management

The power consumption of the Cortex-M3 depends on its clock speed. Different clock
frequencies not only have different active power draws, but also limit which low-power
states the MCU can enter.

The MCU’s main clock (MCK) is driven by a different oscillator depending on the
frequency used. In our TinyOS implementation, MCK frequencies <12 MHz use the
Fast RC oscillator, while higher frequencies use the 3–20 MHz oscillator. Due to its
quick response and fast stabilization, the Fast RC oscillator is the default clock source
upon startup. The 3–20 MHz oscillator takes longer to stabilize but acts as a more
accurate clock source.

The Atmel SAM3U defines three low-power modes [6]. The lowest is the “backup
mode”, which consumes as little as 2.5 µA. In this mode, the core memory peripherals
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Table 2. Latency associated with entering and exiting wait and sleep modes with different main
clock (MCK) sources. The latency for wait mode includes checks on the current MCK source and
reconfiguring the clock source (if required). The sleep mode does not require such checks.

Start Mode End Mode Latency (µs)

Any Clock Source Sleep 1
Fast RC Oscillator Wait 4
3–20 MHz Oscillator Wait 114
Sleep Any Clock Source 1
Wait Fast RC Oscillator 4
Wait 3–20 MHz Oscillator 3867

are not powered, the voltage regulator is turned off, and the core resets on wakeup;
therefore, the practical use of this mode is limited. The MCU can also be put in “wait
mode”, where we were able to measure a power consumption of ∼19 µA with a wakeup
time of ∼4 µs. In this mode, I/O states are kept unchanged and the core is restored to
the previous state on wakeup. The third low-power mode is the “sleep mode”, which is
used when a very short response time (∼ 1µs) is required and which only puts the core
to sleep. In sleep mode, the power consumption depends on the MCK speed (Table 1).

Note that the SAM3U can only enter the wait mode when the MCK is driven by the
Fast RC oscillator. Thus, when running at high frequencies, the MCK source needs to
first switch to the Fast RC oscillator. Conversely, when exiting wait mode, the MCK
source needs to switch back from the Fast RC oscillator to the 3–20 MHz oscillator.
Table 2 presents these latencies, measured using our port of TinyOS to the SAM3U.
Entering the wait mode while operating on a frequency that already uses the Fast RC
oscillator introduces only a minimal amount of latency. On the other hand, when the
3–20 MHz oscillator sources the MCK in active mode, the latency to enter and exit the
wait mode increases. While the latency required to enter the wait mode is still minimal
(i.e., 114 µs to stabilize the Fast RC oscillator), the latency introduced when exiting
the wait mode is relatively higher (i.e., 3867 µs). While this value is tolerable for most
wireless sensing applications, some may desire a quicker response. These systems can
potentially wake up quickly using the fast RC oscillator and move to a higher frequency
by starting the 3–20 MHz oscillator in parallel for faster processing speeds.

5 Evaluation

We present several sample applications using our Egs and Opal platforms and compare
their performance to the TelosB platform using the TinyOS software stack. Latency and
per-task energy consumption are the primary metrics for evaluation.

5.1 Compression

High-frequency sampling applications (e.g., ECG data monitoring [17], structural mon-
itoring [39]) can use compression to reduce the number of bytes and amount of energy
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Table 3. 100-byte payload compression/decompression latency and energy consumption for Egs
with five different MCK speeds and TelosB with S-LZW

Configuration Compression Energy Decompression Energy
Latency Consumption Latency Consumption

TelosB (4 MHz) 10.405 ms 62.87 µJ 5.265 ms 31.81 µJ
Egs (4 MHz) 3.472 ms 160.29 µJ 1.323 ms 61.08 µJ
Egs (12 MHz) 1.125 ms 76.44 µJ 0.430 ms 29.22 µJ
Egs (48 MHz) 0.302 ms 41.95 µJ 0.106 ms 14.72 µJ
Egs (84 MHz) 0.167 ms 33.80 µJ 0.068 ms 13.69 µJ
Egs (96 MHz) 0.147 ms 32.64 µJ 0.053 ms 11.76 µJ

they expend for data delivery [30]. Unfortunately, compression introduces latency that
can lead to longer duty cycles. Moreover, memory buffering during compression can
act as a bottleneck for the whole system.

To quantify the benefits of using a Cortex-M3, we compare TelosB to Egs run-
ning the S-LZW compression algorithm, proposed specifically for resource-constrained
motes [30]. Table 3 presents the latency and the respective energy consumption to com-
press and decompress 100 bytes. Specifically, we measured Egs running at 4, 12, 48,
84, and 96 MHz. Our results indicate that Egs’ latencies are significantly shorter than
TelosB’s, even at the same frequency (4 MHz). The explanation for this speedup is the
reduced number of memory accesses and operations of the 32-bit processor compared
to the 16-bit MSP430 MCU. As an example, while the SAM3U and MSP430 MCUs ex-
ecute the exact same compression task, the number of MOV instructions in the assembly
trace was 295 and 481 for the SAM3U and MSP430, respectively.

Since a device stays active during both the compression and decompression tasks,
latency directly relates to energy consumption. While Egs consumes more energy than
TelosB when active, Table 3 shows that the lower latency leads to comparable or lower
energy consumption. By accomplishing the task sooner, Egs can transition to a low-
power mode more quickly. Furthermore, the results in Table 3 demonstrate that for the
Cortex-M3-based platforms, compression/decompression time is lower than the time
necessary to transmit the same packet over an IEEE 802.15.4 wireless link (∼ 3 ms for
a 100-Byte packet using a 250Kbps radio), thereby removing a potential bottleneck.

5.2 Error Correction Codes

It is important to protect packets from external interference that is prevalent in the 2.4
GHz frequency range. For example, in applications operating in clinical environments,
it is important to employ a scheme that helps the system overcome the irregular channel
noise introduced in such environments [17]. Liang et al. recently proposed using Reed-
Solomon (RS) codes to protect 802.15.4 packets from interference caused by nearby
WiFi networks [19]. RS codes are block-based, linear error correction codes that can
recover data corruptions and erasures by dividing a message into multiple blocks of
user-defined size and computing extra parity blocks attached to the original payload.
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Table 4. Processing speed and energy consumption measurements for Reed-Solomon coding on
Egs at 96 MHz. The results are normalized to the corresponding values from the TelosB.

Operation Processing Speed Norm. Speedup Norm. Energy Consumption

Encode 973 pkts/sec 36 x 106.44%

Decode (No Error) 567 pkts/sec 63 x 61.25%

Decode (5B Error) 399 pkts/sec 57 x 70.23%

Decode (15B Error) 265 pkts/sec 53 x 78.83%

Decode (30B Erasure) 217 pkts/sec 54 x 87.10%

Liang et al. developed a light-weight version of RS encoding, termed TinyRS, which
can operate on resource-constrained motes such as TelosB. However, since the RS en-
coding process happens directly prior to a packet transmission and the decoding process
takes place directly after a packet is received, it is desirable to minimize the respective
latencies. To examine how a Cortex-M3 core can improve these operations, we com-
pute the number of packets that can be RS-encoded or -decoded in one second. We
performed experiments with typical bit errors expected on a wireless channel using
payloads of 65 bytes followed by 30 parity bytes.

Table 4 presents the results measured for Egs operating at 96 MHz and TelosB op-
erating at 4 MHz (TinyOS default). Note that Egs supports RS encoding of packets at
full transmission speeds of the radio, since the processing speed of Egs is faster than
the speed at which the radio can transmit 100-byte packets (i.e., ∼3 ms), while this is
not true for TelosB. For example, consider the number of packets that can be encoded
per second. The Egs platform can encode 973 packets/sec, while the TelosB can encode
only 27 packets/sec (i.e., Egs is 36 times faster). Similarly, when all payloads are re-
ceived with 5 byte errors, the Egs platform decodes 399 packets per second, compared
to only 7 packets on the TelosB. These results indicate that by using a faster MCU,
RS codes can be practically used in various WSN environments. Furthermore, while
encoding requires similar energy on the two platforms, thanks to the shorter latency,
decoding on the Cortex-M3 is more energy-efficient than on the TelosB.

5.3 High-Speed Serial Communications

Most existing mote platforms contain radios with a maximum bandwidth of 250 Kbps.
Newer radios also support speeds of up to 1 Mbps (RF212) or 2 Mbps (RF231). With
these radios, platforms should be able to run high-throughput streaming applications
with near real-time performance. The issue, however, is that the end-to-end throughput
on current mote platforms is limited significantly by two parts: (1) the serial connection
speed with the PC, and (2) intra-node packet processing delay. The ARM Cortex-M3
contains features that allow us to partially overcome these bottlenecks. First, the Cortex-
M3 contains an integrated High-Speed USB 2.0 controller for fast data communication
with a PC. This controller supports speeds of up to 480 Mbps (with DMA), in contrast
to 115.2 Kbps as seen on many existing mote platforms. Our preliminary USB driver
that does not use DMA is capable of streaming data at speeds of up to 1.8 Mbps, thereby
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removing the speed barrier between the mote and the PC. Second, since the Cortex-M3
can run at speeds of up to 96 MHz, intra-node processing delays are also reduced.

To demonstrate how these features help increase the maximum end-to-end through-
put, we devised an experiment in which we vary the clock frequency and radio bitrates
on the Opal platform. Our test environment consists of a single-hop network including
a transmitting node that broadcasts packets as fast as possible through a basestation
connected via USB to a PC. We vary the MCU speed on both the basestation and the
transmitting node between 48 and 96 MHz and send packets using either one (RF231)
or two radios (RF212 and RF231) with varying transmission bitrates between 250 Kbps
and 1 Mbps; in the dual radio case, both radios are set to run with the same bitrate.

Figure 2 shows our results. For a single radio transmitting at a bitrate of 250 Kbps,
we are able to sustain USB transfer rates of 222 Kbps at 96 MHz and 220 Kbps at 48
MHz. For 500 Kbps, we see transfer rates of 417 Kbps at 96 MHz and 408 Kbps at
48 MHz, indicating that the packet processing latency is no longer a bottleneck when
using low bitrates with high MCU clock speeds. Instead, the throughput decrease can
be attributed to (1) the delay incurred when transferring each packet over SPI from the
MCU to the radio, and (2) the radio transition time as it switches from transmit mode
to receive mode and back again between each packet transmission. However, as we
increase the bitrate to 1 Mbps, we start to see the effects of packet processing over-
head when operating at 48 MHz – at 96 MHz we achieve a throughput of 734 Kbps,
while only achieving 452 Kbps at 48 MHz. For the dual-radio case, we see a similar
phenomenon, except that even at 96 MHz we start to see a non-linear decrease in per-
formance before reaching 1 Mbps. With two radios transmitting at the same bitrate, we
should, ideally, be able to sustain an end-to-end throughput equal to twice the bitrate of
a single radio (i.e., a USB transfer rate of 500 Kbps when both radios are configured at
250 Kbps). However, the intrinsic overheads are amplified in this case due to arbitra-
tion on the shared SPI bus between the two radios. This overhead could be alleviated in
future platform revisions by giving each radio its own dedicated SPI bus.



Low Power or High Performance? 109

Table 5. Memory footprints for a Java Virtual Machine and implementations of the RPL and
6LoWPAN standards in TinyOS. These components require relatively large amount of ROM and
RAM compared to traditional sensor network components.

Component ROM (B) RAM (B)

TakaTuka JVM - Null App on Egs/Opal 24380 2527
TakaTuka JVM - Null App on TelosB 22620 902
TakaTuka JVM - Simple Periodic Radio Tx on Egs/Opal 36084 3038
TakaTuka JVM - Simple Periodic Radio Tx on TelosB 36018 1242
6LoWPAN Header Compression on Egs/Opal 7826 1960
6LoWPAN Header Compression on TelosB 7222 1581
RPL (Route Storing Edge Node) on Egs/Opal 9024 8370
RPL (Route Storing Edge Node) on TelosB 8428 7454

Overall, these results suggest that end-to-end throughput on Cortex-M3-based plat-
forms is no longer limited by the low transfer rates between a basestation and a PC.
Instead, we are now limited only by delays incurred in system software and platform
architecture decisions. With further work, Cortex-M3 mote platforms may soon be able
to drive end-to-end throughput to its maximum potential.

5.4 JVMs and IETF Standards in Sensor Networks

Most existing software components for WSNs are compact in size in order to operate on
resource-constrained mote platforms. However, several software components for newer
applications require larger amounts of RAM and ROM space.

First, we examine the case of using Java Virtual Machines (JVMs) on mote plat-
forms. Table 5 reports the memory footprint of the open-source TakaTuka JVM [4]. The
results from this table suggest that when using JVMs on resource-constrained motes,
only a small amount of memory space will be left for the application. For example, if
the JVM were installed on a TelosB platform, it would take up approximately 47.13%
of the ROM space and with a simple radio application, the ROM consumption would in-
crease to 75.04% of the 48 KB limit, leaving only a small amount of space for different
application components (e.g., sensing modules). Another mote platform that includes
a JVM is the Sun SPOT [35], operating with the Squawk JVM as its default software
platform [33]. The Sun SPOT uses a 32-bit ARM920T core, can operate at frequencies
of up to 180 MHz, and is equipped with various sensors and actuators. However, while
Sun SPOTs can effectively support JVM-related applications, data sheet comparisons
with the SAM3U indicate that the Sun SPOT’s processor board’s power consumption is
more than twice the one of the SAM3U in the lowest-power setting.

The implementation of IETF standards for WSNs can also require a large mem-
ory space. In Table 5 we present the memory footprints for the RPL and 6LoWPAN
header compression implementations in TinyOS [16]. For RPL, we configured the edge
routers to maintain routes for up to 200 children. The memory footprints indicate that
the 6LoWPAN header compression combined with RPL is too large to fit in a TelosB
platform in its current form due to the limited RAM size (i.e., 10 KB). While one
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Table 6. Energy consumption of TelosB and Opal when performing tasks of a low-duty-cycle
application. Numbers for TelosB and RF231 are from [14] and the data sheet, respectively. The
numbers for SAM3U4E were measured on the SAM3U-EK development board.

ADC Read+ Flash Log CCA Check Sleep Current
Opal 343 (µAs) 157 (µAs) (SAM3U+RF231) 40 (µA)
TelosB 22.58 (µAs) 94.3 (µAs) 9 (µA)
Ratio 15.19 x 1.66 x 4.44 x

could reduce memory usage by reducing the number of children that an edge router can
support, doing so would be undesirable for large-scale deployments. Schmid et al. [31]
recently proposed a network architecture in which leaf nodes minimize idle listening by
only turning their radios on to transmit their data and in which those nodes do not lis-
ten on the wireless channel for potential incoming packets. In such cases, router nodes
should buffer the packets destined to the leaf nodes until they wake up. Such message
buffers would likely be larger than the available resources on current mote platforms.
On the other hand, using a resource-rich Cortex-M3-based platform will allow WSNs
to fully experience the benefits of using a standards-compliant networking stack.

Finally, a comparison of the memory footprints of a Cortex-M3 platform and TelosB
in Table 5 suggests that the Cortex-M3 offers good code density, close to that of a 16-
bit MCU, by leveraging the compact yet expressive Thumb-2 instruction set. However,
as a side note, the increased RAM usage on the Cortex-M3 platform implies that its
static leakage can affect the platform’s current draw in sleep mode, slightly increasing
its overall energy consumption.

5.5 Low-Duty-Cycle Applications

The applications presented up to now require large amounts of data processing or con-
sume large amounts of memory. One remaining question, however, is how the Cortex-
M3 stands up to low-power 8/16-bit MCUs when running traditional, low-duty-cycle
applications with large idle times. These applications typically perform three types of
operations: (1) periodic sampling and logging of sensor data, (2) periodic radio wakeups
for clear channel assessment (CCA), and (3) sleeping when idle.

To evaluate the energy consumption of such an application, we designed an experi-
ment that measures the energy consumed by each of these operations on Opal. Specif-
ically, we measured three different values: (1) the amount of energy required to sense
and log an ADC sample to flash, (2) the amount of energy needed to perform a single
CCA check on the RF231 radio, and (3) the total current draw of the platform when
idle (i.e., “wait mode”). Values for the idle current of the SAM3U4E were measured
on the SAM3U-EK development board and values for the RF231 radio are from its
data sheet. Table 3 presents all of our gathered measurements alongside similar mea-
surements for TelosB from [14]. We chose to lower the clock frequency of SAM3U to
match the one of TelosB (i.e., 4 MHz) for a fair comparison. Given power consumption
at this frequency, we argue that running at this speed would be appropriate for applica-
tions focused on preserving energy. If the application required complex tasks, it could
temporarily switch the MCK speed, and return to 4 MHz once the task completes.
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Fig. 3. Relative energy consumption of Opal vs. TelosB running a low-duty-cycle, periodic sens-
ing application at different sampling intervals with low-power listening

Using Table 6, we extrapolate the energy consumption of both platforms as a function
of sampling frequency (fSampling) and CCA frequency (fLPL). We use equations (1)
and (2) to derive the relative energy consumption of Opal vs. TelosB. ESampling is the
amount of energy spent for ADC sampling and ELPL is the energy needed for a CCA
check in LPL.

IPlatform = ESampling × fSampling + ELPL × fLPL + IIdle (1)

EOpal

ETelosB
=

IOpal

ITelosB
(for a constant VCC) (2)

Figure 3 plots the results of applying these equations to sampling frequencies between
1 s and 2 min, with LPL CCA check intervals of 0.5 s, 1 s, and the radio disabled. Lines
on the graph represent EOpal

ETelosB
.

Given these plots, it is obvious that TelosB outperforms Opal in all cases. Specifi-
cally, when no LPL is employed, the relative energy consumed by Opal is dominated at
low sampling frequencies by the ratio of energy consumed while sleeping (i.e., 4.44x),
and at high sampling frequencies by the power consumed while logging (i.e., 15.19x).
The more often you sample, the less often you sleep, making the logging term more
dominant when sampling fast. However, with LPL, the extra energy consumed by CCA
checks begins to counteract the savings gained by low sleep currents. The shorter the
LPL interval, the lower the overall ratio. At low sampling frequencies and short LPL
intervals, the ratios asymptotically approaches 1.66×. Specifically, by choosing a rea-
sonable CCA check interval of 0.5 s [24] and a sampling frequency< 1 sample/min, we
see a relative energy consumption of only around 1.8×. While not ideal, these results
indicate that it is possible for Cortex-M3 platforms to come within a factor of 2 of the
energy efficiency of mote platforms designed specifically for low power.

We further attribute some overheads to our current implementation, which is at an
early development stage compared to TelosB. Additional features such as DMA and
well synchronized timing/clock configurations will reduce the energy consumption fur-
ther while allowing the MCU to utilize its fast wakeup functionality.
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6 Conclusion

We started this paper with a simple question – can modern 32-bit MCU rival their 16-
bit brethren on power while beating them on performance? We end this paper with our
answer – soon. While we illustrate the initial trends in this work, we anticipate many de-
velopments and improvements to take place in our software stack, reducing the energy
consumption and operational latency measurements even more over time. Furthermore,
from an entire system’s perspective, these new MCUs largely free system developers
from the performance limitations of 16-bit architectures without completely abandon-
ing their attractive power characteristics. It is clear that this tradeoff will soon be dom-
inated by other costs (e.g., battery leakage and wireless synchronization). With ARM
committed to supplying 32-bit processors at sub-dollar price points, 32-bit architectures
are poised to assume the processing mantle for future sensor network platforms.
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