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Abstract
We present AutoWitness, a system to deter, detect, and

track personal property theft, improve historically dismal
stolen property recovery rates, and disrupt stolen property
distribution networks. A property owner embeds a small tag
inside the asset to be protected, where the tag lies dormant
until it detects vehicular movement. Once moved, the tag
uses inertial sensor-based dead reckoning to estimate posi-
tion changes, but to reduce integration errors, the relative
position is reset whenever the sensors indicate the vehicle
has stopped. The sequence of movements, stops, and turns
are logged in compact form and eventually transferred to a
server using a cellular modem after both sufficient time has
passed (to avoid detection) and RF power is detectable (hint-
ing cellular access may be available). Eventually, the trajec-
tory data are sent to a server which attempts to match a path
to the observations. The algorithm uses a Hidden Markov
Model of city streets and Viterbi decoding to estimate the
most likely path. The proposed design leverages low-power
radios and inertial sensors, is immune to intransit cloaking,
and supports post hoc path reconstruction. Our prototype
demonstrates technical viability of the design; the volume
market forces driving machine-to-machine communications
will soon make the design economically viable.
Categories and Subject Descriptors

B.0 [Hardware]: General; B.4 [Hardware]: In-
put/Output and Data Communications; J.4 [Computer Ap-
plications]: Computers in Other Systems
General Terms
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1 Introduction
According to the FBI Uniform Crime Report [30], an es-

timated $17.2 billion in losses resulted from property crimes
in the U.S. in 2008. Of this total, burglary accounted for
an estimated 22.7 % (2,222,196 reported burglaries) with
an average loss of $2,079 per incident ($4.6 billion total
lost to burglary) while larceny-theft accounted for 67.5%
(6,588,873 incidents) of property theft with an average loss
of $925 ($6.1 billion total). Motor vehicle theft, in con-
trast, accounted for an estimated 9.8% (956,846 incidents)
of property crimes, with an average dollar loss of $6,751 per
stolen vehicle ($6.4 billion total). Fortunately, most stolen
vehicles – upwards of 80% – are recovered [22], but the
same cannot be said for burglary and larceny-theft. Due to
the difficulty and expense of investigating such crimes, 90%
go unsolved, burglars and thieves remain on the street, and
distribution networks for stolen property remain intact.

Traditional home security systems deter or detect bur-
glary through increased vigilance – security cameras, mo-
tion detectors, and alarm systems – but they cannot help
track or recover property once stolen [14]. On the other
hand, traditional asset tracking and vehicle recovery systems
are ill-suited to the constraints of tracking and recovering
stolen property. Asset tracking products like Brickhouse [1]
and Liveview [2] use GPS to obtain location fixes and cellu-
lar infrastructure to communicate this data but they are not
immune to scanning-based detection, they cannot tolerate
in-transit cloaking, and their high power draw requires fre-
quent recharging (approximately five days of operation with-
out recharging), making them unsuitable for use in tracking
everyday objects like televisions, stereos, and microwaves.

LoJack, the most common stolen vehicle recovery sys-
tem, uses a small device hidden inside a vehicle to transmit
homing beacons after a vehicle has been reported stolen [3].
When a LoJack-equipped vehicle is reported stolen, a net-
work of high-power wireless transmitters send an activation
signal to the device. Once activated, devices transmit pe-
riodic beacons that can be tracked using police car-mounted
LoJack receivers. Unfortunately, this approach requires a de-
vice to be alert to receive the activation signal, and requires
frequent, high-power transmissions once activated, making
it unsuitable for long-term, battery-powered operation, espe-
cially for household assets that are vulnerable to burglary.
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Figure 1. Two test runs of the AutoWitness system. The various numbers denote the distance between successive
turns/stops estimated by AutoWitness with actual corresponding distance in parentheses. The path construction is
obtained by applying our HMM on the Open Street Map representation. The visualization uses Google Maps.

In addition, a $695 price tag makes the cost prohibitive for
tracking everyday objects.

In this paper, we present AutoWitness, a system to de-
ter, detect, and track personal property theft, improve his-
torically dismal stolen property recovery rates, and disrupt
stolen property distribution networks. AutoWitness consists
of small, embeddable wireless tags and a backend server
connected using the cellular network. A property owner em-
beds a tag inside an asset to be protected, where the tag lies
dormant, drawing just microamps, until it detects vehicular
movement. Once moved, the tag uses low-power, inertial
sensor-based dead reckoning to estimate position changes,
but to reduce integration errors, the relative position is reset
whenever the sensors indicate the vehicle has stopped. This
approach employs vibration sensors, accelerometer, and gy-
roscope for inertial sensing, uses a 2nd order butterworth fil-
ter to reduce noise in the raw data, applies drift correction,
and more generally builds on a large body of prior work on
mapping, tracking, and localization to generate motion esti-
mates [16, 18, 20, 32].

The sequence of movements, stops, and turns are logged
in compact form and eventually transferred to a server using
a cellular modem after both sufficient time has passed (to
avoid early detection) and RF power is detectable (hinting
that cellular access may be available). The communications
delay prevents a RF bug detector from quickly identifying
the tagged asset while the presence of background RF noise
power hints that the tag may not be cloaked, and therefore
may be able to use cellular communications. Eventually,
after the trajectory data are sent to a server, the process of
matching a path to the observations begins. Starting with a
known initial position and an estimated final position (based
on cell tower identification), the algorithm uses a novel for-
mulation of Hidden Markov Model of city streets and Viterbi
decoding to estimate the most likely path through the map,
given knowledge of segment lengths, intersections, and sen-
sor observations. Path reconstruction, when feasible in near
real-time can help law enforcement personnel get ready to ar-
rest the suspects as soon as they make a stop, and post-facto
inform about the stolen property distribution network. Fig-
ure 1 shows two test runs of AutoWitness on streets in Mem-
phis. A tag is driven on a 6+ mile path from the university
campus (left figure) and then is driven back via a different

path (right figure).
Our design assumes that property owners are able to em-

bed small, wireless tags into the assets they wish to protect.
We also assume an attacker model in which stolen property
is transported by vehicle on city streets, may be tested for RF
emissions prior to theft but not fully dismantled to search for
tags, may be cloaked or electrically shielded during transit,
and is uncloaked when the stolen property is eventually sold
to pawn shops or the unsuspecting public.
Main Results: For theft detection, we are able to achieve
over 99% accuracy while using 2 simple features derived
from accelerometer, all while operating on ultra-low power
for majority of the time. For estimating distance, we are able
to limit the errors to less than 10% for most cases, even while
allowing the asset hosting the tag to move freely on the floor
of a moving vehicle. For reconstructing the path, we are able
to achieve an accuracy of over 90% even if only crude local-
ization (from cell towers) is available for the destination. If
cell-tower localization is available at each turn, the accuracy
improves to over 99%.
Organization: Section 2 describes the overall architecture.
Section 3 describes the design of the tag node hardware. Sec-
tion 4 describes the theft detection method. Section 5 de-
scribes the process of obtaining turn and distance estimates
from inertial sensors. Section 6 describes path reconstruction
from estimates of turns and distances. Section 7 provides
results of evaluation from real-life experiments. Section 8
concludes the paper.

2 System Overview and Design Rationale
Requirements and Challenges: The AutoWitness system
requires the detection of theft, tracking of the stolen tag as
it is driven on city streets upon detection of theft, and pin-
pointing of the location where it may be hidden. There are
several design challenges that emerge when meeting these
requirements, especially if both, the cost and energy con-
sumption are to be controlled. First is the appropriate choice
of hardware for the tag. Second is the design of a theft clas-
sifier that allows the unit to operate on extremely low cur-
rent, while still ensuring that all theft instances are detected
instantaneously without requiring property owners to report
the incident. Third is the design of a tracking method that can
facilitate posthoc reconstruction of the path followed by the
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Figure 2. The AutoWitness System

stolen tag and pinpoint its final destination even if GPS is un-
available (due to inadvertent or intentional shielding). This
challenge is amplified by the observation that the tag will not
be strapped to the body of motion (i.e., the vehicle). There-
fore, the initial orientation of the accelerometer will not be
aligned to the direction of motion of the vehicle. In addition,
the orientation of the tag could change multiple times, en-
route, such as when the vehicle takes turns, navigates bends
in the road, or goes over potholes.
Overall Design: For the tag node hardware, we decided to
use a vibration dosimeter, 3-axis accelerometer, 3-axis gy-
roscope, and a GSM/GPRS modem, all integrated on to an
Epic Core platform. The vibration dosimeter allows the unit
to remain in a low current mode until significant motion is
detected. If the residual energy in the tag node falls below a
certain threshold, the tag node informs the server (via GSM
radio) which alerts the owner to replenish the batteries. Upon
detection of motion, theft classification is performed using
accelerometer measurements to detect if the motion is in-
dicative of vehicular movement. If so, the tag enters a track-
ing mode, where it begins to use the accelerometer and gy-
roscope measurements to detect turns and to obtain a robust
estimate of distance traveled between successive turns and/or
stops. The estimates of distances and turns are stored locally,
until connectivity to cellular network is available, at which
time they are communicated to a central server. The server
uses these estimates and applies a Hidden Markov Model
(HMM) and Viterbi decoding onto a representation of the
city street map to obtain the most probable route and the rest-
ing destination. Figure 2 illustrates the overall system oper-
ation and Figure 3 illustrates the computations performed at
the AutoWitness backend server.

2.1 Design Rationale
For inertial navigation, six degrees of freedom are needed

to obtain attitude and position in three dimensions [25]. Al-
though it is theoretically possible to use 3-axis magnetome-
ters in place of 3-axis gyroscopes, but magnetometers are
considered unsuitable for inertial navigation in cars [10] be-
cause of large dynamic errors in measurement that can be
caused due to changes in local magnetic field from cars,

Figure 3. The computations performed at the AutoWit-
ness server

bridges, buildings, power lines, etc. An inertial system can
also be built using accelerometers alone, if six accelerom-
eters are aligned appropriately [27]. However, we are un-
aware of the feasibility of this approach in practice or the
availability of such a configuration of accelerometers com-
mercially. Consequently, AutoWitness uses a combination
of accelerometer and gyroscope for inertial navigation. Use
of these sensors in AutoWitness also serves the dual purpose
of enabling theft classification.

Inertial navigation that has traditionally been used in
high-end navigation systems such as missiles, aircraft and
marine applications, is now being adopted for car navigation
to complement GPS. The main challenge in building a car
navigation system based solely on low cost inertial sensors
is that due to the integrative nature of these systems, posi-
tion error grows unbounded as a function of operation time
or traveled distance. Therefore, obtaining the correct path in
real-time has not been feasible with low cost inertial sensors.
Another challenge is robust and reliable estimation of instan-
taneous heading, which is difficult to obtain from rate-grade
low-cost gyroscopes.

By using a novel formulation of HMM for map matching,
using a series of steps to obtain reliable distance estimations
(including estimating and accounting for drifts between suc-
cessive stops), and crude localization from cell-towers of the
final destination (e.g., with an uncertainty of 100m radius),
we are able to reconstruct the path with high accuracy (i.e.,
> 90% for urban streets). If crude localization from GSM
modem is available more frequently (say, at every turn), the
accuracy of correct path identification improves to over 99%.

For theft detection, we decided to use vehicular driving
as the indicator of theft. If the AutoWitness tags are used
only for assets that usually do not accompany the owner
and remain in home or office such as TV, safe, gaming sys-
tems, stereo systems, grand pianos, etc., then vehicular driv-
ing could be a reliable indicator of their theft. These assets
are rarely transported in a vehicle by an owner, but would
rarely be stolen by a thief on foot. Also, since these assets
are left behind when the owner leaves home (or office), they
are likely to be taken in the event of theft or burglary. If the
owner is to take a tagged property in a vehicle, they could
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(a) Tag Node (front/back) (b) Wakeup Circuit (c) Motion Detection

Figure 4. AutoWitness tag prototype: (a) The tag integrates an Epic Core [17] (front), dual vibration switches (back), 3D
accelerometer (front), 2D+1D gyroscope pair (back), and power supply (front) in a 51 mm x 34 mm x 10 mm footprint
which connects with a GPRS radio (not shown) using an edge connector; (b) Motion detection circuit. A vibration
dosimeter integrates the output of a vibration switch and connects to an interrupt line; (c) The motion detection circuit
in operation. Acceleration bias is removed and the readings are scaled. The wakeup signal triggers after a brief period
of motion.

remove the tag before transporting or could disarm the tag.
Using vehicular driving as an indicator of theft serves

several purposes in AutoWitness. First, it significantly cuts
down the false alarm rate because transportation of tagged
asset from one room to another does not activate theft alarm.
Second, radio is not turned on until driving is detected, which
helps evade quick identification of tagged property using RF
bugs detectors during its theft. Not turning on the radio also
saves energy. Third, it enables an ultra-low power operation
when not stolen.

In summary, our design allows us to demonstrate the fea-
sibility of a low cost system that can autonomously detect
theft, facilitate recovery of tagged stolen properties even if
GPS is inaccessible, and potentially dismantle the distribu-
tion network of stolen property transactions by providing the
trajectory followed by stolen properties post-facto (including
all the places where it may be stored en-route), while operat-
ing in an ultra-low power mode for most of its life.

3 Tag Node Hardware Design
The AutoWitness tag node must detect theft, classify

movements, and communicate trajectory estimates to a back-
end server. We address these basic requirements with a tag
design that integrates a mote core, vibration dosimeter, ac-
celerometer, and gyroscope, and which uses an embedded
GPRS radio to communicate with a backend server. In ad-
dition to these basic requirements, the tag design challenges
include size, lifetime, and cost. Tags must be small and un-
obtrusive if they are to be hidden inside of everyday objects
like computers, televisions, and stereo equipment. Once de-
ployed, tags must operate unattended for many years without
maintenance. To be economically viable, tags must cost sub-
stantially less than the assets they protect.

Our prototype design, shown in Figure 4(a), meets some,
but not all, of these needs: the sensor front-end has a 51 mm
x 34 mm x 10 mm footprint (without the GPRS modem), the
entire tag draws over 10 µA in sleep mode, and the cost of the
tag exceeds $200. However, newly emerging, contract-free,
wristwatch phones with $100 retail price tag that integrate a
color LCD touch screen and Bluetooth communications, and

include several phone accessories [4] give us hope that a tag
price in the tens of dollars will soon be viable at volume.

3.1 Motion Detection and Inertial Sensing
The basic detection problem is to distinguish an object at

rest from an object in (prolonged) motion while minimizing
the current draw in the resting. We use a vibration dosime-
ter, shown in Figure 4(b), to perform this function. The
sensor is an omni-directional vibration switch that is nom-
inally closed at rest but chatters open and closed in response
to movement [24]. The switch is connected to ground on
one terminal and in series with a pullup resistor to power.
The 2.49 MΩ pullup resistor sets the quiescent current draw
of the circuit. At rest, the circuit draws 1.2 µA at 3 V. A
capacitor AC-couples the output of the sensor, a first diode
steers negative voltage transients to ground, and a second
diode steers positive transients to a capacitor that integrates
these signals. A resistor in parallel with the integration ca-
pacitor slowly discharges the capacitor so that in the absence
of motion, the capacitor voltage goes to zero.

Figure 4(c) shows the motion detector circuit in opera-
tion. Tri-axial acceleration samples taken at 200 Hz us-
ing the onboard Analog Devices ADXL330 accelerome-
ter [9] are shown with their bias removed and amplitude
scaled. Rotation data from the onboard ST Microelectronics
LPR530AL/ALH gyroscopes [26] are not shown. The out-
put of the motion detection wakeup circuit can be seen as a
pulse that alternates between zero and one as the sensor tran-
sitions from rest to motion. At time t =0.5 s, a tag is picked
up and moved and at time t =1.33 s, the motion detector cir-
cuit wakeup triggers, waking up the sleeping microcontroller
using an interrupt line. At time t =3.09 s, the tag stops mov-
ing and time t =4.3 s, the motion detector output indicates
movement has stopped. This process repeats for a second,
longer, and larger motion starting at time t =7.5 s.

3.2 Tag-Server Communications
The key communications challenge in our system is en-

suring that tags can eventually communicate with the back-
end infrastructure while minimizing the size and cost of the
communications hardware. The twin requirements of near-
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Classifiers Accuracy(%)
Decision Tree 98.5813
Random Tree 98.4217
Naive Bayes 87.5155
ClassificationViaRegression 98.72
Filtered Classifier 96.1341
Rotation Forest 98.88
Decision Table 95.95

Table 1. Performance of different classifiers for detecting
vehicular movement (using WEKA).

ubiquitous connectivity and market-driven commoditization
are well met using a GSM/GPRS cellular radio modem. Our
prototype design uses a Telit GM865 module [7] which mea-
sures 22 mm X 22 mm X 3 mm.

A separate carrier board is used to mount the GM865
module and connect it with the tag node for power con-
trol and serial communications, with external antennas for
GSM/GPRS, and battery. To support experimentation, an
1100 mAH, 3.7 V rechargeable Li+ battery provides power,
but for production purposes, we expect to use a primary
(non-rechargeable) battery due to significantly lower leakage
currents. Finally, the GSM/GPRS radio uses an external,
quad-band blade antennae (1-2 dbi) [6]. Going forward, we
plan to use a smaller, integrated antenna and radio module.

4 Theft Detection
As described in Section 2, we use vehicular movement

as an indicator of theft. In this section, we describe our ap-
proach of detecting vehicular movement using the AutoWit-
ness tag, while operating in ultra-low power mode most of
the time. Since a tag node will be spend most of its life mon-
itoring for theft, an ultra-low power operation in this phase
has the most impact on its overall lifetime.

To reduce the power consumed by the algorithm we use
“triggered sensing” [11], in which low-power sensors are
used to make an initial decision, and wake up other sensors to
improve the accuracy of such decision. In our case, the low
power sensors are vibration dosimeters, which wake up the
microcontroller when significant movement is detected. Af-
ter waking up, the tag-mote samples the accelerometer, com-
putes features, and uses a decision tree to detect if the tag is
moving in a vehicle. If the decision is “vehicle,” the tracking
algorithm is triggered. The final decision, whether the object
is being stolen, is made at the central server by estimating the
speed and change in location derived from cell-tower based
localization.
4.1 Detecting Vehicular Movement

We now describe the details of the algorithm for detecting
if a tag is being moved in a vehicle. A tag is in the deep sleep
state until an interrupt is generated by the vibration dosime-
ter. After the interrupt, the accelerometer is sampled for 1.05
seconds at 200Hz. The collected data is preprocessed by first
converting the raw ADC values to acceleration in units of 1g,
then computing the magnitude of acceleration (in order to
eliminate dependence of the algorithm on orientation of the
tag), and finally, computing the medians in non-overlapping
windows of 15 samples. If the variance of the computed me-

dians is below a threshold, it is assumed that the movement
was caused by a short jerk, and the tag returns to deep sleep
state. If not, 4.2 seconds of additional samples are extracted
from accelerometer to decide whether it represents vehicular
movement. The 5.25 seconds worth of data is partitioned in
five intervals of equal size and a decision tree classifier (for
vehicular movement) is applied to each interval, producing a
total of 5 decisions. In a post-processing phase, majority rule
is applied to arrive at a final decision, i.e, if 3 or more out of
5 decisions are “vehicular movement” the algorithm initiates
tracking, otherwise it returns to deep sleep. Post-processing
helps reduce the false alarms produced by transitions, for ex-
ample, when the tag-mote is carried on foot.
Classifier Development: To develop a classifier for vehicu-
lar movement, we collected data in different scenarios. A tag
was attached to objects such as televisions and stereos, car-
ried by a walking person, transported in car, on trolleys and
rolling chairs. Classification is based on features computed
from the data (after preprocessing). We used features found
useful in the activity classification work [23]. We trained dif-
ferent classifiers in WEKA [8], and evaluated them using 10-
fold cross validation. The performance of various classifiers
are shown in Table 1. We selected decision tree, given its
simplicity, and trained it with different number of features.
We found that the most discriminating features were energy
(i.e., mean over square of measurements) and standard de-
viation. Adding more features did not lead to significant in-
crease in accuracy. Figure 5 shows a scatter plot of feature
values for vehicular and non-vehicular movement. Using
this classifier we are able to obtain 97% accuracy, which im-
proves to > 99% by using majority voting (see Section 7.1).
5 Estimating Distance and Turns from Iner-

tial Sensors
After the Auto-Track system classifies an activity as theft,

the tracking module is triggered. The tracking module’s pur-

Figure 5. Scatter plot of feature values for vehicular
and non-vehicular movement. The clusters for the non-
vehicular movement closer x-axis correspond to static
scenarios and the ones farther from the x-axis correspond
to manual movement (e.g., trolley, walking, etc.).
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pose is to find the exact sequence of road segments that the
stolen property is driven through so as to pinpoint its final
destination. The reconstruction of the path consists of two
stages — 1) estimation of turns and distances between suc-
cessive stops and/or turns, and 2) application of Viterbi de-
coding and a Hidden Markov Model (HMM) on the street
map to identify the path from distance and turn estimates. In
this section, we describe the process of obtaining turn and
distance estimates and discuss the path reconstruction pro-
cess in Section 6.

Any rigid body’s spatial movement in space can be de-
scribed with the help of six parameters: namely three trans-
latory (x-, y-, z-acceleration) and three rotatory components
(x-, y-, z-angular velocity). As described earlier, the tag node
used in the AutoWitness system is equipped with a 3 axis
accelerometer coupled with a 3 axis gyroscope. The three
acceleration sensors and three gyros have been put together
in such a way that they form an orthogonal system. The ac-
celerometer has a 3-dimensional Cartesian frame of refer-
ence with respect to itself, represented by the orthogonal x,
y, and z axes. In addition, we define a cartesian frame of ref-
erence with respect to the vehicle that the tag node is in. The
vehicle’s frame of reference is represented by the orthogonal
X, Y, and Z axes, with X pointing directly to the front, Y to
the right, and Z into the ground. If the tag node’s coordi-
nate system was perfectly aligned with that of the car’s, and
the obtained signal from the tag was continuous, integrating
the individual translatory and rotatory components recorded
on the accelerometers and gyros respectively would tell us
the exact position and attitude of the burglar’s car. For a
straight road segment, a double integration of the accelera-
tion data would yield the distance traveled from the starting
point and since the gyros provide output data representing
rotation speed (not angular acceleration), a single integra-
tion of the gyro signal would yield the total change in the
attitude of the burglar’s car. Performing these calculations
periodically would enable the ideal system to trace the car’s
movement with respect to a (virtual) reference point and to
indicate its speed, current position and heading. However,
the assumption of perfect alignment is unrealistic and in most
cases when a theft occurs the stolen object will be placed in a
tilted configuration resulting in an arbitrary disorientation of
the axis of accelerometers with respect to the car’s coordinate
system. Integrating readings from a disoriented accelerom-
eter results in huge estimation errors for both distance and
angles. Additionally, the measurements obtained from low
cost inertial sensors are quite noisy and suffer from large
drifts. In Section 5.1, we present our method of obtaining
angle estimates from the gyroscope measurements, in Sec-
tion 5.2 we describe the process of reorienting the axes of
accelerometers every time there is a change in its orientation
with respect to the vehicle, and in Section 5.3, we describe
our approach of estimating the distance traveled between
successive stops and/or turns from accelerometer and gyro-
scope measurements. The stops are detected using a similar
decision-tree based classifier as the one used for detecting
vehicular movement (see Section 4.1).

(a) Lane Change followed by a
right turn

(b) Corresponding yaw mea-
surements

(c) First difference in yaw (d) Estimation of angles

Figure 6. Gyroscope measurements during turns and
lane changes

5.1 Obtaining Angle Estimates
We use the gyroscopes and accelerometers to estimate the

angle of change in the direction of movement of the vehicle.
In strapdown inertial navigation applications, gyroscopes are
used to estimate instantaneous attitude of the object along a
fixed reference frame, by a single integration of the angular
velocity. The instantaneous attitude along each axis (X,Y,Z)
can be represented using Direction Cosine matrix, Euler An-
gles or Quaternions. We use Euler Angle system to maintain
the instantaneous attitude information. Rate-grade low-cost
gyroscopes generally suffer from two kinds of errors — scale
factor error and static bias [13]. The scale factor error that
may be introduced due to mounting and placement errors
when putting the gyroscopes on the board, can be estimated
once for each board using a turn table.

Static bias is the output produced by gyroscope when
there is no angular velocity applied to it. This value is of-
ten not a constant, and when integrated to find the angle of
rotation may lead to large drifts over time. We account for
this potential error by estimating the drift at every stop.

Although we are interested in measuring the change in
the angle of heading of the vehicle (for use in map match-
ing), the tag may experience a change in orientation not only
due to legitimate turns and curves in the road, but also due
to change in its orientation from the vehicle’s frame of ref-
erence (e.g. due to jerks, or skidding when taking a turn).
We use the absolute value of the first difference in yaw read-
ings to detect these changes in orientation. We maintain two
thresholds (Dh ≥ Dl) for amplitude so as to detect a spike
in the first difference feature (when it rises above Dh) and
we record the time it takes for the first difference to return
to normal (when it drops below Dl). This duration is called
the activation time. Figure 6 shows the effect of lane shifts
and turns on these two features. Gyroscope measurements

34



Figure 7. Illustration of various steps to reduce ac-
celerometer noise. First the raw signals are passed
through a 2nd order butter worth filter, then the median is
computed over a window of 20 samples, finally the mean
is calculated over 10 medians. .

captured during the activation time are used for computing
the change in angle of the tag. The axes of the accelerom-
eter are reoriented to the vehicle’s frame of reference using
the reorientation module any time the gyroscope indicates a
change in orientation (see Section 5.2). The change in the
orientation of accelerometer computed by the reorientation
module (which represents the change in the tag’s orientation
from vehicle’s frame of reference) is then accounted for in
the angle of turn computed from gyroscope measurements to
obtain the change in angle of the vehicle.
5.2 Reorientation of Accelerometer Axes

To measure acceleration in the forward direction, the
dominant (virtual) axis of the accelerometer (which need not
be aligned with any of the designated axes) needs to be de-
termined so that the acceleration values used are indicative
of actual distance traveled. Since the tagged object can be
placed in any orientation, we need to find the (virtual) axis
of motion. To determine the dominant axis, we use the ap-
proach proposed in [21]. In addition, the orientation of the
tag may change en-route due to movement of the asset that
houses the tag. We recompute the dominant axis anytime the
gyroscope measurements indicate a potential change in the
angle of the tag (see Section 5.1). We then use the direction
cosine matrix to resolve the accelerometer readings to obtain
the acceleration in the direction of motion [29].
5.3 Estimating Distance Traveled from Iner-

tial Sensors
Before the accelerometer values obtained in the direction

of motion can be used to compute distance traveled, it must
be corrected for several potential errors. First, to remove
jitters and noise from the accelerometers one can either per-
form a 2nd order Runge Kutta Integration [33] or pass the
signal through a 2nd order Butterworth Filter [19, 29]. We
tried out both and found that the later worked for us better.
Due to the high sampling rate of our accelerometers (200 Hz)
and jerks experienced on the road the obtained signals still

suffered from high amplitude variation. Hence, they were
further smoothed by taking a median of 20 samples and then
taking the mean of 10 such obtained medians. This proce-
dure yielded only a single acceleration value for each 1 sec-
ond interval, representing the average acceleration of driving
during that second.

Second, urban streets often contain curved roads through
neighborhoods, ramp to interstates or loops. As shown in
Figure 8 when a car drives through a curved road even for
small speeds the centrifugal force can be substantial and the
readings from the accelerometers is actually a representation
of the tangential acceleration generated by the car. If the un-
transformed signal is integrated to find the distance traveled
on the curved segment it results in significant drift. The true
component of motion along the road is given by the resul-
tant of the two opposing forces namely the tangential force
and the centripetal force (or the force generated by the steer-
ing wheels to stay inside curve and the centrifugal force) and
in order to find the actual distance traveled on the road seg-
ment one needs to extract the true acceleration component
from the raw signal. This can be achieved with the help of
Gyroscopes. While moving into a curved segment from a
another road segment the total change in yaw angle gives
us the angular rotation. The angular rotation can be then be
used to find the component of centripetal force which when
subtracted from the raw signals gives us the component of
acceleration along the curve. Other similar scenarios include
lane changes and traveling over a hilly region or undulated
terrain as shown in Figure 8. For details, we refer the reader
to Chapter 11 in [29].

Third, when an object moves from one stop to the next
stop, such as when accelerating from rest at a traffic light to
coming back to rest at the next red signal, the average ac-
celeration over the interval is zero. But during transit, the
accelerometers produce highly oscilating values. In order to
eliminate the drift from the measurements, we subtract the
mean acceleration (between two successive stops) from all
recorded acceleration values [12]. The typical speed limit

Figure 8. Accounting for radial acceleration in differ-
ent scenarios: While traveling through ramps, undulated
terrain and making lane changes the true component of
the acceleration is extracted from the raw accelerometer
signals with the help of change in attitude information
from the Gyroscopes. This significantly reduces errors in
distance approximation

35



Figure 9. Various stages in estimating the distance trav-
eled between successive turns and/or stops from inertial
sensors (broken lines indicate inputs).

of a vehicle in urban scenario lies below 75 mph which is
very small compared to the rotation speed of the earth’s sur-
face, hence in our distance estimate computation we ignore
the Coriolis Effect produced by the earth. Figure 7 shows
how the raw signal from the accelerometers are successively
filtered to produce good distance estimates.
5.4 Implementation of Distance/Turn Compu-

tations
Figure 9 shows the overall procedure for obtaining dis-

tance estimates between successive stops. The acceleration
value in the direction of motion is corrected for any radial
acceleration. The Butterworth filter is applied next to filter
out noise. The one second means computed from these mea-
surements (see Section 5.3) are buffered until the next stop,
at which time the bias is removed from them to derive the
acceleration that can be used for distance computation. Each
such buffer corresponds to measurements recorded between
successive stops.

The gyroscope measurements that may correspond to
turns are also buffered until the next stop, at which time bias
can be removed from them. Also, the buffer of accelerome-
ter measurements is marked each time a potential change in
orientation is suspected from gyroscope measurements. Fur-
ther, the changes in orientation determined by the reorienta-
tion module is also stored. At each stop, the angles for each
marked turn is computed (see Section 5.1). The accelerome-
ter buffer is then partitioned to derive the segments between
each successive turn. Double integration is now applied to
obtain distance between each successive turns and/or stops.
Both the accelerometer and gyroscope buffers are flushed out
to allow for fresh recording until the next stop.
6 Path Reconstruction From Distance and

Turn Estimates
Once a sequence of turns and distance traveled between

successive turns and/or stops has been obtained, the next
challenge is to search a map of streets to identify the se-

quence of road segments that is most likely to result into the
observed sequence of distances and turns. The problem is es-
pecially challenging because 1) the initial location may not
be known deterministically due to the delay in activating the
tracking module after theft is established by the theft clas-
sification module (of the order of 10 seconds, which may
translate to 100 meters), 2) the estimates of distances ob-
tained from accelerometer and gyroscope readings could be
off from their actual values by up to 12%, 3) several road
segments have similar lengths, and 4) the destination loca-
tion (obtained from cell-towers) may have an uncertainty of
the order of 100 meters.

Viterbi Decoding over Hidden Markov Model (HMM) has
traditionally been used for mapping noisy GPS measure-
ments to a route [28] because a route can be considered as
a sequence of road segments and the adjacency among ad-
joining road segments can be used to constrain the transition
among states (i.e., road segments). Therefore, even though
we do not have GPS coordinates to map to a sequence of road
segments (contrary to most existing work on map matching),
the formulation of an HMM continues to be a suitable choice
due to its ability to leverage adjacency among road segments
to account for the uncertainty in measurements.

An HMM is a Markov process comprising of a set of hid-
den states and a set of observables. Every state may emit
an observable with a known conditional probability distri-
bution called the emission probability distribution. Transi-
tions among the hidden states are governed by a different
set of probabilities called transition probabilities. Upon ex-
ecuting on a sequence of hidden states, an HMM produces
a sequence of observables as its output. While the output
(i.e., the list of observables) can be observed directly, the
sequence of hidden states that were traversed in producing
the observed output is unknown; the problem is to determine
the most likely sequence of states that may have produced
the observed output. Viterbi decoding [31] is a dynamic
programming technique to find the maximum likelihood se-
quence of hidden states given a set of observables, emission
probability distribution, and transition probabilities.

For map matching, hidden states usually correspond to
road segments (portion of road between two points of inter-
est, which could be intersections, not necessarily neighbor-
ing). The choice of observables is key to the formulation
of an HMM. It is the definition of observables that can aid
Viterbi decoding in distinguishing one road segment from all
others. So, the observables should be as unique to the road
as possible. We considered average speed, total length of the
segment, travel time, stretch of the segment (i.e., ratio of Eu-
clidean distance between the two ends and the road length),
among others. Some are not as unique, while others are not
stable (e.g., travel time). We decided to use two features as
observables — distance between successive stops and total
length of the segment (between successive turns that indi-
cate transition to the next road segment). Both features are
simple to compute from the distance measurements, and to-
gether are rather unique to a road segment, if it is sufficiently
long (i.e., if it includes some stops). Although a vehicle may
not stop at all traffic lights on a road segments, the distance
traveled between successive stops at (red) traffic lights cre-

36



Figure 10. Computation of Transition probability: The
burglar’s car takes a turn on road segment j from i and
travels a distance ’d’ before turning into another road
segment k. ’d’ is obtained using the accelerometers hence
εd is the error range associated with computing ’d’. The
two road segments falling within error range εd allowing
a turn are Road segment k =1 and k =2. Hence the road
segment traveled on j could be either j = 1 or j = 2. Our
HMM computes the transitions probabilities for j =1 and
j =2 and moves onto road segment k

ates a pattern that can be (probabilistically) matched to a road
segment (see Figure 11). The total length of the segment
complements it by ensuring that the the aggregate of the dis-
tance between successive stops for an entire road segment
matches with the total length of that segment.

The starting state consists of all intersections (say, n of
them) that fall within a radius of r from the location where
the tag node was deployed before theft. They are assigned
uniform probability, i.e., 1/n.

We next define transition probabilities. A transition is ini-
tiated only when a turn is indicated from the gyroscope mea-
surements, in which case the distance traveled on the pre-
ceding segment and the angle of turn are used to determine
the transition probability. To limit the number of states con-
sidered for transition, we consider only those states that fall
within the error distribution of the observed length and turn.
The transition probability from a road segment i completed
at the (t− 1)th turn to segment j completed at the t th is de-
rived using Bayesian Inferencing. For a distance d traveled
on road segment j before turning to another road segment k,
we denote the transition probability as Pi( j | d) (for transition
from state i to state j) and compute it as follows:

1. If t = 1, this is the first turn observed after the detec-
tion of theft. In this case, the start state is defined as
described earlier.

2. For t > 1, the angle of turn (γ) is computed from gyro-
scope (as described in Section 5.1).

3. The distance traveled on the jth segment (d) is com-
puted using the accelerometers and gyroscope (as de-
scribed in Section 5.3).

Figure 11. Stoppings estimates don’t exactly coincide
with traffic lights, hence a margin of ±εd is considered
while pinning to traffic lights. Once a traffic light is found
within error range the stopping estimates are refined by
pinning to the light

4. Since d and γ are estimations of the actual measure-
ments, we associate error margins εd and εγ respectively
to them.

5. For all the road segments that begin at the end of seg-
ment i, and have a length between d ± εd , (which all
may be different portions of the same road1), we prune
all the road segments j, whose angle of intersection
with some road segment k is outside the range γ± εγ.
The set of remaining road segments j are the candidate
set for transition and is denoted as C (see Figure 10).

6. For all road segments in C, the prior probability Pi( j) is
uniform and is given by Pi( j) = 1

|C|) .

7. Pi(d | j), the evidence for Bayesian inferencing, is es-
timated from experimentation. We assume it follows a
Gaussian distribution whose variance σ depends on how
accurately we are able to approximate distances trav-
eled on road with the help of accelerometers and gyro-

scope. Hence, P(d | j) = 1
σ
√

2π
e−(d−d j)2

/
2σ2

where d j

is the actual length of road segment j ∈C from start of
road segment i.

8. Next, we compute the marginal probability P(d) which
is given by P(d) = ∑P( j)P(d | j).

9. Finally we compute our transition probability which
is given by the conditional probability P( j | d) =
P(d| j)P( j)

P(d) .
We next describe the computation of emission probability,

the probability of seeing defined observables given that the

1Once state i is defined, the angle of turn observed at the (t−
1)th turn determines the road whose segment may come next and
thus limits the search for the next road segment on to this road.
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system is in a specific state. These probabilities in practice
should reflect the characteristics of a state, and is used by the
Viterbi algorithm to differentiate the true state that the sys-
tem is in from other probable states. If the stopping estimates
were perfect, we could assign an emission probability of 1 to
the road segment whose traffic lights matched with the stop-
ping distances and 0 to others. However, the estimations of
distance obtained from accelerometers and gyroscope have a
margin of error. Additionally, a vehicle may stop some dis-
tance earlier than the traffic light, if there are other vehicles
in front of it. Therefore, we assume that if the distance es-
timated is d, the true distance could have a range of d± εd .
Let P(y|x) denote the probability of obtaining x from dis-
tance estimation when the true distance is y. For |y−x|> εd ,
P(y|x) = 0; otherwise, uniform over the entire domain. We
now describe how we use P(y|x) = 1− |y−x|

y in computing
the emission probability.

Consider a road segment s. Let the number of stops en-
countered be m, where the turn into this road segment is con-
sidered the first stop and the turn out of this segment to an-
other road segment the last stop. Let x1,2 be the observed
distance between stops 1 and 2 and y1,i the actual distance be-
tween traffic lights 1 and i, where 1≤ i≤m and |y1,i−x1,2| ≤
εd . Each of these lights i become a candidate for the second
stop. First consider the case when there is only one can-
didate for i for each stop (see Figure 11). Then, the emis-
sion probability PE = P(y1,2, . . . ,ym−1,m|x1,2, . . . ,xm−1,m) for
a sequence of observed distances in a given road segment is
given by

PE = P(y1,m|x1,m)
m−1

∏
i=1

P(yi,i+1|xi,i+1) (1)

If there are multiple candidate traffic lights for any stop i,
then a new branch of traffic light sequence is considered cor-
responding to each candidate. A maximum is taken over the
emission probability computed using (1) for each candidate
stopping sequence (see Figure 12).
7 System Evaluation

We now present the evaluation of various aspects of the
AutoWitness system — theft detection, turn estimation, dis-
tance estimation, and path reconstruction.
7.1 Theft Detection

As mentioned in Section 4, we use vehicular movement as
indicator of theft. We implemented the classifier described in
Section 4 on a tag and collected data from various conditions
— vehicular movement, non-vehicular movement, and static
(tag not moving). We pooled static data in the category of
non-vehicular movement. The total number of samples (each
sample represents 210 accelerometer readings) used in the
evaluation is 15,000. We obtained vehicle movement data
by placing the tag in a vehicle and driving without stops. To
obtain non-vehicular movement data, a person walked with
the tag in her hand. To obtain data from static situations in
which the tag might wake up, we placed it on devices that
may produce vibration such as televisions and speakers. The
classifier was running on the tag, and its output was logged.
We compared three versions of the decision tree classifier.

Figure 12. If multiple traffic lights are detected within the
same error range the matching process forks into multi-
ple branches each trying to pin to a different traffic light
within the error range. Finally the sequence of traffic
lights which generate the highest emission probability is
accepted.

The first version was trained on raw accelerometer measure-
ments, the second version uses median over 15 samples, and
the third version applies the majority rule over 5 decisions
taken over the median of measurements.

The results are presented in Table 2. Notice that the num-
ber of samples in the rightmost confusion matrix is less than
the corresponding number in the leftmost matrix, because the
majority rule was applied to 5 consecutive segments of one
second. We observe that computing the median before ex-
tracting the features greatly reduces the number of misclas-
sifications: only 2.93% of non-vehicle movement was classi-
fied as “vehicle,” and only 2.68% of vehicle movement was
misclassified. Applying the majority rule eliminates false
negatives entirely and limits false positive to < 1.5%.
7.2 Turn Estimation

For turn estimation, we evaluate the improvement we ob-
tain by estimating the bias at every stop. We collected gyro-
scope measurements by placing a tag in a car and taking 120
turns for 6 values of angles. The ground truth was collected
using GPS on an Android G1 phone. The results appear in
Figure 13. We observe that the average error in angle esti-
mation over 6 different cases with 20 samples each reduced
from 23.02% to 6.92% after correcting the bias.
7.3 Distance Estimation

We focus our evaluation of distance estimation on two
questions — 1) What is the impact of various stages in dis-
tance estimation, and 2) What level of accuracy are we able
to obtain using the entire pipeline presented in Section 5.

For the first, we consider six scenarios of travel as de-
scribed in Figure 14. For all the driving scenarios a tag was
placed inside a wooden box, strapped to it but the wooden
box was allowed to move freely at the base of the back
seat whenever it encountered jerks or radial acceleration.
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Raw Data Median Median+Majority
Vehicle Non-

Vehicle Vehicle Non-
Vehicle Vehicle Non-

Vehicle
Vehicle 4916 (98.32%) 84 (1.68%) 4866 (97.32%) 134 (2.68%) 1000 (100%) 0 (0%)
Non-Vehicle 3557 (35.57%) 6443 (64.43%) 293 (2.93%) 9707 (97.07%) 29 (1.45%) 1971 (98.55%)

Table 2. Confusion matrices for the three classifiers: Using only raw measurements (left), computing median over 15
samples (center), and computing median, and majority rule over 5 consecutive decisions (right). Row labels represent
actual values, columns represent classifier output.

This was done to simulate a real burglary incident where the
wooden box represented a stolen asset. The tagged box was
driven over 300 different road segments. We collected ac-
celerometer and gyroscope measurements from the AutoW-
itness tag, and ground truth using the GPS on an Android G1
phone that was sampled every second. We then processed
the measurements obtained using the pipeline presented in
Figure 9 on a laptop. To evaluate the impact of some of the
stages in this pipeline, we omitted specific stages. In partic-
ular, we evaluated the impact of reorientation, correction for
radial acceleration, and correction for the drift.

The results appear in Figure 14. We observe that on road
segments where the tag may shift its orientation due to bends
or frequent lane changes, maintaining correct orientation by
reorienting the accelerometer axes can improve the error in
distance estimation by over 5 times. On roads that have sig-
nificant radial acceleration component due to hills or bends,
correction for radial acceleration can improve the error in
distance estimation by 2-3 times. Finally, correction for drift
improves the distance estimation error in all cases uniformly
(by over 100%). We note that distance estimation errors also
represent the accuracy one would expect in locating the final
destination, where the actual distance is the distance of the
destination from the preceding stop/turn.

For the second question, we computed the error in our
estimate of distance traveled and that obtained using GPS on
the Android G1 phone. We considered all six types of travel
as described in the preceding, but spread over 300 different
road segments whose length varied between 0.2 to 1.5 miles.
We applied all stages of the distance pipeline in this case.
The results appear in Figure 15. We observe that the errors
in distance estimation are usually below 10%. In some rare

Figure 13. Effect of drift due to zero offset on angle esti-
mation, and angle estimation after correcting for it.

Figure 14. 1st bar denotes the actual error in distance
estimate when all stages of Figure 9 are used, 2nd bar if
reorientation is not used, 3rd bar if radial acceleration is
not accounted for, and 4th bar if the drift is not accounted
for. The conditions are — Straight road (strt), stop and
go traffic (s-go), frequent lane changes (ln-ch), frequent
& rapid acceleration and deceleration) (v-sp), hilly roads
(hill), and frequent (often sharp) bends (bend).

case, they reach 12.3%, but no higher.

7.4 Map Reconstruction
To evaluate the quality of path reconstruction, we focus

on three questions — 1) What is the impact of errors in dis-
tance estimation in the quality of path reconstruction, 2) How
does the quality of path reconstruction degrade if no stops are
used (i.e., only total distance of each segment is used as an
observable), 3) How does the quality of path reconstruction
improve if crude localization from cell towers is available

Figure 15. Cumulative distribution of distance approx-
imation errors for 300 segments ranging from .2 to 1.5
miles.
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Figure 16. Probability of obtaining the correct path us-
ing Viterbi decoding, when distance between successive
stops and/or stops are used together with total length of
path segment are used for observables, destination loca-
tion is known with 100m uncertainty, and initial location
is known with 500m uncertainty. The x-axis denotes the
error in distance estimation.

at each turn, 4) How does the quality of path reconstruction
degrade if travel includes highways where long stretches of
travel can occur without any stops, and 5) How often is the
true path in top-k paths, in cases when the true path may
not be the one found by Viterbi decoding. The last question
is relevant because in case the stolen property is not found
in the most probable destination, additional searches can be
made at other probable destination to recover it.

We use the map representation of Memphis (in Ten-
nessee) from the Open Street Map project [5], which pro-
vides a readily available, quite comprehensive representa-
tion of the road networks of cities that can be easily pro-
cessed into a data structure suitable for our Hidden Markov
Model. The Open Street Map data, which is retrievable from
the Open Street Map website as an XML format OSM file
(as well as through a web based API), consists primarily of
two types of XML tags: Node element tags, each with a
unique reference number, geographic coordinates, and meta
data such as indications of traffic lights or stop signs; and
Way element tags, each with sequentially ordered references
to Node elements, as well as other meta data, such as street
name and type (highway, residential, etc.) The Node ele-
ments act as ”shape points” with fixed locations, while the
Way elements represent roads and paths by ”tracing along”
the series of referenced Nodes in sequence.

To build a graph of the road network, we first parse the
OSM file for all of the Node tags to create RoadNode ob-
jects holding the location coordinates and original reference
numbers, as well as booleans to indicate if the Node is a traf-
fic light, stop sign, or any other kind of potential stop. We
then parse the file for all of the road-type Way elements (ig-
noring bike trails, foot paths, and so forth) and process each
one into a series of several RoadSection objects, which rep-
resent the small section of road between two Node points.
Each sequential pair of Nodes (in each Way’s ordered series
of Nodes) becomes the two end points of the RoadSection,
and their latitude and longitude coordinates are used to de-
termine the distance of the RoadSection via the Haversine
formula, which provides great-circle distances between two

Figure 17. Similar setup as in Figure 16, but now cell
tower localization is available at each turn.

points on a sphere from their longitudes and latitudes. The
actual street name is stored in each RoadSection object so
that it is easily identifiable. We also compute the bearing,
or angle from true North, of each road section using its two
coordinates, which is used to determine the angle between
adjacent RoadSections. After all of the RoadSection objects
are created from the data set, we run an algorithm to popu-
late each one with a list of references to other RoadSection
objects which are adjacent to itself and the angles between
them and itself. The outcome of this is the graph-like data
structure with most of the details our HMM model needs.

The observables for our HMM consists of a sequence of
distances and turns. The distances consists of either stopping
estimates between different intersections where the vehicle
experiences a red light or STOP sign or distance traveled
between two successive turns into different road segments.
Hence, in order to create the observables, we generate a syn-
thetic path using the processed data from the Open Street
Map GIS database. We begin at some node in the map struc-
ture and traverse through a path of road sections, recording
the length of each section and the angles between successive
sections. If the node joining two successive sections is a po-
tential stop, meaning it represents a traffic light, it is chosen
to be marked as a stop depending on a Markov chain. The
Markov chain represents transitions of traffic lights from red
to green and vice versa. We drove across 300 traffic lights
and came up with the estimates for the transition probabil-
ities for Markov chain. As per our estimate the probability
of getting a red light, if the previous traffic light was green

Figure 18. Similar setup as in Figure 16, but distance
between stops are not used for observables.
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Figure 19. Similar setup as in Fig-
ure 16, but highways are allowed to
be in the path.

Figure 20. Cumulative probability of
obtaining the correct path in top k-
weighted paths in the case considered
in Figure 19.

Figure 21. Similar setup as in Fig-
ure 19, but now cell tower localiza-
tion is available at each turn.

is 0.43, and the probability of getting a red light if the pre-
vious light was red is 0.55. The first light was assumed to
be Red and the next traffic light was chosen to be a stop or
pass depending on the resulting state of the Markov chain.
Stop signals encountered along the synthetic path were al-
ways treated as STOPS.

For the turns, we used the GPS coordinates to compute
the angle between two road sections. If the angle between
two successive sections is less than (some threshold) and the
node joining them is not marked as a stop, their distances are
summed and the next section is then considered in the same
fashion. The result is a series of ground truth distances, with
stops and turns in between — the output we would expect
to see from our tag node. After the paths are created, ran-
dom, bounded adjustments were made to the distance values
of each road segment between successive stops and/or turns
to simulate errors in distance estimations. Since there could
be delay of few seconds in activating the tracking module af-
ter detection of theft, we generate an initial uncertainty in the
original location of the stolen object. We take a 500m radius
across the original location of the stolen object and consider
all intersections within the radius as a possible starting seg-
ment. Additionally in all our simulations we assume that a
rough estimate of the final destination of the stolen object is
available to us by virtue of cell tower localization (with an
uncertainty of 100m, given the urban setting).

To observe the trend of degradation in the quality of path
reconstruction as a function of total length of the path, we
considered a range of values for total distance of the path
— 2, 5, 10, 15, 20, and 25 miles. For each value of the
total path length, we randomly selected a starting location
100 times, and for each instance, we considered 10 different
directions for the final destination, making for 1,000 repeti-
tions for each value of the path length.

For urban streets, we present the results in Figure 16. We
observe that for path lengths ≥ 5 miles, we are able to ob-
tain the true path using Viterbi decoding in > 90% cases.
We also observe that the quality of path reconstruction de-
grades slowly until about 20% error. Given that the errors
in distance estimation obtained from the AutoWitness tag is
10% or lower in most cases, we find the quality of path re-
construction promising for our application. In Figure 17 we

present the same results if crude localization is available at
each turn. We observe that with this additional information,
the probability of finding the correct path is more than 99%
even with 10% error in distance estimation.

Figure 18 presents the accuracy of path reconstruction if
cell tower localization at each turn is unavailable and the dis-
tance between stops are not used as observables. We ob-
serve that the quality of path reconstruction degrades quite
a bit, but is still over 75% for total path length of 10 miles
or higher. This case provides a lower bound on the perfor-
mance of AutoWitness in the sense that if distance between
successive stops are collapsed together (say, to tolerate stops
in the middle of the road, not at the traffic lights), the qual-
ity of path reconstruction may degrade but will not be worse
than the case where distance between stops are never used.

We next consider the scenario when highways are in-
cluded in the path. Figure 19 shows the probability of find-
ing the correct path if cell tower localization is available only
for the final destination. We observe that the quality of path
reconstruction is still over 75%. Next, if we consider top
k paths rather than the most probable path, then the proba-
bility of finding the correct path (and the final destination)
improves to over 90% if top 4 paths are considered, even for
total path length of 5 miles (see Figure 20). Finally, we con-
sider the case when cell-tower based localization is available
at each turn for the highway case. As we can see in Fig-
ure 21, the quality of path reconstruction is over 90% for all
path lengths, even with 20% error in distance estimation.

8 Conclusions and Future Work
This paper presents the design and evaluation of the Au-

toWitness system to deter, detect, and track personal prop-
erty theft, improve historically dismal stolen property re-
covery rates, and disrupt stolen property distribution net-
works. It shows that a low-cost tag can autonomously de-
tects theft while consuming ultra-low energy until stolen. It
also demonstrates the feasibility of post-facto reconstruction
of the traveled path using self-contained low-cost inertial
sensors on real-life city street maps. Once adopted widely,
AutoWitness promises to significantly curtail property thefts
that account for over $10 billion in yearly losses and life-
long traumatic experience for its victims. In addition, data
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collected in real-life thefts could be statistically analyzed to
provide new knowledge on the behavioral pattern of suspects
when stealing properties.

Several additional work can further improve the utility of
the AutoWitness system. For example, dead reckoning [15]
can be used to estimate the final location of the tag at its des-
tination. One could obtain the distance traveled on foot since
being taken off the vehicle, stairs climbed, etc., to eventu-
ally pinpoint the room level location in the hideout building,
apartment complex, or warehouse.
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