
The Haunted House: Networking Smart Homes to Enable
Casual Long-Distance Social Interactions

Meghan Clark and Prabal Dutta

Electrical Engineering and Computer Science Department

University of Michigan

Ann Arbor, MI 48109

{mclarkk, prabal}@umich.edu

ABSTRACT
Despite the dominance of social networking and communications in
nearly every aspect of our digital lives, little work has been done to
examine the unique contributions that networked smart homes can
make in the space of technologically-mediated human interaction.
In this work, we introduce an application called “ghosting” that
turns a smart and connected home into a socially-connected home.
We show that unlike direct teleconferencing, the Internet of Things
supports more subtle, ambient, and incidental exchanges that can
make an environment feel co-inhabited by a person who may be
many miles away.

Ghosting synchronizes audio and lighting between two homes on
a room-by-room basis. Microphones in each room transmit audio
to the corresponding room in the other home, unifying the ambient
sound domains of the two homes. For example, a user cooking in
their kitchen transmits sounds out of speakers in the other user’s
own kitchen. The lighting context in corresponding rooms is also
synchronized. A light toggled in one house toggles the lights in the
other house in real time. We claim that this system allows for casual
interactions that feel natural and intimate because they share context
and require less social effort than a teleconference or phone call. We
describe the design points of the system and explore the successes
and limitations of the ghosting user experience by implementing
and deploying a ghosting application in two different settings.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems; J.7 [COMPUTER AP-
PLICATIONS]: Computers in Other Systems—Consumer Prod-
ucts

General Terms
Design, Experimentation, Human Factors, Performance

Keywords
Smart home, Application, Light control, Audio communications,
Stream processing, Ubiquitous computing, Intimate computing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author(s). Copyright is held by the owner/au-
thor(s).
IoT-App’15, November 1, 2015, Seoul, South Korea.
ACM 978-1-4503-3838-7/15/11.
DOI: http://dx.doi.org/10.1145/2820975.2820976.

1. INTRODUCTION
Recent reports reveal that consumers think the Internet of Things

(IoT) will be as revolutionary to society as the smartphone. Despite
this optimistic prediction, consumers are not sure what the killer
application will be, though the overwhelming majority are confident
that they will know it when they see it [4].

However, what if consumers have already recognized the killer
app? Consumer comparisons between IoT platforms and smart-
phones suggests that we can gain insight into what consumers find
compelling by examining smartphone app usage. According to the
2014 US Mobile App Report, of the top 25 most-visited smartphone
mobile apps, nine applications are social communications [11].

Social networking has permeated the fabric of contemporary so-
cial interactions. 73% of US youths use social networking websites
of some type [12]. However, while the number of daily virtual in-
teractions is unprecedented, never before have we lived so indepen-
dently. The increased mobility of modern life has lead to a diaspora
of friends and families across continents. Citizens are living longer
and frequently aging in place, but are often unable to travel easily.
Long distance relationships are common. Offices are increasingly
supportive, rather than skeptical of, working remotely. These gulfs
in our lives, paired with the innate desire for human companion-
ship and community, create a desire for technologically-assisted
socialization.

Smart homes are uniquely poised to impact daily social inter-
actions in a way that existing technologies cannot. Homes are in-
herently a social environment, strongly tied to notions of commu-
nity, support, intimacy, and safety. When augmented with networks,
which inherently have the ability to overcome enormous distances;
sensors, which capture context; and actuators, which can replicate
it, homes across vast spaces can be made to feel close again.

In this work, we introduce “Ghosting,” a smart home app that
creates a shared physical space and enables casual interactions in a
way that cannot be captured by explicitly-initiated and context-free
telecommunications media, such as Skype, phone calls, or messag-
ing. Occupants of a house will hear the occupants of the remote
home walk through the rooms of their house, rustle papers, and
clear their throat. As occupants turn lights on and off in one house,
corresponding lights will turn on and off in the other. These casual
interactions allow people separated by distance to be present in each
others’ daily lives by merging two homes into a single synchronized
virtual space.

We envision a future where grandchildren run through the house
playing raucously while their grandmother looks up from her book
to laugh and egg them on – and the grandmother is not even in the
same state. With this work, we hope to make that future a reality by
opening up exploration into the space of social and messaging apps
for smart homes.



2. RELATED WORK
Throughout history humans have employed technology to com-

municate across long distances, and the recent emergence of digital
technologies has proven no exception. In 2003, Bell defined “inti-
mate computing” to mean “technologies that enhance or make pos-
sible forms of intimacy between remote people that would normally
only be possible if they were proximate.” [2] The HCI community
has produced a substantial body of work exploring this notion from
different angles. One approach has been to imbue particular artifacts
with context-sharing capabilities, such as The Bed and The Lover’s
Cup for couples in long-distance relationships, and the Messaging
Kettle for adult children and parents who live apart [5, 6, 7]. Other
works have focused on sharing physical sensations, such as hugs
and hand-holding [16]. The recently-released Apple Watch allows
users to send each other their heartbeats via haptic feedback.

However, ethnographic studies into long-distance relationships
suggests that there is also a desire to synchronize and share space [3,
10, 15], which has not received as much attention from intimate
computing efforts as artifacts and physical sensations. Couples in
long-distance relationships report running Skype in a room for long
periods of time even when not actively communicating in order to, in
their own words, “simulate shared living.” Existing spatially-aware
communication systems do not satisfy this need. For example, the
Family Intercom uses information about user location and ubiquitous
audio to improve the logistics of setting up an active conversation
between remote occupants, rather than making the environment feel
physically coinhabited even when no one is speaking [14].

Work at Xerox EuroPARC in the early 1990s on the RAVE and
Portholes projects used ambient audio and video feeds to create
awareness of the activities of remote colleagues [8, 9]. Recent work
has explored the ability to seamlessly capture the sound and visual
context of an environment and recreate it in another location [13].
Our work ties the themes of these projects together by utilizing IoT
technologies to create a shared physical environment that supports
passive as well as active levels of social engagement and bonding.

3. DESIGN

3.1 Use Case: An Example Call
Alice and Bob have been partners for many years, but Alice has

just moved across the country. Fortunately, they both have smart
homes that support ghosting. Bob decides to make a “house call”
and uses the ghosting app on his phone to call Alice. Alice, sitting
at home, receives a notification of an incoming call and chooses
to accept it. Before transmission begins, she is given the option to
“mute” or “unmute” transmission of her own home’s audio and light
context, as well as to mute or unmute Bob’s.

Once Alice accepts the settings, all the color-controllable lights
in the house turn red and all the power-controllable lights flash
several times, alerting any other occupants that audio and house
controls are about to become synchronized. After the occupants
have been alerted, transmission begins. Non-intrusive yet visible
red LED indicator lights in each room turn on to indicate audio
transmission, reception, or both.

When the call starts, Alice is working at the desk in her office.
Though she cannot see him, she hears Bob walk from the bedroom
into the living room. While he surfs the Internet, Bob hears Alice
shuffle papers in the other room, and the creak of a chair as she leans
back from time to time. Later, Alice sees the kitchen light turn on
down the hall and hears Bob begin cooking, which reminds her that
it is now dinner time. She joins Bob in the kitchen and they chat
about current events. Alice interrupts the conversation occasionally
to read out the next recipe instruction to Bob, who has his hands

full cooking. The call remains running until the evening, when Bob
decides it is time for bed. He wanders into the living room where
Alice is quietly reading, and wishes her good night. She replies with
the same, and Bob ends the call so that Alice cannot hear him snore.

3.2 Design Points
To ensure that occupants feel comfortable sharing audio, there

are several design points that an implementation should capture.
The system should provide the ability to mute and unmute both TX

and RX at any time during a call. Occupants should feel as though
they have fine-grained control over what is being transmitted or
received at any given time. Users of online communications services
often curate their digital presence to ensure that it is not unflattering.
Similarly, users should not have to transmit in certain rooms or
certain situations that make them uncomfortable in order to also
experience the positive aspects of ghosting.

The system should provide the ability to configure TX and RX
before a call begins. This is motivated by the same insight into
user preferences as the previous design point, while specifically
considering the sensitive transition from no call into a call. We pro-
pose that TX/RX controls be provided on all phone and web-based
user interfaces, as well as hardware TX/RX controls for individual
microphone and speaker arrays in each room.

The system should warn all occupants that a call is about to begin.
If you are the occupant of a home, you should be warned by the
system that a call is about to begin even if you do not have a phone or
computer or are not currently interacting with a phone or computer.
Children in particular are often members of this population, and war-
rant extra consideration. Since the environment itself is the sensitive
context, it is the environment that should alert the occupants when a
transition is about to be made between private audio to shared audio.
In this work, we propose turning all color-controlled lights red and
flashing all power-controlled lights to get occupants’ attention and
alert them to the impending context switch.

The system should provide a visible indicator in every room to
signal whether TX or RX are currently in progress. Similar to the pre-
vious point, occupants should be able to tell at a glance whether their
audio is currently being transmitted, even if they are not carrying
a phone. Our system design specifies that a wirelessly controllable
LED indicator light array should be placed or mounted in conve-
nient and visible locations in each room. Two small red LEDs placed
next to the light switch should provide sufficient visibility yet be
non-intrusively bright.

The system should stay as local possible. When streaming infor-
mation as sensitive as audio and light control, keeping the application
local and distributed is safer than sending it to the cloud. Point-to-
point communication better protects against leakage of information
to potentially malicious or untrustworthy third parties, and also make
the communications more difficult to intercept than client-to-cloud
communication. The vast majority of the ghosting architecture can
be kept local. However, to ensure global uniqueness of usernames
the application may need to employ a DNS-like registry that maps
usernames to a front-end application node located in each home.

3.3 Supporting Infrastructure
Several hardware systems are required to support the application.

Each participating room requires at least one microphone, speaker,
programmatically-controlled light, and TX/RX indicator light. In
addition, the locally-running application logic requires a publicly ac-
cessible front-end node or home gateway that can receive incoming
calls from other houses. This node is also responsible for synchro-
nizing context with the remote home. Each room may also require
an additional controller to handle the room’s audio processing.



Figure 1: Deployment 2 device layout. The left figure shows the Maryland apartment floorplan, and the right figure shows the Michigan
apartment floorplan. The Maryland apartment contains six color-controllable Philips Hue lightbulbs, two microphones, and four speakers.
The Michigan apartment contains thirteen color-controllable lights – ten Philips Hue lightbulbs, one Philips Hue lightstrip, and two LIFX
bulbs – as well as five holiday light strands that are power-controlled by Wemo Insight relays. The Michigan apartment additionally contains
two microphones and two speakers. While Deployment 2 only synchonized lights and audio in the living rooms and master bedrooms, the
remaining rooms could easily be light-synchronized as well.

There should be two main interfaces to the ghosting system. The
first is the configuration dashboard, which would allow occupants
to configure long-term settings for the system, and which should
be available as a webpage on the local area network. The second
is the call interface, which would allow occupants to make calls,
toggle TX/RX settings, and hang up. The call interface should be
available as both a local webpage on the LAN and also as a phone
app, so that users can initiate or accept house calls remotely. The
local webpages and synchronization between the phone app and
the house can be handled by the same device that is acting as the
front-end application node or home gateway.

3.4 Setup and Configuration
The setup and configuration process for this system should be

as easy as possible for end users. The user should begin the initial
setup by ensuring that all of the microphones and speakers and
controllable light bulbs are in place in each room. Then the user will
plug a “magic box” gateway device into their router to act as the
front-end application node and provide the LAN-based interfaces.
The gateway will display its IP address on an embedded display. The
user visits that IP by typing it into their browser, and is brought to the
configuration dashboard. There they select a globally unique home
username. House calls made to that username will be mapped by a
global registry to their home’s gateway. Once the user has registered,
the gateway automatically discovers the controllable lights, speakers,
and microphones in the house and displays them to the user. Each
device name is paired with a button that says “blink” or “chirp.” The
user employs these functions to discover which room a device is in,
and then selects that room from a drop-down list of rooms (with the
option to add a custom room). Once the devices have been labeled
with their room, the initial setup process is complete.

A second configuration process occurs whenever a new home is
added to the gateway’s contact list. This configuration step allows
the occupants of the two homes to jointly determine which rooms
are paired with the rooms in the remote house. This process can be
streamlined or even completely automated by selecting intelligent
defaults. An obvious heuristic is to map rooms with the same labels

to each other. This would allow many configurations to be done
without any user input. However, the system should provide the
option for more fine-grained house-to-house configuration, such as
rearranging the room mapping, disabling entire rooms, or allowing
specific lights to be mapped to each other. This will give users the
ability to customize their experience to suit their particular setup.

4. IMPLEMENTATION
We carried out two deployments to determine whether ghosting

could support the core user experience that we envisioned. The
first deployment focused on the audio experience, and the second
focused on the multi-room experience, incorporating both audio and
real-time light synchronization.

While it is ultimately important that the infrastructure required
for ghosting is not too costly or burdensome to maintain, for this
work we did not try to optimize the infrastructure in terms of cost,
power, or convenience. We also did not implement user interfaces
for setup and configuration, nor did we include the various alerts and
indicators that would be necessary in a consumer-facing application.
The deployments described in the following sections were designed
to incrementally explore different aspects of the ghosting experience.

4.1 Deployment 1
Deployment 1 was a multi-day study to evaluate whether it is

possible to merge the ambient sound domains of two different rooms
and what the psychological experience of sharing an ambient sound
domain with occupants in another room is like. Our deployment
took place in a fourth-floor lab and a second floor office that had ten
and four residents respectively during the study period. We paired
the audio between the two rooms by establishing a conference call
and left it running for three days.

The conference call software ran on a desktop computer in the
lab and an Ethernet-connected laptop in the office. We explored
multiple conference call programs to compare sound compression
and feedback handling. Each conference call endpoint included an
external USB microphone and wired speakers. We upgraded the
original webcam-quality Logitech microphones to studio-quality



Figure 2: Dataflows for the light synchronization backend in Deployment 2. We created a custom message-oriented stream processing backend
that generates message streams from devices using driver-like sources (in green), and controls devices by sending messages to driver-like sinks
(in red). Messages populate queues (in white), which sources, sinks, and application logic blocks can subscribe to. The top dataflow shows
how lighting state is collected from devices, processed, and shipped to the remote house’s front-end application node (usually running on the
home gateway, G). The bottom dataflow shows lighting state messages being received from the remote house and translated into local control
actions. The use of messaging queues allows the application logic to be decoupled from the specific deployment, and also allows different
brands of devices with different capabilities to respond appropriately to the control signals. During Deployment 2, the same application logic
ran in both apartments despite substantial differences in their lighting setup.

Blue Yeti microphones due to fidelity issues, which we address in
later sections. The lab speaker setup was 7.1 surround sound, and
the office had a 2.1 speaker setup. Initially the office speakers were
arrayed side-by-side, but we rearranged them to be surround sound
to improve the sense of immersion.

Because Deployment 1 involved a large number of occupants
talking at the same time, often in locations far from the microphone,
we were able to quickly discover the critical impact that microphone
quality has on room-level audio synchronization. We were able to
use this knowledge to bootstrap Deployment 2.

4.2 Deployment 2
Deployment 2 explored the dynamics of multiple pairs of rooms

with synchronized audio and light control. The deployment involved
two apartments: a two-bedroom apartment in Michigan, USA, and
a single-bedroom apartment in Maryland, USA. In each apartment,
the master bedroom and the living room were paired with the corre-
sponding room in the other apartment. Figure 1 shows the device
layout for each apartment.

4.2.1 Audio Synchronization
In the Michigan apartment, each room’s audio setup employed a

WiFi-connected laptop hooked up to a Blue Yeti USB microphone.
The bedroom relied upon the laptop’s embedded speakers, while
the living room sound was supplied by connecting the laptop to the
TV’s Sonos Playbar over HDMI. In the Maryland apartment, one
laptop on WiFi and one desktop on Ethernet were responsible for
running the conference call software in the bedroom and living room
respectively. The bedroom microphone was a studio-quality CAD
GXL2200, and the living room microphone was a USB Logitech

HD Webcam C310. Audio synchronization was done using a Skype
call in the bedrooms and a Google Hangouts video chat with video
disabled in the living room.

4.2.2 Light Synchronization
The Michigan living room contained five Philips Hue bulbs and

three Wemo Insight-controlled holiday light strands. The bedroom
contained two LIFX bulbs and two Wemo Insight-controlled holiday
light strands. The Philips Hue and LIFX bulbs are capable of color,
brightness, and power control, whereas the Wemo-controlled lights
can only be turned on and off. In the Maryland apartment, both the
living room and bedroom contained two Philips Hue bulbs.

To synchronize the lights between the two apartments we created
an application on our own custom stream processing platform, which
we call Dolittle. The application dataflow architecture is illustrated
in Figure 2. Dolittle is meant to be lightweight, local, and distributed,
with an emphasis on real-time reactive control and learning applica-
tions. A major goal of the platform is to decouple application logic
from specific deployment setups for maximum portability.

The basic components of Dolittle are blocks. Each block has input
queues and output queues, and a “process” function that is called
on any message that is placed into the input queues. There are three
kinds of blocks: 1) sources, which talk to devices or external virtual
data sources and generate a stream of messages; 2) processors,
which generate new message streams based on input messages (the
application logic block in Figure 2 is an example of a processor);
and 3) sinks, which take command messages and convert them into
actions for devices or external virtual resources. When a block is
instantiated, it is assigned one or more input queues, and one or more
output queues that any emitted messages may be sent to. An emitted



message can be sent to a particular output queue based on matching
the message type field to part of a queue name, or the message will
be sent to all output queues.

Each block is a stand-alone process that can run on any network-
connected device, so long as the message broker managing the
queueing system is network-accessible. We implemented our system
using the MQTT messaging protocol. We used the Mosquitto MQTT
message broker and the client blocks were all written in Python
using the Paho MQTT bindings [1]. While the block graph could be
sharded across multiple devices, in each apartment we ran all of the
blocks on a Raspberry Pi, which also acted as the apartment’s home
gateway. Communication between the front-end application nodes
running on the two home gateways was done using TCP sockets.

The ghosting application logic was straightforward. If the applica-
tion block received a light change event from a room in the remote
home, then the application block would emit the matching command
to the lights in the corresponding local room. The application block
also constantly monitored a stream of status messages from the local
lights. When a change was detected that could not be attributed to
matching the remote home, then the application emitted that light
change event to the remote home. Since we designed Dolittle with
application portability in mind, the same application logic ran at
both apartments.

5. EVALUATION
For each deployment, we frame the evaluation with two guiding

questions: Did it feel like the remote person was present? Did the
interaction feel natural? We use these two questions to explore the
engineering challenges behind supporting the user experience.

5.1 Deployment 1

5.1.1 Did it feel like the remote person was present?
Once the sound system was configured properly, it sounded as

though the lab occupants were present in the office. However, there
were several issues that needed to be addressed in order to achieve
proper configuration.

The first issue was sound quality. We began the study with webcam-
quality Logitech microphones. However, while those microphones
would be more than suitable for conference calls, we had unique
sound requirements – we wanted to capture all the sounds in a room,
not just human voices close to the microphone. We upgraded to
studio-quality Blue Yeti microphones, which were able to capture
distant voices and non-human vocal sounds, such as squeaking chairs
and paper shuffling.

We also compared different conference call software with regards
to sound compression quality and feedback prevention. Google
Hangouts had trouble adjusting to the feedback from speakers, per-
haps due to the unusual external speaker and microphone placement.
Jitsi handled the sound compression and feedback well, but is propri-
etary and difficult to run locally on a headless device. BigBlueButton
is an open source project which runs locally, and it handled non-
human voice audio and feedback decently. We used Jitsi for the
majority of the study due to its ease of use. However, in the future
open source teleconference software like BigBlueButton that can be
run on headless devices would be ideal.

The second issue concerned sound directionality. Originally the
office speakers were placed together next to the laptop, but because
the sound was emitted from a point source, it did not feel as though
the lab occupants were in the office. We rearranged the speakers
into surround sound positions, and afterwards it sounded as though
the remote occupants were actually in the room.

5.1.2 Did the interactions feel natural?
The biggest issue with interaction was that it was not possible to

tell at a glance who was “in the room,” so if an occupant wanted
to talk to a remote person it was difficult to coordinate without
first calling out the person’s name a waiting for a response, which
did not feel natural or casual. The presence of multiple occupants
in each room made it more difficult, since hearing the sounds of
occupancy did not mean the person you wanted to speak to was
present. However, once the intent to communicate was established,
communication felt natural.

5.2 Deployment 2

5.2.1 Did it feel like the remote person was present?
Multiple synchronized rooms improved the experience of remote

presence. It was possible to hear the remote occupant walk between
two synchronized rooms due to gradually changing sound attenu-
ation. Hearing the remote occupant’s voice emanate from another
room also felt natural. Additionally, the remotely synchronized lights
established a shared physical context in a tangible and immediate
way. Talking to the remote occupant while they toggle “your” lights
feels like a personal and intimate interaction.

5.2.2 Did the interactions feel natural?
In Deployment 2, the lack of visual indicators of presence was

again an issue. Because multiple rooms were synchronized, if the
two apartment occupants wanted to converse, they had to first shout
the other person’s name and listen for a response. However, the
remote occupant’s response was heard coming from the room they
were in, which felt the same as if the person were actually in another
room in the apartment.

Another interesting result from the lack of a visual presence was
what we call a “rubber duck” effect. When speaking to a remote
occupant, the local occupant will frequently visually fixate on an
object and speak to it as a stand-in for the real person. This does
imply that some visual indication of a person’s remote presence may
be necessary for naturalistic interactions.

6. DISCUSSION
One of the most critical lessons learned from the experiments

was the importance of an at-a-glance visual indicator of presence
and identity of room occupants. To address both this and the related
“rubber duck” effect described in the previous section, we propose
that remote occupants be embodied as light. When a remote occu-
pant enters a synchronized room, a local light should turn to a color
associated with their identity and “breathe” by pulsing at the rate
of human breath. When the remote occupant speaks, the local light
should flicker as though the light were speaking. As the remote oc-
cupant moves from room to room, the local light will move between
the corresponding rooms. We prefer this solution because it lever-
ages infrastructure that already exists to support the core ghosting
application, indicates occupancy and identity, and provides a visual
embodiment of the remote occupant that the local occupant can talk
to in lieu of the real person.

6.1 Future Technical Challenges
Because ghosting is an application that requires a full operational

stack to function correctly and securely, it is a good application to
provide direction to foundational IoT research efforts.

For this application to be commercially viable it is critical to
determine how to get the most immersive sound experience with
minimal hardware. The hardware should be non-intrusive and af-
fordable, yet the microphone must be of a reasonably high quality



to capture ambient sounds. Additionally, sound directionality, which
can greatly enhance the illusion of presence of remote occupants,
generally requires at least two speakers per room. However, the cost
of instrumenting each room with a minimally sufficient audio setup
is likely to be on par with the cost of an entertainment system, and
if the underlying platform is open and emphasizes reusability and
interoperability, then the same audio setup could actually be used
for entertainment purposes or other IoT applications.

Making the ghosting hardware available to other applications
requires exploring the design space for application platforms and
middleware. The platform should be lightweight, run headlessly,
support interoperability, and be able to run multiple coexisting ap-
plications. At the same time such a platform also needs to provide
a high level of security. While many attempts have been made to
design operating systems and application platforms for buildings,
no definitive architecture has yet emerged.

The ghosting application itself faces several fundamental chal-
lenges due to the heterogeneity of building layouts. The first is
how to handle room mapping edge cases, such as mapping multi-
room homes to studio apartments, big open floorplans, and map-
pings that destroy the spatial continuity of sound attenuation. In the
initial stages of these kinds of applications, we suggest providing
users enough powerful configuration options that if they experience
these edge cases they can correct the configuration or develop a
workaround on their own. In the future, however, a more systematic
understanding of the topological structure of buildings may prove
useful for both this application and others.

The final challenge is how to implement and evaluate the user
experience. The solution we propose in the previous section for
visually representing remote occupants requires room-level occupant
tracking, which is still an open research problem. Additionally, in our
design we propose user interfaces for the configuration process and
call alerts, but the effectiveness of these proposed elements remains
to be explored. Some occupants may avoid systems like these as
being too “creepy,” so it is also important to study what features
influence psychological acceptance of the system. Currently it is
logistically difficult and expensive to perform statistically significant
user studies in smart homes. The IoT community should consider
establishing a large-scale smart home testbed program in the style
of PlanetLab for evaluating emerging applications and services.

7. CONCLUSIONS
Smart homes present opportunities to socialize across long dis-

tances in ways that traditional communication media cannot support.
In this work, we propose a novel intimate computing application
called ghosting, which enables people separated by distance to feel
present in each others’ homes and daily lives. The outcomes of
our two deployments suggest that this application supports new
modes of casual yet intimate social interactions that conversation-
oriented and context-independent technologies cannot capture. We
believe that smart homes have a positive contribution to make to
technologically-assisted social interaction, and hope that this work
opens up exploration into the space of social and messaging apps
for the Internet of Things.

8. ACKNOWLEDGMENTS
This work was supported in part by the TerraSwarm Research

Center, one of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP), a Semiconductor Research
Corporation program sponsored by MARCO and DARPA. The work
was also supported by the National Science Foundation Graduate
Research Fellowship. Any opinion, findings, and conclusions or

recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

9. REFERENCES
[1] http://mosquitto.org. Accessed: 2014-04-09.
[2] G. Bell, T. Brooke, E. Churchill, and E. Paulos. Intimate

ubiquitous computing. In Proc. UbiComp Workshop, pages
3–6. Citeseer, 2003.

[3] S. Bhandari and S. Bardzell. Bridging gaps: affective
communication in long distance relationships. In CHI’08
extended abstracts on Human factors in computing systems,
pages 2763–2768. ACM, 2008.

[4] M. Black, K. Dana, K. Gaskins, C. Gaynier, A. Lemieux, and
K. McKinley. The internet of things: Can it find a foothold
with mainstream audiences today? Technical report, The
Nielsen Company, 11 2014.

[5] M. Brereton, A. Soro, K. Vaisutis, and P. Roe. The messaging
kettle: Prototyping connection over a distance between adult
children and older parents. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
pages 713–716. ACM, 2015.

[6] H. Chung, C.-H. J. Lee, and T. Selker. Lover’s cups: drinking
interfaces as new communication channels. In CHI’06
extended abstracts on Human factors in computing systems,
pages 375–380. ACM, 2006.

[7] C. Dodge. The bed: a medium for intimate communication. In
CHI’97 Extended Abstracts on Human Factors in Computing
Systems, pages 371–372. ACM, 1997.

[8] P. Dourish and S. Bly. Portholes: Supporting awareness in a
distributed work group. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
541–547. ACM, 1992.

[9] W. Gaver, T. Moran, A. MacLean, L. Lövstrand, P. Dourish,
K. Carter, and W. Buxton. Realizing a video environment:
EuroPARC’s RAVE system. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
27–35. ACM, 1992.

[10] S. King and J. Forlizzi. Slow messaging: intimate
communication for couples living at a distance. In
Proceedings of the 2007 conference on Designing pleasurable
products and interfaces, pages 451–454. ACM, 2007.

[11] A. Lella and A. Lipsman. The US mobile app report. 2014.
[12] A. Lenhart, K. Purcell, A. Smith, and K. Zickuhr. Social

media & mobile internet use among teens and young adults.
millennials. Pew Internet & American Life Project, 2010.

[13] A. P. Mathew and J. Taylor. Chi’08 alt. chi/auralscapes:
engaging ludic ambiguity in the design of a spatial system. In
CHI’08 extended abstracts on Human factors in computing
systems, pages 2533–2542. ACM, 2008.

[14] K. Nagel, C. D. Kidd, T. O’Connell, A. Dey, and G. D.
Abowd. The family intercom: Developing a context-aware
audio communication system. In Ubicomp 2001: Ubiquitous
Computing, pages 176–183. Springer, 2001.

[15] C. Neustaedter and S. Greenberg. Intimacy in long-distance
relationships over video chat. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
753–762. ACM, 2012.

[16] F. Vetere, M. R. Gibbs, J. Kjeldskov, S. Howard, F. Mueller,
S. Pedell, K. Mecoles, and M. Bunyan. Mediating intimacy:
designing technologies to support strong-tie relationships. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 471–480. ACM, 2005.


