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ABSTRACT
We present Monoxalyze, a keychain-sized, Bluetooth-based, carbon
monoxide breathalyzer that aims to enable mobile, scalable smoking
cessation intervention programs. These intervention programs have
been shown to greatly increase the rate of a quit attempt, which in
turn decreases the rate of smoking, a major public health problem
that still affects over one billion people around the world. Currently,
intervention programs verify cessation compliance by requiring pro-
gram participants to periodically visit clinics and exhale through
large, expensive carbon monoxide breathalyzers—a practice that
cannot scale to one billion smokers. Monoxalyze enables mobile ces-
sation verification by working with a user’s smartphone to establish
a ring of spatio-temporal transitive trust between the Monoxalyze
device, the user, and the smartphone, a concept that can be applied to
many third-party monitoring applications. In Monoxalyze, the links
of this trust are represented by simultaneous exhalation verification,
facial recognition, and device-to-phone visible light authentication.
In our evaluation, we show that Monoxalyze lasts over 80 days be-
tween charges, and has the ability to verify a Monoxalyze user. With
a small user study we show that Monoxalyze determines smoking
cessation with 92% accuracy, a level comparable with commercial
CO breathalyzers. Further contributions describe the design deci-
sions behind creating a low-power BLE device.

CCS Concepts
•Security and privacy → Multi-factor authentication; Embed-
ded systems security; Hardware-based security protocols; Mali-
cious design modifications; •Human-centered computing→Ubiq-
uitous and mobile computing systems and tools; Mobile devices;
Smartphones; •Computer systems organization → Sensors and
actuators; Embedded hardware;
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1. INTRODUCTION
Smoking has caused 20 million premature deaths over the past

fifty years and annually costs the health care system over $130
billion in the United States alone [30]. While the number of smokers
has and continues to decrease, worldwide over one billion people
still regularly smoke cigarettes.

Fortunately, most people in developed countries are aware of the
adverse health affects of smoking and therefore want to quit. Unfor-
tunately, most people fail to successfully quit smoking due to the
addictive nature of cigarettes. Of the 50% of smokers who attempt
to quit smoking each year, only 4-6% succeed [30]. Enrollment in a
smoking cessation intervention program can increase the long term
success of a quit attempt to above 15% [41] and can increase short
term success by much more [38]. These intervention programs use
techniques such as personalized motivational messages, competi-
tions, and financial incentives.

The successful implementation of intervention methods for smok-
ing cessation requires a compliance verification mechanism to report
if the participant has smoked. This is helpful for programs that pro-
vide personal motivation, but is particularly important for programs
that offer a financial incentive. Self reporting of smoking cessa-
tion is a common technique used in smoking cession programs,
but is known to be unreliable when monetary incentives or lottery
prizes are introduced [8]. Even in clinical settings—where there
is little incentive to lie—self cessation reports have shown to be
unreliable [42].

One method for improving the accuracy of smoking cessation
reporting mechanisms is to detect biochemical markers left behind
from smoking cigarettes rather than relying on self reporting. In
particular, detecting the carbon monoxide (CO) concentration of
exhaled breath provides a minimally invasive and relatively inexpen-
sive mechanism for detecting smoking activity. CO breathalyzers
exist for this purpose, but current versions are large, provide limited
data reporting capabilities, and include no verification mechanism,
thus still requiring daily interaction with an intervention program
coordinator to eliminate deceptive self reporting.

To address these problems, we present Monoxalyze, a keychain–
sized, mobile, wireless CO breathalyzer. Monoxalyze increases the
reliability of using exhaled CO as a smoking cessation intervention
technique by attempting to establish that a specific program par-
ticipant has exhaled through an authenticated Monoxalyze device.
Monoxalyze then reports this reliable CO reading to the intervention
program through an Internet–connected smartphone.

To use the device, participants periodically exhale a complete
breath through Monoxalyze. Monoxalyze employs a pressure sen-
sor to detect when a user is exhaling through the device and uses
this event as a trigger to perform a full CO breath sample test. The
device then cooperates with the participant’s smartphone to perform
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simultaneous CO measurements for smoking detection and facial
recognition for user verification. To verify that the user is exhaling
through the same Monoxalyze device to which the smartphone is
connected, rather than a nearby device that a non-smoker friend is
using, Monoxalyze uses a visible light challenge-response protocol.
This protocol requires the smartphone to send a challenge to the
Monoxalyze device over BLE and receive the response from the
LEDs on the front of the Monoxalyze device using the same camera
that is performing facial recognition, effectively localizing the con-
nected Monoxalyze device to the program participant’s face during
exhalation.

The authentication system used in Monoxalyze is an early ex-
ample of ensuring data provenance without requiring professional
observers to verify the authenticity of the data, and as such could be
used for many applications that requires third party monitoring and
data collection. These applications could include a parent verifying
information about their child, a medical insurance company provid-
ing discounts for verified exercise, doctors collecting information
about their patients, or law enforcement verifying court-mandated al-
cohol abstinence testing. All of these monitoring applications could
be strengthened by requiring semi-random data collection within a
specific time window, which would make complicated attacks on
the authentication system difficult to perform consistently.

Critical to creating a usable and practical device is ensuring that
the device fits in a reasonable form factor, and that the device can per-
form many breath tests without requiring the battery to be recharged.
To minimize the size of the device, Monoxalyze uses a smaller CO
sensor than the traditional canister sensors used in most commer-
cial CO breathalyzers. To maximize the battery life, we employ
the pressure sensor as a low-power wakeup sensor, search for the
BLE radio parameter selection that minimizes energy consumption,
and design the visible light challenge-response protocol with low-
power transmission in mind. This response protocol could be used
to perform out-of-band authentication on any low-power embedded
system, even if it does not require the transitive trust properties of
Monoxalyze.

2. RELATED WORK
Stemming from the considerable research into the negative health

effects of smoking, there have been many efforts to develop success-
ful smoking cessation intervention methods, including research into
the success rate of such programs, self reporting methods, biochem-
ical detection, and breathalyzer systems.

While it has been shown that intervention methods increase smok-
ing cessation success rates [45], the relative success of intervention
methods, both individually and in combination, is still a matter of
debate. There is work that shows increasing intrinsic motivation
while also providing support to a smoker increases the success rate
of a quit attempt [9]. Furthermore, the research suggests that ex-
trinsic motivators only increase program enrollment, rather than
long term abstinence. Other work agrees with this view of financial
incentive as a poor motivator for long term abstinence (exceeding
12 months) [7]. There are, however, many studies that vouch for
the success of financial incentives at achieving at least short term
abstinence (less than 12 months) with and without additional in-
trinsic motivators [11, 17, 20, 25, 38]. This is especially useful in
cases of attempting to induce immediate cessation in newly pregnant
mothers. On the other side of the argument, there is a single study
that shows long term cessation success due solely to competition
and financial incentive [41].

All efforts to study the costs and benefits of smoking cessation
programs rely on a reliable smoking cessation reporting mechanism.
As one would expect, the reliability of self reporting smoking cessa-

tion is low and consistently underestimates smoking prevalence [15].
While in general this underestimation appears to be relatively small
at 2-6% [40,42], when there is an external incentive to be untruthful
during self reporting, the reliability of self reporting drops signifi-
cantly. This primarily has been researched with the moral incentive
of women to quit smoking during pregnancy, where the underestima-
tion of self reporting is shown to be 22-25% [14,36]. There has been
some work detailing deception in self-reporting due to financial
incentive as well, however, this does not examine the fraction of
smokers who lied about smoking, but rather the amount of nonsmok-
ers who lied about being smokers to gain financial incentive [8].

There are several methods of determining smoking cessation more
reliably than self reporting by using the biochemical markers that
smoking leaves behind in the body. One such chemical marker is
carboxyhemoglobin in blood. It is well documented that the con-
centration of carboxyhemoglobin increases in a smoker [18], and
furthermore that this increase can be used to determine smoking ces-
sation [32]. The increase in blood carboxyhemoglobin concentration
in turn causes an increase in the exhaled carbon monoxide concen-
tration in breath. This is caused by the CO level in alveolar air in the
lungs equilibrating with the carboxyhemoglobin in the blood during
gas exchange [19]. This increase in exhaled CO concentration can
therefore be used as an indicator of smoking cessation [10, 21, 28].
The concentration of CO in expired breath is dependent on the com-
pleteness of the equilibrium achieved with the carboxyhemoglobin
in blood, which in practice is dependent on the speed of exhalation
and the amount of time the exhaled breath is held [43].

This paper focuses on measuring the CO concentration in exhaled
breath to determine and report smoking cessation. Devices that
use electrochemical CO sensors and nondispersive infrared CO
detectors to measure the CO concentration of exhaled breath are
common. Nearly all such devices are commercial devices such as
the Smokerlyzer products [5] and COSlueth [6]. These devices are
all too large to comfortably carry in a pocket or on a keychain.
The smallest of these devices, the Smokerlyzer iCo, was released in
March 2015, and is only slightly smaller than a toilet paper roll [2].
The iCo is also the only commercial device that is able to connect to
a phone or tablet, making it the only commercial carbon monoxide
breathalyzer that can also report its data to a mobile device. It has
been previously shown that a mobile phone based breathalyzer is
possible [27], and the iCo is the first commercial offering of such
a device. Monoxalyze is specifically designed with both size and
mobile phone connectivity in mind, and is smaller than the iCo,
while also including wireless data transmission.

While the devices discussed above succeed at measuring CO
concentration of exhaled breath and increase smoking cessation
reporting reliability in a clinical setting, they do not verify that a
user is exhaling through them and they do not verify the identity of
the user. Therefore a trusted third party must watch and verify the
CO measurement for accurate reporting, and this requirement pre-
vents the use of current CO breathalyzers in large, scalable smoking
cessation programs outside of a clinical setting. Some research has
tried to address this problem by requiring program participants to
record a daily video of themselves exhaling into a CO breathalyzer,
then remotely validating the CO reading by watching the video [37],
however this puts a high burden on intervention providers, and still
does not verify that the program participant is actually exhaling
through the breathalyzer.

Monoxalyze solves this authentication problem by combining
smartphone facial recognition with device authentication. Authenti-
cation is performed by leveraging prior work in out-of-band channel
communication to verify location [34]. The out-of-band channel
used in Monoxalyze is visible light communication (VLC). Prior
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Device Dimensions Weight Connectivity Exhalation Verification Identity Verification
Smokerlyzer piCO+ [4] 120x75x45 mm 200 g None None None

Smokerlyzer Micro++ [3] 138x77x44 mm 250 g None None None
Smokerlyzer COmpact USB [1] 115x50x33 mm 100 g USB None None

Smokerlyzer iCo [2] 100x40x29 mm 75 g Mobile Phone Audio Jack None None
CO Sleuth [6] Unknown Unknown None None None

Mobile Research Device [27] 51x51x32 mm Unknown Mobile Phone Audio Jack None None
Monoxalyze (this work) 81x23x13 mm 15 g BLE Pressure Sensor Facial Recognition and

VLC Authentication
Table 1: Comparison of Monoxalyze to other CO breathalyzers. Monoxalyze is the smallest CO breathalyzer by volume, the first to employ a
wireless connection, and the first to provide exhalation and identity verification mechanisms. These features allow Monoxalyze to perform as a
mobile smoking cessation verification device that does not require daily visits to an intervention clinic.

work shows that VLC can be received by an unmodified smartphone
camera [22, 33], and our work extends this with the unique property
of transmitting the visible light communication from a low-power
embedded device, requiring a protocol that minimizes the power
drawn by the transmitter.

3. DESIGN REQUIREMENTS
Monoxalyze is designed to be a mobile smoking cessation verifi-

cation device, and as such, it is designed with specific requirements
in mind. These requirements focus on the usability, data validity,
and success of smoking cessation detection. Monoxalyze’s specific
design goals are:

Usability. Monoxalyze was designed to be a fully mobile carbon
monoxide breathalyzer. As such Monoxalyze should fit easily in a
handbag or pocket, or on a keychain. Monoxalyze should also have
as long a battery life as possible, but no less than a week. For ease
of interface, Monoxalyze should respond quickly to intentional user
interaction. This includes responsive wakeup from sleep and quick
formation of wireless connections.

Data Validity. Monoxalyze must validate with reasonably high
probability that a specific user has not smoked. To provide this
validation, Monoxalyze along with its smartphone application, must
verify the identity of the Monoxalyze user and also verify that the
smartphone is receiving data from the Monoxalyze device through
which the identified user is exhaling. Monoxalyze must also ver-
ify that the user is exhaling sufficient positive pressure through the
Monoxalyze device that is providing the carbon monoxide reading.

Cessation Determination. To verify that a person has not smoked,
Monoxalyze should provide a carbon monoxide reading under nor-
mal use scenarios. While the overall accuracy of these carbon
monoxide readings is useful, the ability of Monoxalyze to distin-
guish between smokers and non-smokers independent of accuracy
is more important. Monoxalyze should be able to detect failure of a
carbon monoxide sensor.

To achieve the usability requirements, we design Monoxalyze to
be a low power embedded system with pressure sensitive wakeup.
To achieve cessation determination requirements, we consider and
evaluate the accuracy of the carbon monoxide sensor as well as
recognize the effects of human breath on this accuracy. To achieve
the data validity requirements, we specify the threat model below,
and then design Monoxalyze to defend against this model.

3.1 Threat Model
To verify the data validity of a CO reading, we must consider the

specific threat model attempting to undermine the validity of the

data. In this threat model we will assume that the only attacker of
the system is a user without technical knowledge. We believe that
many threats which require technical knowledge such as attacking
the wireless communication link may be solved through proven
methods of encryption and authentication, so exploring these threats
is not necessary in this paper.

This average user is therefore assumed to be incapable of modify-
ing or appending to the Monoxalyze circuitry. They are also assumed
to be incapable of breaking open the physical casing and modifying
the characteristics of the pressure chamber. In addition to these re-
quirements, this user is assumed to be incapable of intercepting and
re-transmitting the visible light communication in any way.

A user may still, however, attempt to act maliciously by changing
their interaction with the exterior workings of the system. This in-
cludes any method by which they do not exhale a high concentration
of CO through the system. They may attempt this by modifying
how and when they exhale through the device, by changing how
exhaled air exits the device, and by changing the identity of the
person exhaling through the device.

Monoxalyze will therefore attempt to mitigate this threat model
by verifying that a specific user is exhaling their breath through
the Monoxalyze device that is sending CO breath measurements
to the smartphone. It should be noted that the goal is threat mitiga-
tion rather than full data validation, so that it is reasonably difficult
for a user to trick Monoxalyze into sending a CO reading that is
lower than the actual CO concentration of that user’s exhaled breath.
Because much of the attack surface depends on a user’s physical in-
teractions with Monoxalyze, complete data validation is considered
more ambitious than necessary. The goal is to make the difficulty
of deceiving Monoxalyze high enough that the effort of deception
significantly outweighs the reward.

4. SYSTEM OVERVIEW
This section presents an overview of the Monoxalyze system and

how it meets the requirements presented in Section 3. We do so
by walking through the step-by-step use of Monoxalyze. The steps
below refer to the numbers shown in Figure 1.

0) Register. Before using Monoxalyze, a user is required to regis-
ter with an intervention program. This includes registering training
pictures with the dedicated application that runs on the user’s smart-
phone. The pictures used for registration me be confirmed as the
program participant either through another mechanism such as ID
scanning or by a human. This registration will only occur once.

1) Open. When a user opens the Monoxalyze app, their smartphone
starts scanning for Monoxalyze devices over BLE.
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Figure 1: An overview of the normal use ofMonoxalyze. 1) Open
the smartphone application so that it starts attempting to connect
to the Monoxalyze device. 2) Wakeup Monoxalyze by taking a
deep breath and exhaling slowly into the device. 3) Connect to the
smartphone using Bluetooth Low Energy. Start reporting carbon
monoxide measurements and verification that the user is exhaling to
the smartphone. 4) Authenticate and localize the Monoxalyze device
to the user’s face with a visible light challenge response protocol.
5) Identify the Monoxalyze user with facial recognition. 6) Report
the carbon monoxide reading and verification that the enrolled user
exhaled through Monoxalyze to the intervention provider.

2) Wakeup. The user takes a deep breath and begin exhaling into
the device. A pressure sensor inside the device wakes the device
from sleep mode into advertising mode.

3) Connect. The Monoxalyze device advertises over BLE until
a connection is made with the smartphone. It then sends carbon
monoxide readings and verifies to the smartphone that the user is
exhaling.

4) Authenticate. The smartphone sends a challenge to the Monox-
alyze device over BLE, and Monoxalyze sends back the challenge
to the phone’s camera using the front facing LEDs. This verifies
that in the next steps the phone is receiving data from the same
Monoxalyze device that the person it identifies is exhaling through,
as opposed to a second Monoxalyze that a non-smoker is exhaling
into out of view.

5) Identify. The smartphone verifies the user’s identity against the
training data setup at registration using facial recognition.

6) Report. The smartphone sends the carbon monoxide reading and
verification information to the intervention provider when network
connectivity becomes available.

During actual Monoxalyze use, these steps can be parallelized.
Wakeup and connection usually occur in under a second after which
simultaneous authentication and identification can be performed by
analyzing the same camera frames being used to authenticate the

Figure 2: Relative size of Monoxalyze and the CO breathalyzer
by Bedfont Scientific [2]. (a) shows the newly released Bedfont
Smokerlyzer iCo. This is a picture taken from their website that has
been morphed to fit the size specification in their datasheet. The
iCo is oval shaped with a called out depth of 29 mm. (b) Multiple
views of Monoxalyze. Monoxalyze is just 13 mm thick, making it
easy to fit on a keychain or put in a pocket. The Monoxalyze circuit
board is also shown and vertically positioned where it sits in the
case. Monoxalyze is smaller than any carbon monoxide breathalyzer
previously created. This shows that verifying smoking cessation is
viable in a mobile form factor.

device to also identify the user. Data collection over BLE can also
occur in parallel to authentication and identification. This means
that a Monoxalyze user should be able to open the smartphone appli-
cation, take a deep breath, and slowly exhale while the smartphone
camera points at the user’s face. It will not be necessary for the user
to explicitly stop at each of these steps.

5. SYSTEM DESIGN
Monoxalyze, shown in Figure 2, provides verifiable mobile read-

ings of the carbon monoxide present in exhaled breath. Monoxalyze
achieves this by combining contributions in exhalation verification
and BLE connection models, while applying concepts in out-of-
band channels to location verification on an embedded system, and
leveraging the field of mobile facial recognition. We present the sys-
tem design by going step-by-step through the Monoxalyze use-case
described in Section 4.

5.1 Pressure Sensitive Wakeup
While not required of a mobile carbon monoxide breathalyzer, we

use the pressure sensor present in Monoxalyze for the verification
purposes described in Section 5.4 to provide a user-transparent
wakeup from sleep. This means the only interaction a user has with
the Monoxalyze device is when they exhale through the device, a
much cleaner user experience than a wakeup button or switch.

To achieve this, the sensed pressure is compared with a pressure
threshold value. When the sensed value crosses the threshold, an
interrupt wakes up the microcontroller. For this to be successful,
sensed pressure must change by a reasonable amount when a user
exhales through Monoxalyze. The work on exhalation verification
discussed in Section 5.4, a key link in the ring of transitive trust, can
be used to determine the appropriate pressure threshold.

After doing this analysis, we decide that a 300 pa pressure wakeup
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(a) Samsung Galaxy S5
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(b) iPhone 6
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(c) Motorola Moto X

Figure 3: A comparison of the number of advertisements until connection on three smartphone models. The error bars denote the maximum and
minimum advertisements until connection. (a) shows that on the Samsung Galaxy S5 some advertising intervals have much better performance
than others. We speculate that this is caused by intermittent scanning. (b) shows that the iPhone 6 has good performance for all advertising
intervals. We speculate this is caused by constant scanning. (c) shows relatively poor performance for all advertising intervals on the Motorola
Moto X. We think this is caused by either very low duty cycle scanning or poor radio performance. This comparison motivates the choice of an
advertising interval and maximum number of advertisements for Monoxalyze. It also shows that total power used for a BLE interaction is very
phone dependent; this leads to phone specific power optimizations for BLE peripherals.

threshold is reasonable for Monoxalyze. To account for external
factors that may trigger Monoxalyze to wakeup, and to ensure that
Monoxalyze never enters a state in which a user cannot induce
wakeup, we institute a recalibration policy that causes Monoxalyze
to wakeup on both negative and positive pressure threshold events.
Monoxalyze always resets its reference pressure before entering
sleep. These precautions enable users to still wakeup Monoxalyze
even if they take actions that significantly lower their ambient air
pressure, such as increasing their elevation. We analyze the impact
of pressure sensitive wakeup and the potential for false wakeups has
on power in Section 7.1.

5.2 BLE Connection Model
Monoxalyze uses BLE to wirelessly transfer carbon monoxide

readings and exhalation verification to the smartphone. To the best
of our knowledge, Monoxalyze is the first wireless carbon monox-
ide breathalyzer. The existing commercial and research devices
that connect to mobile phones do so through the headset jack [23].
BLE was chosen because it is an increasingly common low-power
communication protocol that allows Monoxalyze to connect to a
smartphone.

The BLE connection model we design aims to transfer the neces-
sary data with the lowest power possible. We can break down BLE
energy usage into two sub categories: energy used for advertising
and energy used during a connection.

To minimize advertising energy we would like to form a con-
nection with the smartphone in as few advertisements as possible.
Advertisements can be sent at different intervals, and to determine
the interval that sends the fewest advertisements before connection,
we start three smartphones, a Samsung Galaxy S5, a Motorola Moto
X, and an iPhone 6 in active scanning mode, then record the number
of advertisements until connection at a range of advertising intervals.
From this data, shown in Figure 3, it is evident that the advertising
interval chosen does matter, and is phone dependent. Using this
data we choose an interval of 40 ms, and advertise a maximum of 8
seconds before either successfully connecting to the device or going
back to sleep. This advertising interval achieves fast connection
on both the Samsung Galaxy S5 and the iPhone 6, and the 8 s of
maximum advertisements is the minimum time that we believed
would help to ensure connection on phones that are not expedient at
forming connections, such as the Motorola Moto X.

After forming a connection, Monoxalyze communicates CO read-
ings and verification information back to the smartphone. The inter-

val at which this communication occurs can be negotiated by the two
parties in a connection according to the BLE specification. While
the optimal connection interval would allow communication at a
rate just exceeding the maximum data rate of Monoxalyze, in prac-
tice we find that many phones do not allow for connection interval
negotiation, and always choose an interval that well exceeds the data
rate of Monoxalyze.

5.3 Visible Light Authentication
Visible light authentication protocol provides a low-power out-

of-band challenge response protocol for verifying the location of a
Monoxalyze device. Specifically, it enables the smartphone to ensure
that the Monoxalyze device it is connected to is also in its camera
view while it performs facial recognition on the user. This verifies
that the user identified by facial recognition is the same person who
is exhaling through Monoxalyze. To implement the visible light
authentication protocol, Monoxalyze has three front facing LEDs
that are visible through holes in the case. These LEDs are shown in
Figure 4.

Using out-of-band channels with a limited communication do-
main as a means of verifying location is not a new idea [34], and
multiple devices have been created that show visible light communi-
cation to a phone’s camera is possible [22, 33], however communi-
cating from a low power embedded system to the phone’s camera
using small LEDs imposes a new set of constraints. These constrains
include limiting the time that the LEDs are active to decrease total
energy used during an authentication event. To achieve these goals
we design a generalized BLE service for out-of-band challenge
response and optimize the service to fit the needs of Monoxalyze.

In the generalized BLE challenge response service that we design,
the peripheral exposes data rate, challenge data and start fields. To
issue a challenge, the challenger writes the data rate and challenge
data to their respective fields, and when it is ready to receive the
challenge, it writes to the start field and then listens for the challenge
on the appropriate out-of-band channel.

To optimize this service for Monoxalyze, we solve a few addi-
tional problems, which focus on lowering the power of the VLC
communication protocol including making it easier for the phone
to find and decode the LEDs and lowering the power of the data
transmission itself.

To ease in decoding the transmitted signal, it is advantageous
for the smartphone to find Monoxalyze in its view before issuing
the challenge start command. This same mechanism allows the
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Figure 4: An end view of Monoxalyze with and without the center
LED active. The black and white pattern allows the smartphone
camera to localize and orient Monoxalyze in the camera view with-
out requiring the LEDs to be powered. The smartphone then sends
the challenge and expects a response from the LEDs. This shows
how we reduce the energy use of visible light communication and
make it feasible for small, battery-powered embedded systems to
communicate with a smartphone camera.

smartphone to know if the challenge failed because there is no
Monoxalyze in view or because there is a device that failed the
challenge. Originally we implemented this pre-challenge alignment
by repeating a known pattern on the LEDs, however, to save power
and make template matching easier on the smartphone, we change
this to be a static checkered pattern that also allows for orientation
determination. This static pattern can be seen in Figure 4. The
addition of this static pattern around the LEDs also makes it easy
for the smartphone to find the state of the LEDs when only a single
LED is illuminated. When using the LEDs for both data transmission
and Monoxalyze localization in the image frame, it is difficult to
determine which LED is illuminated if only one is turned on.

To synchronize the video frames with the data being transmitted,
we could transmit synchronization information such as data rate and
start conditions over BLE, and use inter-frame timing to maintain
synchronization. Unfortunately this is difficult on many smartphones
due to the varying frame rates and lag in frame rate reporting. This
means that to synchronize the video processing with the data, the
data signal must have an embedded clock. Manchester encoding is a
well known scheme for self-clocking signals, however we observe
that using three LEDS enables a lower power self-clocking signal
encoding.

This signal encoding method uses On-Off-Keying and sends bits
in three bit frames, in which each LED represents a single bit. The
encoding mandates that every three bit data frame be different from
the previous three bit data frame, with the start condition being rep-
resented by any non-zero data frame. This encoding scheme allows
for seven possible frames in every time period (8 possible combi-
nations of three LEDs, with the previous frame being invalid), and
effectively communicates log2 (7) = 2.8 bits of information per
frame. The downside of this system is that it does not enable the
transmission of arbitrary data, however this limitation is not detri-
mental to our authentication system, and can still match the generic
authentication protocol outlined above given that the smartphone
only sends the Monoxalyze device challenges that meet this format.
If in the future the smartphone application can record video at a
more consistent frame rate, it could send arbitrary challenges to the
device, and use this frame rate for signal recovery. It should not be
difficult for the smartphone to generate a random challenge which
meets these criteria at relatively short challenge lengths, such as the
12 bit challenges that we use, considering that 59% of 12 bit integers
meet the limitations of the encoding. We evaluate the implications
of this encoding scheme, its reliability, and its improvements over
Manchester encoding in Section 7.4.

Given these optimizations, the final process is as follows: 1) the
phone will process front camera frames until it detects the static
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(b) Natural Breath

Figure 5: Comparing the pressure change induced by the movement
of dry vs humid air through Monoxalyze. The vertical lines denote
the start and stop of air movement respectively. This shows that
natural humid breath causes significantly greater pressure increase
(about 2 kPa) than dry air (about 50 Pa). This is caused by the
increase in partial pressure of water vapor in the humid air. We
use this significant change in pressure caused by humidity to verify
exhalation during a breath test and wake Monoxalyze up from sleep
in a user-transparent way.

pattern on Monoxalyze, 2) the phone will generate random num-
bers until it generates a valid 12 bit challenge, 3) the phone will
send this challenge to Monoxalyze and send the start command, 4)
Monoxalyze will blink back the challenge on the front LEDs using
3-bit frames of OOK data, 5) the phone will record the challenge
response and process it to extract the challenge data, and 6) If the
challenge fails then restart from step 1.

In our current application, this challenge response is unencrypted,
and we believe that this is sufficient for Monoxalyze because chal-
lenges are random and not reused, and therefore are not secret.

5.4 Exhalation Verification
More important than being a wakeup mechanism, the pressure

sensor inside of Monoxalyze is used to verify that a user is actually
exhaling for a sufficient amount of time through the device. If this
verification fails, a user could simply go through all the steps of
using Monoxalyze without exhaling and receive a CO reading of
the surrounding air. For the pressure sensor to accomplish this task,
a person exhaling must sufficiently change the pressure inside the
Monoxalyze gas chamber.

To ensure that the pressure inside the gas chamber changes during
exhalation, we design the case so that the gas exit orifice is smaller
than the input opening of the mouthpiece, however upon doing a test
exhalation with an “artificial lung” (inflated bag with an exit tube),
we find that the pressure inside the gas chamber does not increase.
Testing exhalation with an actual person results in a great increase
in pressure. The data from this experiment is shown in Figure 5b.
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We hypothesize that most of the pressure increase is due to an
increase in the humidity in the gas chamber. The pressure sensor re-
ports a higher pressure with increasing humidity because the partial
pressure of water vapor is higher than that of dry air. While this does
not allow for a direct mapping of exhalation speed to sensed pres-
sure, it does verify that a human is exhaling through Monoxalyze
instead of an air hose or other fake gas flow.

During our testing we also observe a drop-off in reported pressure
immediately after exhalation ceases because the humidity inside
of the of gas chamber begins to equilibrate with the humidity in
the surrounding air. We notice that this drop-off is proportional
to the size of the exit orifice, which makes sense as a larger exit
orifice allows a higher rate of equilibration. The drop off rate shown
in Figure 5b is proportional to the exit slit that can be seen on
Monoxalyze in Figure 2.

With these two considerations, exhalation verification is per-
formed by mandating that pressure increases for the beginning of the
exhalation period and remains stable for the rest of the exhalation
period. The end of exhalation is denoted by detecting the drop off in
pressure readings.

A user could attack this part of the system in several ways, in-
cluding blocking the exit hole to artificially increase the pressure
inside the gas chamber, or attempting to exhale at such a low veloc-
ity that they do not sufficiently empty their lungs. In the first case,
the pressure behaves erratically and the processing algorithm flags
the exhalation has ended early, which could later be flagged as an
invalid test by the intervention program provider. In the later case,
we observe that when exhaling at a velocity so low that the user
has not completely exhaled in the 20-30s of required exhalation, the
humidity does not build up sufficiently to cause the pressure sensor
to report a pressure increase in the gas chamber.

5.5 CO Sensor Design Challenges
While a CO breathalyzer is not a new device [2, 5, 6, 27], most

currently available CO breathalyzers are commercial products that
often use expensive medical grade canister sensors, are large, and we
have not found any open publications that discuss the complications
of sensing a person’s breath.

This may be because at first sight sensing CO concentration is not
technically difficult. CO sensors are electrochemical sensors. They
induce a current that is directly proportional to the CO concentration,
which can be converted to a voltage, amplified, and read by an ADC.
Indeed, this is exactly what our sensor does. However, this simplicity
quickly breaks down when the CO sensor is exposed hot and humid
exhaled breath.

High levels of humidity cause problems with both the CO sen-
sors and the electrical components in Monoxalyze. To prevent the
problems with the electrical components, we design a better case
that seals the electrical components (except for the pressure sensor)
from the air chamber using O-rings.

To address the problems presented by the cross-reactivity of hu-
midity with the CO sensor, we take preventative measures to keep
condensation and humidity from reaching the gas sensor element.
Most commercial sensors do this with vapor-filtering mouth pieces,
which are themselves larger than Monoxalyze. Instead, we create a
stack of filters consisting of carbon film, active charcoal mesh, and
a hydrophobic PTFE membrane. This design decreases exposure of
the gas sensor to humidity without changing its response to dry CO
test gas. It is future work to explore different filter stacks, and find
the best combination of filters.

6. IMPLEMENTATION
We implement several iterations of the electronics and enclosures

to evaluate Monoxalyze.

System. The circuit implementations are centered around the Nordic
NRF51822, a Bluetooth SoC. This IC implements the BLE radio
stack, serves as the ADC for the CO measurements, and performs
all other communications and processing. All power calculations
for the BLE connection models were based on the BLE stack imple-
mentation developed for the NRF51822 by Nordic Semiconductor.

Gas Sensor. The Monoxalyze design presented in this paper uses
the Microcel CF CO Sensor [26]. This sensor was chosen for its
small form factor. It presents slightly higher sensitivity to humidity
than traditional canister CO sensors, and costs approximately the
same. Ideally we would use the smaller and significantly less costly
gas sensor discussed in Section 8.1, and indeed, several implemen-
tations of Monoxalyze were produced with this sensor. We used the
TI LMP91000 in an unbiased, 3-lead amperic mode as the analog
front end for the CO sensor. To keep the Microcel CO sensor from
biasing during sleep and requiring a high stabilization time after
wakeup, we short the internal P-Fet on the LMP91000 before sleep.

Pressure Sensor. We use the STMicroelectronics LPS25HB pres-
sure sensor. Most pressure sensors function as described in Sec-
tion 5.1 and Section 5.4, however a nontrivial fraction of the pressure
sensors exhibit an entirely different response, by which their output
appears to saturate. This could be due to an assembly process error
such as excessive heat exposure. It may be advantageous to look
into using a different pressure sensor in the future.

Image Processing. For image processing, we currently offload challenge-
response videos to a computer. The processing algorithm uses multi-
scale normalized cross-correlation to find the static template on the
back of Monoxalyze and thresholds the values of the expected LED
positions after finding the template. While the processing of videos
will be slower on a mobile phone, the current challenge response
protocol which transmits frames at 10Hz only requires the algorithm
to process about 12 frames of data. On a compute,r the unoptimized
processing takes approximately 1s, so a phone should easily be able
perform this processing within a single exhalation test. There are
also well known computer vision libraries for mobile phones such as
OpenCV, which implement optimized version of all of the functions
used in our processing algorithm.

Firmware. The software is a bare-metal implementation that runs
on the Cortex-M0 in the Nordic Semiconductor nRF51822. The
software is largely based off of Nordic’s provided libraries.

Enclosure. The case is designed in Solidworks 2015 and has been
3D printed on both a Makerbot Replicator and Zortrax m200. The en-
closure is designed to be compatible with BACTrack mobile breath-
alyzer mouthpieces.

Cost. The total cost of the prototype sensor is approximately $125
each. This cost includes all electrical components, the gas sensor,
and the PCB. This does not include manufacturing of the case. This
also does not take into account any price breaks that would come
from scaling up production or negotiating with manufacturers.

Open Source. All firmware, image processing software, circuit de-
signs, PCB layouts, and case designs are open source and available
at www.github.com/lab11/monoxalyze.
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7. EVALUATION
We evaluate Monoxalyze on three main dimensions: usability,

data validity, and determination of smoking cessation. To evaluate
usability, we consider user burden, battery life, size, and reliability
of the pressure sensitive wakeup. To evaluate the validity of data
collection, we explore the reliability of our user authentication. Fi-
nally, we enlist a third part to run a small pilot study with thirteen
people who are attempting to quit smoking and compare our sensor’s
determination with ground-truth smoking status.

7.1 Energy Cost and Model
To evaluate the battery life of a Monoxalyze device we measure

the energy associated with each event that occurs during its various
operating modes. We predict the rate at which these events occur
during normal use and use these predictions to estimate battery life-
time. We begin by evaluating the active use of Monoxalyze and
then evaluate sporadic events such as false wakeups and pressure
recalibration events. A summary of the energy cost of each event is
presented in Table 2.

Advertising. We measure the energy cost of a single advertisement
to be Eadv = 190.5 µJ. From our exploration of phone connection
rates, we choose a 40 ms advertising interval and advertise for a
maximum of 8 seconds or 200 advertisements. Across five trials, we
find that the iPhone 6 and Samsung Galaxy S5 reliably connect in
only 2–3 advertisements, however the Motorola Moto X requires a
median of 53 advertisements and a worst-case of 125 advertisements
to connect. In the best case, the energy cost from 2 advertisements
is Eadvmin = 381 µJ, while the worst case, the 200 advertisement
cutoff, incurs an energy cost of Eadvmax = 38.1 mJ.

Connection. We measure the energy cost of a single BLE connec-
tion interval to be Econn = 176.1 µJ. It should be noted that this
is a standard Monoxalyze connection interval and that the energy
for a connection interval is data dependent. On the phones that
we test, connection intervals occur at 25-100 Hz. In Table 2 we
choose an average connection interval of 50 Hz to calculate the
total energy for a 30 s Monoxalyze test. The possible range of
connection intervals that we observe provides a best case energy
cost of Econntestmin = 132.0 mJ and a worst case energy cost of
Econntestmax = 528.3 mJ over the course of a standard Monoxalyze
reading.

VLC Authentication. We measure that a single LED draws a con-
stant Pled = 80.6 mW of power. We know the average number of
LEDs active in a three bit frame of our communication protocol
is 1.71 LEDs. With knowledge that the bit rate of our implemen-
tation is 30 bps on 12 bit challenges, we know that 1.71 LEDs are
on for 0.4 seconds, which means the average cost of a single VLC
authentication is:

1.71 LEDs× 0.4 seconds× PLED = 55.3 mJ

Pressure Sensor Sampling. We measure that a single pressure sen-
sor sample internal to the pressure sensor costs
Epsamp = 15.9 µJ and that reading this pressure sample over I2C
costs another Epread = 50.7 µJ. When Monoxalyze is awake and
taking a reading the pressure sensor samples, and the MCU reads
that sample, at 25 Hz which costs a total of

(Epsamp + Epread)× 25 Hz× 30 s = 50.0 mJ

over the course of a test. When Monoxalyze is sleeping the pressure
sensor samples at 1 Hz waiting for a pressure wakeup event, and this
1 Hz sampling averages to a constant Ppidle = 15.9 µW of power.

Event Energy/
Event

Events/
Test

Energy/
Test

Advertisement (Eadv) 190.5 µJ 2-200a 0.381-
38.1 mJ

Connection
Interval(Econn)

176.1 µJ 1500a 264.2 mJ

Pressure
Sample(Epsamp)

15.9 µJ 750 11.9 mJ

Pressure Read(Epread) 50.7 µJ 750 38.9 mJ
Visible Light
Authentication(Evla)

55259 µJ 1 55.3 mJ

Gas Sensor(Egas) 1380 µJ 1 1.380 mJ
a This is phone dependent. We present an average or range of what

we observed on the phones that we tested.

Table 2: Energy cost of each primitive of the system. These are
the basic events that occur on Monoxalyze. Each event occurss at
a different rate or number of times while Monoxalyze is active,
and we assume Monoxalyze is active for 30 s/test to calculate the
total energy/test. This breakdown allows us to calculate an expected
system battery life.

Gas Sensor. If the gas sensor is active it draws a constant Pgas =
46 µW. Using the Microcel CF sensor, the gas sensor can be put in
deep sleep during sleep mode.

False Wakeup Event. A false wakeup occurs when a pressure
threshold event wakes up Monoxalyze, but no phone is listening to
connect to Monoxalyze. A false wakeup consists of 200 advertise-
ments. This totals to a cost of Ewakeup = 38.1 mJ.

Idle Power. The idle power draw of Monoxalyze consists of the 1 Hz
pressure sensor sampling along with the sleep and leakage power of
the other chips on the board. This totals to Pidle = 55.9 µW of idle
power.

7.1.1 Battery Life Calculation
Using the energy costs outlined in Table 2 and their frequencies

as described in Section 7.1, we construct two models of Monoxalyze
energy usage—one best case model and one reasonable worst case
model—and use these models for battery life approximation.

For our best case model, we assume that a user must exhale into
Monoxalyze twice per day and that each test costs 372.1 mJ of
energy. We assume that Monoxalyze experiences no false wakeups
throughout the day, which our data shows is a reasonable assumption.
This means that the total energy usage of Monoxalyze for one day
in the best case is

Etest × 2 tests = 0.744 J
+ Pidle × 86340 s = 4.826 J

Eday = 5.57 J

To provide some intuition for the lifetime range of Monoxalyze,
we construct a “reasonable worst-case” scenario. The goal of this
exercise is to provide intuition, as such some liberties are taken with
estimates. We increase user testing to three tests per day and estimate
that each test now costs 400.5 mJ because the user’s phone averages
150 advertisements to connect. We also assume that Monoxalyze
experiences 10 false wakeups due to elevation changes throughout
the day.
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The total energy usage of Monoxalyze throughout this day is

Etest × 3 tests = 1.201 J
+ Ewakeup × 10 wakeups = 0.382 J
+ Pidle × 86340 s = 4.826 J

Eday = 6.41 J

Monoxalyze has a 0.148 Wh battery. This is equivalent to 532 J of
energy. With this battery capacity, Monoxalyze would last 95 days
in the best case scenario and 83 days in the more realistic scenario.
These are both acceptable lifetimes since Monoxalyze is recharge-
able.

7.2 Wakeup Reliability
To test wakeup reliability we run two trials. In the first trial three

users exhale into Monoxalyze 15 times. These exhalation events
happen within two minutes of one another. Over this trial, we ob-
serve a wakeup success rate of 87% and an average wakeup time of
2.34 s. While this success rate might seem low, it should be noted
that the trial described above is the antagonistic case. Blowing into
Monoxalyze repeatedly causes humidity to build up, meaning there
is less humidity change, and therefore a lower pressure change on
the next exhalation event.

To show that the previous trial is the antagonistic case, we exhale
into Monoxalyze 10 more times with approximately 10 minutes
between each trial. Monoxalyze has a 100% wakeup success rate
and an average wakeup time of 1.4 s across these tests.

The problems caused by many subsequent exhalation events
should not be a factor during normal use of Monoxalyze. We expect
most intervention participants to exhale through Monoxalyze 2–3
times each day.

7.3 Exhalation Verification
Evaluating exhalation verification in a quantitative way is difficult

because it requires human exhalation, which is often inconsistent
from person to person. However, we put Monoxalyze in several
scenarios and output whether it detects an exhalation event or not
based on the algorithm described in Section 5.4. To perform all of
the testing below, we wait at least 10 minutes between tests for the
humidity within the gas chamber to return to equilibrium with the
ambient humidity.

First we exhale at full volume for 30 s into Monoxalyze 10 times.
Monoxalyze correctly identifies all exhalation events and correctly
indicates when the user stops exhaling. We then repeat this test by
attempting to blow the minimum volume of air through Monoxalyze
while ensuring that Monoxalyze reports that we are exhaling. From
a qualitative viewpoint, this amount of air always nearly emptied
the test subject’s lungs, which is sufficient for a CO measurement.

We also test the antagonistic cases by not blowing into Monox-
alyze and by blocking the Monoxalyze exit port and attempting to
hold pressure in the gas chamber. Both of these tests report inconsis-
tent behavior, as do tests in which we inhale through the Monoxalyze
gas chamber instead of exhaling.

7.4 User Authentication
First we evaluate our VLC encoding protocol for its power effi-

ciency and compare that efficiency to Manchester encoding. The
reason for using Manchester encoding as a baseline is discussed in
Section 5.3. To make our evaluation independent of power itself,
we will compare the two encoding schemes on the metric of LEDs
active/bit of information transmitted.

With our encoding scheme, on the first clock period, we expect
no more than 12

7
= 1.7 LEDs to be active. This is the worst case

because the first frame cannot be zero, so as the length of the data
increases, the average number of expected active LEDs decreases.
We also know that there are seven possible LED configurations per
frame, which is equivalent to log2 (7) = 2.8 bits per clock period,
or 1

2.8
clock periods per bit. By multiplying these two numbers, we

see that our scheme achieves 1.7
2.8

= 0.61 active LEDs per bit in the
worst case.

In contrast, we know that Manchester encoding takes two clock
periods for every one bit of information, and that every clock period
has 0.5 active LEDs. This means that Manchester Encoding would
have 1 active LED per bit, 64% more power than our encoding.
While there may be even more power efficient encodings than the
one designed for Monoxalyze, this protocol is a simple, efficient
way to communicate from a low power device to a smartphone for a
challenge response protocol that does not require arbitrary data to
be communicated.

To evaluate the reliability of our image processing we generate
30 random 12 bit challenges, transmit those challenges at 10 Hz per
frame, or 30 bps, and decode them at two different distances. With
the face filling most of the image frame (phone 5-8 inches from the
person’s face), this evaluation yields only one failed challenge with
only one bit of error, an equivalent bit error rate of 0.1%. At the
longer distance, none of the challenges succeed. On one hand this
shows that the image processing could be improved, however this
mode of failure is an inconvenience to the user rather than a security
issue, and the average use case of the phone reasonably close to the
person’s face is still quite usable.

We test challenges at the closer distance under different lighting
conditions and as long as the conditions are not extreme with bright
lights or very similar patterns in the frame, we observe these changes
do not decrease rate of success.

Many people have implemented facial recognition and verification
algorithms [29, 39], and there are many APIs that provide facial
recognition [12, 13, 24]. A review study showed that the best facial
recognition algorithms can achieve over 97% accuracy in small
sample groups [16]. More recently, companies like Amazon and
MasterCard have started to use mobile facial recognition to verify
payments, and Amazon has even filed a patent to use biometric
signals such as blinking to protect against spoofing [31, 44]. These
technologies could be integrated into the Monoxalyze system to
improve user authentication. Monoxalyze currently uses the Face++
API to perform facial verification, however the exact evaluation of
this API is part of future work due to the already established metrics
on the success of facial recognition algorithms.

7.5 Smoking Cessation Determination
We perform a preliminary test on smoking cessation determi-

nation by collecting data from 13 smokers or ex-smokers that are
patients at a smoking cessation clinic. All participants’ data are
anonymized; neither names, nor times of visits are collected. One
user reports that Monoxalyze connects to the phone, but does not
report sensor readings. From the user report, we attribute this failure
to an error in the phone application and not the Monoxalyze hard-
ware. The following evaluation considers data from the remaining
12 participants.

For this trial, participants are directed to exhale through a Smoker-
lyzer commercial breathalyzer [5], then exhale through Monoxalyze.
Table 3 shows that Monoxalyze has a sensitivity + specificity of
1.75 at an abstinence threshold of both 6 and 7 ppm. This result
shows that Monoxalyze is capable of performing smoking cessation
determination. Note that this sensitivity + specificity metric is com-
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Abstinence Threshold PPM 1 2 3 4 5 6 7 8 9 10 11
Sensitivity 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25
Specificity 0.88 0.88 0.88 0.88 0.88 1.00 1.00 1.00 1.00 1.00 1.00
Sensitivity+Specificity 1.63 1.63 1.63 1.63 1.63 1.75 1.75 1.25 1.25 1.25 1.00

Table 3: This table shows Monoxalyze’s ability to differentiate between smokers and non-smokers. We take preliminary CO measurements
from 13 participants. Of these participant, one user failed to collect data due to a phone application error. Of the remaining participants,
there are 4 smokers and 8 non-smokers. We then apply a calibration to the raw CO measurements and analyze the data against the ground
truth provided by the Smokerlyzer. We determine that an abstinence threshold of both 6 ppm and 7 ppm yield the best sensitivity+specificity,
classifying one smoker as a non-smoker. This success at classification is only slightly lower than the classification success of the Smokerlyzer
and custom devices presented in [27], and it shows the potential of Monoxalyze to successfully classify smokers from non-smokers with more
testing.
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Figure 6: A comparison of Smokerlyzer CO measurements and
Monoxalyze CO measurements. taken from a trial of 13 participants
at a smoking cessation clinic. One of 13 trials failed to collect
data, so 12 data points are plotted. The diagonal line shows the
ideal correlation between the Smokerlyzer and Monoxalyze. This
shows that Monoxalyze is reasonably accurate compared to the
Smokerlyzer, which is considered the gold standard for smoking
cessation determination.

monly used to determine the quality of CO breathalyzers, and that
the Smokerlyzer only achieves a sensitivity + specificity of 1.83 in
a comparable study [27].

In Figure 6 we compare the accuracy of Monoxalyze against the
Smokerlyzer as ground truth. We find that the Monoxalyze readings
track those of Smokerlyzer well except for one of the readings. In
Section 8.1 we consider additional passive and active means of
reducing the impact of humidity on our sensor readings.

8. DISCUSSION
In this section, we discuss current issues and future work on

Monoxalyze. We also present alternatives to current design deci-
sions that may improve performance of Monoxalyze.

8.1 Improving Cessation Determinism
The size of our user study is rather small, and a larger user study

could improve the evaluation of smoking cessation determination
in Monoxalyze. There is also possible future work on selecting hu-
midity filters and characterizing how changes in chamber humidity

affect the output signal of the gas sensor. If the cross-reactivity with
humidity could be better characterized, we may be able to use a
humidity sensor to correct for these effects.

8.2 Smaller and Lower Cost CO Sensors
Several of the explicit goals of Monoxalyze are to be smaller

and more accessible than commercial CO breathalyzers. The only
other CO sensor on the market that meets our size constraints is the
SPEC CO sensor [35], which is also a small fraction of the cost of
the Microcel sensor we use. Using the SPEC sensor would allow
Monoxalyze to be more affordable hence pervasive. Unfortunately
all of our testing with the SPEC sensor has shown it to be an order of
magnitude less sensitive and just as cross-reactive to humidity as the
Microcel sensor, making it poor at determining smoking cessation.

Ideally, future work could demonstrate the viability of using the
SPEC sensor in Monoxalyze, and we have ongoing experiments that
are attempting to use a fusion of pressure, temperature, and humidity
sensors to account for the contributions of humidity and pressure to
the CO sensor readings. We believe that actively accounting for these
environmental variations and deploying sensors with the correct set
of filters may allow the SPEC sensors to be used in future versions
of Monoxalyze.

8.3 Authentication
Several improvements could be made to our proposed transitive

trust authentication. Specifically, improvements could be made to
the visible light authentication processing algorithms. There are also
improvements to be made in the verifiable facial recognition space.
We could improve our evaluation by allowing users to freely attack
the system, and this is part of our proposed future work.

Visible light authentication could be improved by increasing the
performance of our processing algorithms so that they can be run
in real time on the mobile phone, rather than incurring some delay
before the test is authenticated. While the current system is not
particularly inconvenient to the use, improved processing would
allow for multiple challenge-response attempts before declaring the
test failed, and could mitigate the small fraction of time that we
incorrectly receive the transmitted response.

When using facial recognition to identify users in real-world
settings, several attacks could be employed, such as using a mask
to conceal identity. While some of these threats may be addressed
by using biometric markers such as blinking [44], we believe that
other techniques, such as moving the phone in a semicircle around
the face to calculate facial structure, could eliminate some of the
potential attack vectors.

Lastly, we should allow users and other researchers to attack the
system. While in theory the proposed Monoxalyze design protects
against our threat model, allowing others to attack the system is
likely to reveal opportunities to improve the security of Monoxalyze.
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9. CONCLUSIONS
Smoking cessation intervention programs need a reliable and

scalable reporting mechanism to validate smoking cessation. Exist-
ing methods of cessation detection do not extend to deployments
outside of a clinical setting. We present Monoxalyze to solve these
problems. Monoxalyze is a keychain-sized carbon monoxide breath-
alyzer that coordinates with a smartphone to verify that an individual
has exhaled through a specific device. This is achieved by verifying
exhalation with a pressure sensor, identifying the user with facial
recognition, and localizing a Monoxalyze device to the user with a
low-power visible light challenge-response protocol. Solving the ver-
ifiability problem allows for deployments outside of an in–patient,
monitored clinic. We also leverage a pressure sensor to provide
user-transparent wakeup and analyze BLE connection patterns to
optimize power for Monoxalyze, resulting in a lifetime of at least
80 days. Within these limitations for the system and its smallest-in-
class form factor, Monoxalyze is still capable of detecting smokers
with a 92% success rate. With the new capabilities provided by this
device, researchers can undertake new studies in smoking cessation,
leading to health benefits for individuals worldwide.

10. ACKNOWLEDGMENTS
This work was supported in part by the TerraSwarm Research

Center, one of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP), a Semiconductor Research
Corporation program sponsored by MARCO and DARPA. This
material is based upon work partially supported by the National
Science Foundation under grant CPS-1239031, and by the NSF/Intel
Partnership on Cyber-Physical System (CPS) Security and Privacy
under award proposal title “Synergy: End-to-End Security for the
Internet of Things,” NSF proposal No. 1505684. We would also like
to the thank Matthew Bars, CEO of IntelliQuit and Director of the
New York City Fire Department Tobacco Treatment Program for
helping to collect samples and validate the Monoxalyze sensor.

11. REFERENCES
[1] Bedfont Scientific Ltd. Compact smokerlyzer.

http://covita.net/pdfs/Datasheets/compactdatasheet_iss1.pdf.
[2] Bedfont Scientific Ltd. ico smokerlyzer.

http://www.bedfont.com/shop/smokerlyzer/ico_smokerlyzer.
[3] Bedfont Scientific Ltd. Micro smokerlyzer.

http://www.bedfont.com/shop/smokerlyzer/micro.
[4] Bedfont Scientific Ltd. Pico smokerlyzer.

http://www.bedfont.com/shop/smokerlyzer/pico.
[5] Bedfont Scientific Ltd. Smokerlyzer.

http://www.bedfont.com/smokerlyzer.
[6] Breath E-Z Systems Inc. Co slueth.

http://www.testbreath.com/co.asp.
[7] K. Cahill and R. Perera. Competitions and incentives for

smoking cessation. The Cochrane Library, 2008.
[8] S. Chapman and W. Smith. Deception among quit smoking

lottery entrants. American journal of health promotion,
8(5):328–330, 1994.

[9] S. J. Curry, E. H. Wagner, and L. C. Grothaus. Evaluation of
intrinsic and extrinsic motivation interventions with a
self-help smoking cessation program. Journal of Consulting
and Clinical Psychology, 59(2):318 – 324, 1991.

[10] S. Deveci, F. Deveci, Y. AÃğik, and A. Ozan. The
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